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We address the gravitation and inertia in the framework of general gauge principle (GGP) which
accounts for gravitation gauge group GR generated by hidden local internal symmetry implemented
on the flat space. Following the method of phenomenological Lagrangians, we connect the group
GR to nonlinear realization of the Lie group of distortion GD of local internal properties of six-
dimensional flat space M6, which is assumed as a toy model underlying four-dimensional Minkowski
space. We study geometrical structure of the space of parameters and derive the Maurer-Cartan’s
structure equations. We treat distortion fields as Goldstone fields, to which the metric and connec-
tion are related, and infer the group invariants and calculate conserved currents. The agreement
between proposed gravitational theory and available observational verifications is satisfactory. Un-
like the GR, this theory is free of fictitious forces, which prompts us to address separately the inertia
from a novel view point. We construct relativistic field theory of inertia, which treats inertia as dis-
tortion of local internal properties of flat space M2 conducted under the distortion inertial fields.
We derive the relativistic law of inertia (RLI) and calculate inertial force acting on the photon in
gravitating system. In spite of totally different and independent physical sources of gravitation and
inertia, the RLI furnishes justification for introduction of the Principle of Equivalence. Particular
attention is given to realization of the group GR by the hidden local internal symmetry of abelian
group U loc = U(1)Y × diag[SU(2)] implemented on the space M6. This group has two generators,
third component T 3 of isospin and hypercharge Y implying Qd = T 3 + Y/2, where Qd is the dis-

tortion charge operator assigning the number -1 to particles, but +1 to anti-particles. This entails
two neutral gauge bosons that coupled to T 3 and Y . We address the rearrangement of vacuum
state in gravity resulting from these ideas. The neutral complex Higgs scalar breaks the vacuum
symmetry leaving the gravitation subgroup intact. The resulting massive distortion field component
may cause an additional change of properties of spacetime continuum at huge energies above the
threshold value.

Keywords: Modified theories of gravity, Spontaneous breaking of symmetries, Field theory of inertia, Prin-

ciple of Equivalence, A rearrangement of vacuum

I. INTRODUCTION

More than four centuries passed since the famous far-
reaching discovery of Galileo (in 1602 − 1604) that all
bodies fall at the same rate [1], which led to an early em-
pirical version of suggestion that gravitation and inertia
may somehow result from a single mechanism. Besides
describing these early gravitational experiments, Newton
in Principia Mathematica [2] has proposed a comprehen-
sive approach to studying the relation between the gravi-
tational and inertial masses of a body. Ever since there is
an ongoing quest to understand the reason for the equal-
ity of gravitational and inertial forces, which remains an
intractable mystery. From its historical development this
can be regarded as furnishing immediate support for the
Principle of Equivalence asserted by Einstein for General
Relativity (GR), which preserves the idea of relativity of
all kinds of motion. Currently, the Earth-Moon-Sun sys-
tem provides the best solar system arena for testing the
Principle of Equivalence, for a review see e.g. [3, 4]. Any
theory of gravitation might explain both the attraction
of masses and inertia in consistent terms. However, a
nature of the relationship of gravity and inertia contin-
ues to elude us and, beyond the Principle of Equivalence,
there has been little progress in discovering their true re-
lation. Moreover, it seemed that the inertia cannot be
ultimately identified with the gravity as it is proposed

in GR, because there are important reasons to question
the validity of this description. Actually, there are sev-
eral empirical effects that seem incomprehensible in this
framework. The experiments by [5–7] tested the impor-
tant question of anisotropy of inertia stemming from the
idea that the matter in our galaxy is not distributed
isotropically with respect to the earth, and hence if the
inertia is due to gravitational interactions then the in-
ertial mass of a body will depend on the direction of
its acceleration with respect to the direction towards the
center of our galaxy. However, these experiments do not
found such anisotropy of mass. For example, the most
sensitive test is obtained in [7] from a nuclear magnetic
resonance experiment, where the increase in sensitivity
over that which one could obtain from Mössbaur effect is
due to the far narrower line width obtainable for a tran-
sition with a Li7 nucleus of spin I = 3/2 in its ground
state as compared with a nucleus in an excited state. If
the mass anisotropy effect is present, there will be three
different intervals which will lead to a triplet nuclear res-
onance line, if the structure is resolved, or to a single
broadened line if the structure is unresolved. The mag-
netic field was of about 4700 gauss. The south direction
in the horizontal plane points within 22 degrees towards
the center of our galaxy, and 12 hour later this same di-
rection along the earth’s horizontal plane points 104 de-
grees away from the galactic center. If the nuclear struc-
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ture of Li7 is treated as a single P3/2 proton in a central
nuclear potential, the variation ∆m of mass with direc-
tion, if it exists, was found to satisfy ∆m

m ≤ 10−20. This
proves that there is no anisotropy of mass which is due
to the effects of mass in our galaxy. If the curvature of
Riemannian space is associated with gravitational inter-
action then it would indicate an universal feature equally
suitable for action on all the matter fields at once. Then
another objection is that this is rather applicable only
for gravity but not for inertia since the inertia depends
solely on the state of motion of individual test particle
or coordinate frame of interest. So, the curvature arisen
due to acceleration of coordinate frame of interest relates
to this coordinate system itself and does not acts at once
on all the other systems or matter fields. Such inter-
esting aspects which deserve further investigations, un-
fortunately, have attracted little attention in subsequent
developments. This state of affairs has not much changed
up to present, as well as the RLI still remain unknown.
The present paper aims to fill this gap. Furnishing justi-
fication for introduction of the Principle of Equivalence,
in addition to those of available experimental verifica-
tions [3, 4], we must also assign a high importance to the
prove on the theoretical basis.

Another purpose of present article is to explore the re-
arrangement of vacuum state in gravity at huge energies,
which will be of vital interest for the physics of super-
dense matter in very compact astrophysical sources [8–
11] and references therein. Note that the Riemannian
space interacting quantum field theory cannot be a sat-
isfactory ground for addressing this question. The ge-
ometrical interpretation of gravitation arisen from the
dual character of the metrical tensor in its metrical and
gravitational aspects, is a noteworthy result of GR. Al-
though this interpretation has advantage in solving the
problems of cosmology, nevertheless such a distinction of
gravitational field among the fields yields the difficulties
in the unified theories of all interactions of elementary
particles, and in quantization of gravitation. Therefore,
the GR as a geometrized theory of gravitation clashes
from the very outset with basic principles of field theory.
This rather stems from the fact that Riemannian geome-
try, in general, does not admit a group of isometries, i.e.,
Poincaré transformations no longer act as isometries and,
for example, it is impossible to define energy-momentum
as Noether local currents related to exact symmetries.
This posed severe problems in Riemannian space inter-
acting quantum field theory. The major unsolved prob-
lem is the non-uniqueness of the physical vacuum and
associated Fock space. Actually, a peculiar shortcoming
of the interacting quantum field theory in curved space-
time is the following two key questions to be addressed
yet: a) an absence of the definitive concept of space-
like separated points, particularly, in canonical approach,
and the ’light-cone’ structure at each spacetime point; b)
the separation of positive- and negative-frequencies for
completeness of the Hilbert-space description. Due to it,
a definition of positive frequency modes cannot, in gen-

eral, be unambiguously fixed in the past and future which
leads to |in > 6= |out >, because the state |in > is unsta-
ble against decay into many particle |out > states due
to interaction processes allowed by lack of Poincaré in-
variance. Non-trivial Bogolubov transformation between
past and future positive frequency modes implies that
particles are created from the vacuum and this is one of
the reasons for |in > 6= |out >. Note that a remarkable
surge of activity of investigations towards an extension of
GR has arisen recently. They are expressible geometri-
cally in the language of fundamental structure known as
a fiber bundle. This provides an unified picture of gravity
modified models based on several Lie groups, see e.g. [12–
29]. All these approaches have their own advantages, but
in the same time they are subject to many uncertainties.
Currently no single theory has been uniquely accepted as
the convincing gauge theory of gravitation, which will be
able successfully to address the aforementioned problems.

A. Rational

To innovate the solution to the problems involved, in
this paper we develop on the general gauge principle
(GGP), an early version of which is given in [11, 30, 31].
The GGP accounts for gravitation gauge group GR gen-
erated by hidden local internal symmetries implemented
on the flat space M6. Involving the auxiliary flat space
M6, with the whole set of well-defined Killing’s vectors,
just has a single aim as a guiding tool in dealing with an
intricate ’jungle’ of curved geometry. In this paper much
more will be done (Sect.2) to make clear and rigorous
these early results and formulations. The following part
of the present paper will be the original contribution,
whereas we relate the group GR to the Lie group GD of
distortion of local internal properties of flat space M6.
It can be achieved by nonlinear realization of the group
GD in the framework of method of phenomenological La-
grangians. This approach was originally introduced by
Coleman, Wess and Zumino [32–34] in the context of in-
ternal symmetry groups. It was later extended to the case
of spacetime symmetries by Isham, Salam, and Strathdee
[35, 36] considering the nonlinear action of GL(4, R) mod
the Lorentz subgroup, see [15] and references therein for
a comprehensive review. We study geometrical structure
of the space of parameters in terms of Cartan’s calculus
of exterior forms and derive the Maurer-Cartan’s struc-
ture equations. We derive key relation which uniquely
determines, for given distortion field, the six angles of
distortion rotations around each axes of the M6. We
treat distortion fields as Goldstone fields to which the
metric and connection are related. We infer group in-
variants and calculate conserved currents. The metric
is no more a fundamental dynamical field. The funda-
mental field is distortion gauge field and, thus, both the
actions and the equations of motion depend on the con-
cept of gauge potential. The metric and connection may
be derived from this gauge field. To test the proposed
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gravitation theory, we derive the line element in particu-
lar case of static and spherically symmetric gravitational
field. Traditionally the solar system is a laboratory that
offers many opportunities to improve tests of relativistic
gravity. The usual Eddington-Robertson-Schiff parame-
ters β and γ used to describe these tests are perhaps in
some sense the most important parameters of the param-
eterized post-Newtonian (PPN) formalism [37–40]. We
rather show that the agreement is satisfactory between
the proposed gravitation theory and available observa-
tional verifications [4, 40–55]. We complete the proposed
theoretical basis of distortion of spacetime by exploring,
further, two major problems of inertia and rearrangement
of vacuum state in gravity.

We construct the relativistic field theory of inertia
which similarly to gravitation theory treats the inertia
effects as a distortion of local internal properties of flat
spacetime continuum. We motivate this approach as fol-
lows. Unlike the GR, proposed gauge field theory of grav-
itation is free of fictitious forces, because the infinite-
parameter group of general covariance is no longer in
use. Instead, the preferred systems and group of trans-
formations of the, so-called, real-curvilinear coordinates
relate solely to real gravitational fields. In spite of to-
tally different and independent physical sources of grav-
itation and inertia, still we might expect that the iner-
tial force is of the same nature as gravitational force.
Namely we ascribe the effects associated with gravity
and inertia to spacetime geometry itself, and that both
phenomena arise due to the distortion of local internal
properties of flat space. To trace this line, we involve
besides the distortion gauge fields being responsible only
for gravitation, also the distortion inertial fields which
account for the inertia separately. Seeking a replace-
ment for the unobservable Newtonian absolute spacetime,
which is necessary to assign a meaning to Newtonian ab-
solute acceleration, instead we explore the geometry of
two-dimensional flat space M2. Similar reasoning leads
us, further, to the conclusion that an alteration of uni-
form motion of test particle under the unbalanced force
is the immediate cause of the real distortion of the lo-
cal internal properties of the space M2 conducted under
the distortion inertial field. This necessarily, in the first
place, with equal justice could be interpreted as a def-
inite criterion for the universal absolute acceleration of
test particle or coordinate frame of interest, and in the
second place, will give us the fundamental RLI. This we
might expect to hold on the basis of an intuition founded
on a past experience limited to low velocities, and which
were implicit in the ideas of Galileo and Newton as to
the nature of inertia. The major premise is that the cen-
trifugal endeavor of particles to recede from the axis of
rotation is directly proportional to the quantity of the ab-
solute circular acceleration, which, for example, concave
water surface in Newton’s famous rotating bucket exper-
iments. In this framework, the relative acceleration (in
Newton’s terminology) (both magnitude and direction),
in contrary, cannot be the cause of the distortion of the

space M2 and, thus, it does not produce inertia effect.
Therefore, the real inertia effects can be an empirical
indicator of absolute acceleration. We calculate the iner-
tial force acting on the photon in gravitating system of
particles that are bound together by their mutual gravi-
tational attraction. A particular attention is given to the
theoretical justification for introduction of the Principle
of Equivalence.
Finally, the developments on the GGP are applied to

address the rearrangement of vacuum state in gravity.
The objections concerning non-uniqueness of the physical
vacuum can be circumvented immediately due to one of
the underlying principles that in the flat space interacting
quantum field theory the vacuum is well-determined and
unique |in >= |out > (up to a phase factor). In realiza-
tion of GR we implement the simplest hidden gauge sym-
metry of abelian group U loc = U(1)Y × diag[SU(2)] on
the M6 which entails two neutral gauge bosons. Sponta-
neous symmetry breaking is achieved in standard manner
by introducing the neutral complex Higgs scalar. Non-
vanishing vacuum expectation value (VEV) leaves one
Goldstone boson which is gauged away from the scalar
sector. But it essentially reappears in the gauge sector
providing the longitudinally polarized spin state of one
of gauge bosons that acquires mass through its coupling
to Higgs scalar. The massless component of distortion
field is responsible for gravitational interactions. In the
resulting theory, simultaneously with the strong gravity,
the massive distortion field component may cause a sub-
stantial change of properties of spacetime continuum at
huge energies above the threshold value.
This paper is organized as follows: In Sect.2 a num-

ber of useful mathematical concepts of GGP are reviewed
for the reader’s convenience. We will refrain from pro-
viding lengthy details of the formalism of GGP and uni-
tary map. For these the reader is referred to Appendix.
In Sect.3 we relate the group GR to the Lie group GD
by constructing its nonlinear realization. In Sect.4 we
construct the relativistic field theory of inertia and give
theoretical justification for introduction of the Principle
of Equivalence. In Sect.5 we address the rearrangement
of vacuum state in gravity. Conclusions are presented in
Sect.6. The specific topics dealt with in the Appendix
are further details on the GGP. We will be brief and of-
ten suppress the indices without notice. Unless otherwise
stated we take natural units, h = c = 1. The quantities
denoted by wiggles throughout this paper refer to dis-
torted (curved) space, but the quantities referring to flat
space are left without wiggles.

II. THE GGP PRELIMINARIES

For the benefit of the reader, a brief outline of the
framework of GGP are given in this Section and in Ap-
pendix to make the rest of the paper understandable. We
have used a combined geometrical structure known as a
fiber bundle, which provides a unified picture of theory
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based on the local internal gauge symmetries. The grav-
ity, as a gauge theory, could be achieved by introducing
a generalized gauge transformation law (Eq. (1)) which
enables the gauging of external spacetime groups.

Given the principal fiber bundle P̃(R4, GR; π̃) with

the structure group GR, the local coordinates p̃ ∈ P̃

are p̃ = (x̃, UR), where x̃ ∈ R4 and UR ∈ GR, the

total bundle space P̃ is smooth manifold, the surjec-

tion π̃ is a smooth map π̃ : P̃ → R4. The base space
is assumed to be curved four dimensional Riemannian
space R4 in order to describe the effects of gravita-

tion. A set of open coverings {Ũi} of R4 with x̃ ∈
{Ũi} ⊂ R4 satisfy

⋃
α Ũα = R4. The fibration is given

as
⋃
x̃ π̃

−1(x̃) = P̃. The local gauge will be the diffeo-

morphism map χ̃i : Ũi ×R4 GR → π̃−1(Ũi) ∈ P̃, since

χ̃−1
i maps π̃−1(Ũi) onto the direct (Cartesian) product

Ũi×R4 GR. Here ×R4 represents the fiber product of ele-
ments defined over space R4 such that π̃(χ̃i (x̃, UR)) = x̃

and χ̃i(x̃, UR) = χ̃i(x̃, (id)GR
)UR = χ̃i(x̃)UR ∀x̃ ∈ {Ũi},

(id)GR
is the identity element of group GR. Let the col-

lection of matter fields of arbitrary spins Φ̃(x̃) (the vari-
ous suffixes are left implicit) take values in standard fiber

over x̃ : π̃−1(Ũi) = Ũi × F̃x̃. The fiber π̃−1 at x̃ ∈ R4 is

diffeomorphic to F̃, where F̃ is the fiber space, such that

π̃−1 (x̃) ≡ F̃x̃ ≈ F̃. The action of structure group GR on

P̃ defines an isomorphism of the Lie algebra g̃ of GR onto

the Lie algebra of vertical vector fields on P̃ tangent to

the fiber at each p̃ ∈ P̃ called fundamental. Whereas, the

tangent and cotangent bundles, respectively, are T̃ (P̃)

and T̃ ∗(P̃) , T̃p(P̃) is the space of tangents at p̃ ∈ P̃,

i.e. T̃p(P̃) ∈ T̃ (P̃). The metric is the section of conjugate

vector bundle S2T̃ ∗(P̃) (symmetric part of tensor degree):

ĝ : T̃ (P̃)× T̃ (P̃) → C∞(R4), where a section is a smooth

map S : R4 → P̃, such that S(x̃) ∈ π̃−1(x̃) = F̃x̃∀x̃ ∈ R4,
and satisfies π ◦ S = (id)R4 , where (◦) represents the
group composition operation, where (id)R4 is the iden-
tity element of R4. It assigns to each point x̃ ∈ R4 a
point in the fiber over x̃. The general coordinate trans-
formations δx̃ = f(x̃), where f(x̃) is an arbitrary func-
tion of coordinates x̃, yield the infinite-parameter group
of general covariance in R4 if only the functions f(x̃) can
be expanded in power series of x̃. The expansion coeffi-
cients are considered as the group-parameters, and that
the group-algebra includes an infinite number of genera-
tors.

Remark: An invariance of the Lagrangian LΦ̃ of matter

fields Φ̃(x̃) under the infinite-parameter group of general
covariance in R4 implies an invariance of LΦ̃ under the
gravitation gauge group GR and vice versa if, and only if,
the generalized local gauge transformations of the fields

Φ̃(x̃) and their covariant derivative ∇µΦ̃(x̃) are intro-
duced by finite local UR(∈ GR) gauge transformations

as

Φ̃′(x̃) = UR (x̃) Φ̃(x̃),[
gµ(x̃)∇µΦ̃(x̃)

]′
= UR (x̃)

[
gµ(x̃)∇µΦ̃(x̃)

]
,

(1)

where ∇µ denotes the covariant derivative agreed with
the metric, gµ(x̃) → ẽµ(x̃) for the fields of spin (j =
0, 1), and gµ(x̃) = V µα (x̃) γα for the spinor field (j = 1

2 ),
where V µα (x̃) =< ẽµ, ẽα > are the components of affine
tetrad vectors ẽα in used coordinate net x̃µ [56], γα are
the Dirac’s matrices. The unitary matrix UR (x̃) will be
determined below.
Next, suppose the massless gauge field a(x) (≡ aµ(x))

takes values in Lie algebra g of abelian group U loc, which
is a local form of expression of connection in princi-
ple fiber bundle P(M4, U

loc; π) with the structure group
U loc and the surjection π. The base space is the flat
Minkowski space M4, so, a set of open coverings {Ui}
of M4 with x ∈ {Ui} ⊂ M4 satisfy

⋃
α Uα = M4.

The metric is the section of conjugate vector bundle
η̂ : T (P)×T (P) → C∞(M4), whereas the symmetric com-
ponents (ηlk) of metrical tensor can be given in basis (el).
The matter fields Φ(x) of arbitrary spin are the sections
of vector bundles associated with abelian group U loc.
They take values in standard fiber which is the Hilbert
vector space where a linear representation U(x) of group
U loc is given. This space can be regarded as Lie alge-
bra of group U loc upon which Lie algebra acts according
to law of adjoint representation: a ↔ ad a Φ → [a ,Φ].
We adopt the following conventions: Greek indices stand
for variables in R4, Latin indices refer to M4, and that
ψµl ≡ ∂l x̃

µ where ∂l = ∂/∂ xl. Aforesaid is the math-
ematical tools of conventional gauge dynamics. Now,
to involve a drastic revision of a role of gauge fields in
physical concept of curved geometry, below we general-
ize this scheme by exploring a new special type of distor-
tion gauge fields assumed acting on external spacetime
groups. While, a local internal gauge symmetry U loc(1)
remains hidden symmetry as far as it is screened by the
gravitation gauge group GR.
Theorem 1: For any generalized gauge field dynamics

of Eqs. (1) defined on R4 the underlying (surjective) con-
ventional gauge field dynamics can always be constructed
on M4.
Proof: The following three steps are the very founda-

tion of our construction procedure which went into the
proof of this theorem.
First step: We assume that the basis vector (e) un-

dergoes distortion transformations under the distortion
gauge field (a):

ẽµ(a) = Dl
µ(a) el. (2)

The transformation matrix D(a) will be determined in
Sect.3.
Second step: We construct the diffeomorphism

x̃µ(x, a) : M4 → R4 by seeking the new holonomic coor-
dinates x̃µ(x, a) as the solutions of the first-order partial
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differential equations

ẽµ(a)ψ
µ
l = Ωml (F )em, (3)

where Ωml (F ) = δml + ωml (F ), the (F ) denotes antisym-
metrical tensor of gauge field Fnk = ∂n ak − ∂k an, and
hence the tensor Ωml (F ) has a null variational deriva-
tive (δΩml (F )/δan) = 0 at local variations of connection
an → an + δan.
Third step: We consider a smooth unitary map of all

the matter fields and their covariant derivatives:

R(a) : Φ → Φ̃,

S(a)R(a) :
(
γkDkΦ

)
→
(
gν(x)∇νΦ̃

)
,

(4)

where R(a) is the unitary map matrix, S(F ) is the gauge
invariant scalar function (see Eq. (6) and App.2), Dk =
∂k−iæ ak, æ is the gauge coupling constant which relates
to Newton gravitational constant as in Eq. (37).
The conditions of integrability ∂k ψ

µ
l = ∂l ψ

µ
k and

non-degeneracy (‖ψ‖ 6= 0) necessarily hold [57, 58],
therefore, the following constrain is imposed upon the
tensor Ωml (F ): ∂k(D

µ
mΩml ) = ∂l(D

µ
mΩmk ), the solution

of which can be written in general form Ωml (F ) =
Dm
ν (a)∂lΘ

ν(a, F ), where Θµ(a, F ) are the arbitrary func-
tions such that ∂k∂lΘ

µ(a, F ) = ∂l∂kΘ
µ(a, F ). Hence, the

equation (3) yields the bilinear form d s̃2 on R4 :

d s̃2 = gµν d x̃
µd x̃ν = ds2χ ≡

Ωml (F )Ωmk (F )dxldxk = inv(Λ, U loc),
(5)

where ds2χ is the Lorentz (Λ) and gauge (U loc) invariant
line element given on M4. Denoting χl = ωml (F )em,
and χµl = ψµl − Dµ

l , we may derive the following gauge
invariant scalar functions:

χ(F ) =< el, χl(F ) >= ωll(F ) = tr ω(F ),
S(F ) = 1

4ψ
l
µ(a, F )D

µ
l (a) = 1 + 1

4 tr ω(F ).
(6)

In what follows, we take the form

ωml (F ) = δml ω(x)(F ), (7)

where we do not initially specify the scalar function
ω(F ) apart that ω(0) = 0. Instead, at some interme-
diate stage in the analysis we adopt an expansion form
(Subsect.3.3). The curvature of the space R4 is zero if
(∂ψlµ/dx̃

ν) = Γλµν ψ
l
λ [59], where Γλµν denote the Christof-

fel symbols agreed with the metric gµν(a) = Dl
µ(a)D

l
ν(a).

In illustration of the point at issue, the Eqs. (4) explicitly
may read

Φ̃µ···δ(x̃) = ψµl · · ·ψδmR(a)Φl···m(x) ≡
(Rψ)

µ···δ
l···m Φl···m(x),

(8)

and that

gν(x)∇νΦ̃
µ···δ(x̃) =

S(F )ψµl · · ·ψδmR(a) γkDk Φ
l···m(x).

(9)

Using the gauge transformations in M4, it is a straight-
forward to determine from Eq. (8) the matrix UR (x̃) in
terms of matrices U and R. Actually,

Φ̃′(x̃) = UR (x̃) Φ̃(x̃) = URRψ(a)Φ = R′
ψ Φ′ = R′

ψ U Φ.

Similarly, this can be determined from Eq. (9) too:

(
gν(x)∇ν Φ̃(x̃)

)′
= UR (x̃)

(
gν(x)∇νΦ̃(x̃)

)
=

UR S(F )Rψ(a)
(
γkDkΦ

)
= S(F ′)R′

ψ

(
γkDk Φ

)′
=

S(F ′)R′
ψ U

(
γkDk Φ

)
.

Hence UR = R′
ψ U R

−1
ψ , where R′

ψ ≡ Rψ(a
′) and the

(a′) denotes U loc-transformed gauge field. Based on the
Theorem 1 we may extend conventional gauge principle
to involve gravity in the GGP scheme by requiring that:

The physical system of the fields Φ̃(x̃) defined on R4 must
always be invariant under the finite local gauge transfor-
mations UR of the Lie group of gravitation GR.

Φ̃′(x̃) = UR Φ̃(x̃)
UR = R′

ψ U R
−1
ψ�

Φ̃(x̃)
6
Rψ(x̃, x)

Φ(x)
U�

Φ′(x) = U Φ(x)

6
R′
ψ(x̃, x)

The scheme of GGP.

Although, in the reminder of this article we have explored
the simplest abelian symmetry U loc as hidden symmetry,
however, one may envisage that a straightforward exten-
sion should be to achieve the full machinery of the GGP
scheme for non-abelian symmetries. We conclude, on the
observations above that out of all the arbitrary coordi-
nates in R4 the real-curvilinear coordinates x̃(x, a) can
be distinguished which are derived from Eq. (3) at all
Lorentz (Λ) and gauge (U loc) transformations of vari-
ables (x) and (a). Hence, unlike GR, the wider infinite-
parameter group of general covariance in R4 is no longer
in use. Therefore, some Lorentz or gauge transforma-
tion necessarily underlies the arbitrary transformation
x̃→ x̃′ of real-curvilinear coordinates which relate solely
to real gravitational fields. This prompts us to treat the
inertia separately (Sect.4). In case of zero curvature,
the Eq. (3) can be satisfied globally in M4 by setting
ψµl = Dµ

l = V µl = (∂xµ/∂X l), ‖D‖ 6= 0, χl = 0,

where X l are the inertial coordinates. In this, one has
conventional gauge theory given on theM4 in both curvi-
linear and inertial coordinates. At this point, we have
discussed all the mathematical tools that complete the
formalism of GGP by making clear and rigorous the early
results and formulations [11, 30, 31]. In what follows we
shall present the original contribution.
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III. NONLINEAR REALIZATION OF

DISTORTION GROUP GD

The nonlinear realization technique [32, 33] provides a
way to determine the transformation properties of fields
defined on the quotient space G/H . Constructing non-
linear realization of the Lie group of distortion GD, first,
within the scheme of the GGP we necessarily introduce
the language of a conceptual six-dimensional geometry
of M6, which is assumed as a toy model underlying
the M4. This replacement appears to be indispensable
in discussion of the distortion of local internal proper-
ties of spacetime continuum, and it mostly manifests its
virtues in constructing the relativistic field theory of in-
ertia (Sect.4). So, let M6 be the smooth differentiable
six-dimensional flat space with the decomposition law as
follows:

M6 = R3
+ ⊕R3

− = R3 ⊕ T 3,
sgn(R3) = (+ + +), sgn(T 3) = (−−−).

(10)

The e(λα) = Oλ × σα (λ = ±, α = 1, 2, 3) are linear
independent unit basis vectors at the point (p) of interest
of given three-dimensional spaceR3

λ. The unit vectorsOλ
and σα imply

< Oλ, Oτ >=
∗δλτ , < σα, σβ >= δαβ , (11)

where δαβ is the Kronecker symbol, and ∗δλτ = 1 − δλτ .
Consequently, three spatial eα = ξ × σα and three tem-
poral e0α = ξ0 × σα components are the basis vec-
tors, respectively, in spaces R3 and T 3, where O± =
(1/

√
2)(ξ0 ± ξ), ξ20 = −ξ2 = 1, < ξ0, ξ >= 0. Within

this scheme, we are presumably allowed to perceive di-
rectly the three-dimensional ordinary space R3, but not
the three - dimensional time space T 3 being orthogonal
to the former. In using this language it is important to
guard a reduction to the spaceM4 which can be achieved
in the following way.
1) In case of free flat space M6, the subspace T 3 is
isotropic. And so far it contributes in line element just
only by the square of the moduli t = |x0|, x0 ∈ T 3,
then, the reduction M6 → M4 = R3 ⊕ T 1 can be readily
achieved if for conventional time we use t = |x0|.
2) In case of curved space, the reduction R6 → R4 can
be achieved if we use the projection (ẽ0) of the tempo-
ral component (ẽ0α) of basis six-vector ẽ (ẽα, ẽ0α) on the
given universal direction (ẽ0α → ẽ0) . By this we choose
the time coordinate. Actually, the Lagrangian of physi-
cal fields defined on R6 is the function of scalars such as
A(λα)B

(λα) = AαB
α+A0αB

0α, then upon the reduction

of temporal components of six-vectors A0αB
0α = A0α <

ẽ0α, ẽ0β > B0β = A0 < ẽ0, ẽ0 > B0 = A0B
0 we may

fulfill a reduction to R4.

A. Distortion of local internal properties of the M6

First, we consider distortion transformations of the in-
gredient unit vectors Oτ under the distortion gauge field

(a):

Õ(+α)(a) = Qτ
(+α)(a)Oτ = O+ +æ a(+α)O−,

Õ(−α)(a) = Qτ
(−α)(a)Oτ = O− +æ a(−α)O+,

(12)

where Q
(
= Qτ

(λα)(a)
)

is the element of the group Q.

This violates the first relation in Eq. (11) because of

Õ2
(λα)(a) = 2æ a(λα) 6= 0 for given λ and α. Next, we

assume that this induces the distortion transformations
of ingredient unit vectors σβ , which, in turn, undergo the

rotations: σ̃(λα)(θ) = Rβ
(λα)(θ)σβ , where R(θ) ∈ SO(3)

is the element of the group of rotations of planes in-
volving two arbitrary axes around orthogonal third axis
in the given ingredient space R3

λ. Then, resulting ba-
sis vectors σ̃(λα)(θ) of each three-dimensional ingredi-

ent space R3
λ retain the orthogonality condition between

themselves, but violate it between the basis vectors of dif-
ferent ingredient spaces. That is, < σ̃(λα), σ̃(τβ) >α6=β 6=
0, at λ 6= τ. In fact, distortion transformations of ba-
sis vectors (O) and (σ) are not independent, and rather
governed by the spontaneous breaking of distortion sym-
metry (see Eq. (24)). To avoid a further proliferation of
indices, hereafter we will use upper case Latin (A) in in-
dexing (λα), etc. The infinitesimal transformations then
read

δQτ
A(a) = æ δ aAX

τ
λ ∈ Q,

δR(θ) = − i
2Mαβδ ω

αβ ∈ SO(3),
(13)

provided by generators Xτ
λ = ∗δτλ and Ii = σi

2 , where

σi are the Pauli’s matrices, Mαβ = εαβγIγ and δ ωαβ =
εαβγδ θγ . Transformation matrix D(a, θ) = Q(a)×R(θ)
is the element of distortion group GD = Q× SO(3):

D(daA, d θA) = I + dD(aA, θA),
dD(aA, θA) = i

[
d aAXA + d θAIA

]
,

(14)

where IA ≡ Iα at given λ. We may join to each point
(a, θ) of group space the Descartes’ reper which is equal,
in group sense, to the reper joint to point of origin (0, 0).
This is introduced to ensure that the vector (a, θ; a +
d a, θ + d θ) has the same analytical expression of the
vector (0, 0; d a′, d θ)′: (Eq. (14))

D(a, θ) dD
−1
(a, θ) = i[ωAXA + ϑA IA], (15)

where we denote d a
′A = ωA(a, θ; d a, d θ) and d θ

′A =
ϑA(a, θ; d a, d θ). Then,

d eA = eA dFA = OA(d)× σA +OA × σA(d) =
i[ωA(d)XA + ϑA(d) IA] eA,

(16)

where eA ≡ (expFA). The functions ωA(d) and ϑA(d)
will be determined in the next subsection.

B. A spontaneous breaking of distortion symmetry

Following the method of phenomenological La-
grangians [13, 15, 32–34, 60] and references therein, our
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goal is to treat the distortion group GD and its station-
ary subgroup H = SO(3), respectively, as dynamical
group and its algebraic subgroup. But the generators
XA (Eq. (13)) of group Q do not complete the group H
to the dynamical group GD, therefore, they cannot be in-
terpreted as the generators of quotien space GD/H , and
that the distortion fields aA cannot be identified directly
with the Goldstone fields arisen in spontaneous breaking
of distortion symmetry GD. These objections, however,
can be circumvented if we define the pair of the original
basis vectors Oλ in terms of orthogonal unit vectors ξ0
and ξ. The distortion transformations Eq. (12) of ba-
sis vectors O± then immediately become rotations of the
group SO(3) of modified basis vectors

ÕA = 1√
2

(
ξ̃0A(θ) + ǫA ξ̃A(θ)

)
= cos θAÕA, (17)

where tan θA ≡ −æ aA, ǫ(+α) = −ǫ(−α) = 1, and that

(
ξ̃0A(θ)

ξ̃A(θ)

)
=

(
cos θA sin θA
− sin θA cos θA

)(
ξ0
ξ

)
. (18)

Here, a rotation on θ(+α) is clockwise, while on θ(−α)
is counterclockwise. Consequently, the distortion group
GD = Q × SO(3) can be mapped in one-to-one manner
onto the group GD = SO(3) × SO(3) which, in turn,
is isomorphic to chiral group SU(2) × SU(2). In this
case the method of phenomenological Lagrangians is well
known. For a convenience, throughout this subsection we
leave the Greek indices implicit unless otherwise stated:
A = (λi) → i = 1, 2, 3,. But it goes without saying
that all the results obtained refer to the given R3

λ space.
Three Ii among six generators of the group correspond to
isotopic transformations, and three Ki- to special chiral
transformations mixing the states of different parities.
They imply the conventional commutation relations

[Ii, Ij ] = iεijkIk, [Ii, Kj] = iεijlKl,
[Ki, Kj] = iεijkIk,

(19)

of invariant subgroup H = SO(3), with the generators
Ii, and of quotien space GD/H , with the generators Ki,
where εijk denotes the antisymmetric unit tensor. Three
modified parameters ai(a) of the quotien space GD/H of
adjacent classes, with respect to which the Lagrangian
of physical fields is not invariant, can be identified with
three Goldstone fields. They are introduced to make pro-
visions for the Eq. (16), which incorporated into Eq. (17)
yields

d eA(a) = eA(a) dFA(θ, θ) = OA(d)× σA+
OA × σA(d) = i[ωi(a, d a)Ki + ϑl(a, d a) Il] eA(a).

(20)
This is written in terms of generators of the group
SU(2) × SU(2), where eA(a) = OA(a) × σA(a). We are
at once led to seek the function θ(θ) if dFA(θ, θ) con-
stitutes a total differential, i.e., ωi(a, d a) and ϑl(a, d a)
are Cartan’s forms. This implies

∂2 FA

∂ θ ∂ θ
= ∂2 FA

∂ θ ∂ θ
, (21)

where θ ≡ θA and θ ≡ θA. Using the infinitesimal trans-
formations (see Eq. (13))

d σ(λl) = σ(λl)(d) =
1
2εlkjσkd θ(λj), (22)

it is straightforward to calculate the partial derivative

∂ FA

∂ θ = ∂ σA

σA ∂ θ
≡ σA(∂)

σA ∂ θ
= 1

sin θA
. (23)

The similar relation holds for the vectors d ξ̃0A(θ) and

d ξ̃A(θ) (Eq. (18)), and that (∂ FA/∂ θ) = (1/ sin θA).
Upon the reduction, the holonomy condition Eq. (21)
becomes (∂/∂ θ)

(
1/ sin θA

)
= (∂/∂ θ) (1/ sin θA) , with

nontrivial solution θA = θA. Hence we arrive at

tan θA = −æ aA. (24)

Given distortion field aA, the key relation (24) uniquely
determines six angles θA of rotations around each of six
(A) axes. We are now in position to derive the Maurer-
Cartan’s structure equations. According to Poincaré’s
theorem, the exterior derivative (′) of total differential
form is zero, and that the Eq. (20) gives

(eA(a) dFA)
′ = eA(a)

(
[dFA, δ FA] + (dFA)

′) =
i
(
[ωi(a, d a)Ki + ϑl(a, d a) Il] eA(a)

)′
= 0,

(25)
where [dFA, δ FA] = (dFA)

′ = 0. In calculating of ex-
terior differential and exterior product of the forms, in
Eq. (25) the differentials of functions (Ki eA) and (Il eA)
figured in bilinear differential

δ d eA = i[δ ωi(d)Xi + δ ϑl(d) Il] eA+
i[ωi(d) δ(Ki eA) + ϑl(d) δ(Il eA)],

(26)

are defined according to Eq. (20). Equating to zero the
coefficients at the same linearly independent generators
of exterior differential in Eq. (25), this yields the follow-
ing system of equations:

(ωi)′ = [ωk, ϑβ ] εikβ ,
(ϑγ)′ = [ϑα, ϑβ ] εγαβ/2 + εγki[ω

k, ωi]/2.
(27)

Defining new forms ωik = ϑβεikβ , and using the relations
εkαβ εijk = (εiβk εkαj − εiαk εkβj), which stem from the
Yacobi’s identity

{[Ki[Iα, Iβ ]]}+ permutations ≡ 0, (28)

the Eqs. (27) yield the Maurer-Cartan’s structure equa-
tions

(ωi)′ = [ωk, ωik],
(ωik)

′ = −Rljki[ωk, ωi]/2 + [ωkj , ω
l
k],

(29)

where Rljki = −εljγεγki is the curvature of the group
space. These equations, as usual, describe the motion
of orthogonal reper joint to given point of group space.
The forms ωi and ωik are interpreted as transformations
of translation and rotation of the orthogonal reper, i.e.,
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the rotation (ϑlIl) belongs to stationary group H , but
the translation reads (ωiKi). The invariant constraint
Eq. (24) has as an immediate consequence that there
always exists the rotation transformation of stationary
subgroup H annulling the change in equation of Car-
tan’s forms arisen from the translation transformation of
the quotien space Q = GD/H . The forms ωi and ϑl

can be used to construct the group invariants, namely
the phenomenological Lagrangians. The Lagrangian of
Goldstone fields (a) can be identified with the square
of interval of the geodesic line, with minimal number of
derivatives, between the infinitely closed points ai and
ai + d ai:

La(η) =
1
2 ω

i(a, ∂A a)ω
i(a, ∂A a), (30)

where εαilεlαj = −δij is the metrical tensor of the group
space, ∂A = (∂/∂ηA), η is the local coordinates in open
neighborhood of p ∈ M6. In normal coordinates it be-
comes

La(η) = (∂A a)
2/2+

(δik − aiak/a2)
(
sin2

√
a2/

√
a2 − 1

)
∂A a

i ∂A a
k/2.

(31)
Since the massless gauge field (a) associates with the
gauge group U loc, the Lagrangian Eq. (31) should be
equated to undegenerated Killing form defined on the
Lie algebra of the group U loc in adjoint representation

La(η) = La(η) = − 1
4 < FAB(a), F

AB(a) >K , (32)

where FAB(a) is the antisymmetrical tensor of gauge field
(a). The Goldstone fields (a) can be determined from
the Eq. (32) as the functions of gauge field (a). The
covariant derivatives of matter fields Φ interacting with
the Goldstone fields (a) can be determined by means of
the form ϑα as

L = L0 (Φ, ∂AΦ + ϑα(a, ∂A a)TαΦ) , (33)

where L0 (Φ, ∂AΦ) is the Lagrangian of interacting mat-
ter fields classified by the linear representations Tα of the
subgroup H . The Lagrangians (32) and (33) are invari-
ant with respect to distortion translations and rotations.
This must be completed by the transformations of the
fields Φ

Φ′ = (exp [iθ′α(a, g)Tα]) Φ, (34)

where θ′α(a, g) is given by Eq. (A31).

C. Static line element with spherical-symmetry

The field equations can be derived from an invariant

action S = Sa + S̃Φ̃, which is similar to Eq. (A1). The
action of distortion gauge field Sa given on the flat space
M6 is invariant under the Lorentz (Λ) and gauge (U loc)

groups, while the action of matter fields S̃Φ̃ given on the

curved space R6 is invariant under the gauge group of
gravitation GR. Field equations may immediately follow
in terms of Euler-Lagrange variations carried out in the
spaces M6 and R6, respectively. The field equation for
dimensionless potential xA ≡ æ aA can be obtained from
the Lagrangian (32) as

∂B∂B xA − (1 − ζ−1
0 )∂A∂

B xB =

− 1
2 æ

2
√
g(x) ∂g

BC(x)
∂xA

T̃BC ,
(35)

where ∂B = ∂/∂ηB, ηB are the coordinates in the given

space R3
B, T̃BC denotes the energy-momentum tensor, ζ0

is the gauge fixing parameter. To render our discussion
here more transparent, below we clarify a relation be-
tween gravitational and coupling constants. To assist in
obtaining actual solutions from field equations, we may
consider the weak-field limit and shall envisage that the
right hand side of Eq. (35) should be in the form

− 1
2 (4πGN )

√
g(x) ∂g

BC(x)
∂xA

T̃BC . (36)

Hence, we may assign to the Newton’s gravitational con-
stant GN the value

GN = æ2/4π. (37)

Remark: Although the distortion gauge field (aA) is vec-
tor field, nevertheless the key relation Eq. (37) shows
that only the gravitational attraction presents in pro-
posed theory of gravitation.
To obtain a feeling for this point we may consider

physical systems which are static as well as spherically
symmetrical. Upon the reduction R6 → R4, we have
the group of motions SO(3) with two-dimensional space-

like orbits S2 where the standard coordinates are θ̃ and
ϕ̃. The stationary subgroup of SO(3) acts isotropically
upon the tangent space at the point of sphere S2 of

radius r̃. So, the bundle π̃ : R4 → R̃2 has the fiber
S2 = π̃−1(x̃), x̃ ∈ R4 with a trivial connection on it,

where R̃2 is the quotient-space R4/SO(3). The coordi-

nates x̃µ(t̃, r̃, θ̃, ϕ̃) implying the diffeomorphism x̃µ(x, a) :

M4 → R4 exist in the whole region π̃−1(Ũi) ∈ R4, where

x̃0r ≡ t̃, x̃0θ = x̃0ϕ = 0. In outside of configuration of
given mass, the field equation Eq. (35) can be written
in Feynman gauge as ∇2a0 = 0, which has the solution
x0 = −rg/2r, where x0 ≡ æ a0(r), rg is the gravitational
radius. The components of transformation matrix are
D0

0̃
= 1 + x0, Dr

r̃ = 1 − x0, Dθ
θ̃
= Dϕ

ϕ̃ = 1. From

Eq. (3) and Eq. (7), we obtain

∂x̃µ

∂xl ≡ ψµl = Dµ
l (1 + ω(F )). (38)

It can be easily verified that either ∂rψ
0
0 6= Γ0

01ψ
0
0 , or

∂rψ
1
1 6= Γ1

11ψ
1
1 , etc., and the curvature of the space R4 is

not zero. The line element then reads

d s̃2 = (1 − rg
2r )

2 dt̃2 − (1 +
rg
2r )

2 dr̃2−
r̃2(sin2 θ̃ d ϕ̃2 + d θ̃2),

(39)
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provided, the Eq. (38) and Eq. (39) give the relation

dg00
dr = dg00

dr̃
1+ω(F )

1+
rg
2r

=
rg
r2 (1 −

rg
2r ), (40)

for determining the function r̃(r). We must now turn to
the actual correspondence between the expression (39)
for the line element surrounding an attracting central
body and the observational facts of astronomy. The in-
vestigating methods are so well known that it will be
sufficient for our purposes merely to indicate the classi-
cal tests of GR conducted in solar-system dealing only
with the shape of the trajectories of photons and plan-
ets. All these tests are carried out in empty space and
in gravitational fields that are to a good approximation
static and spherically symmetric. Therefore, in sufficient
approximation, at great distances from the central body

F = (4r2gæ
2FmnFmn)

1/4 = rg/r << 1, (41)

we may take expansion of function ω(F ) = λ1F +λ2F
2+

· · · , and that from Eq. (40) we obtain

r̃ = r(1 + α1F + α2F
2 + · · · ), (42)

provided α1 = 1/2−λ1, α2 = λ2+1/4+4(λ1−1/4)2, etc.

Then, in terms up to the second order in F̃ (= rg/r̃),
which is an approximation of interest for available obser-
vational verifications, the temporal component of met-

rical tensor reduces to g00 ≃ 1 − F̃ + (λ1 − 1/4)F̃ 2.
With these provisions, Eq. (39) is reduced to standard
Schwarzschild line element with the metrical tensor com-
ponents as follows:

g00 ≃ 1− rg
r̃ + (λ1 − 1

4 )
r2g
r̃2 ,

g11 ≃ −(1 +
rg
r̃ + · · · ),

g22 = −r̃2, g33 = −r̃2 sin2 θ̃.

(43)

The free adjustable parameter λ1 in Eq. (43) can be writ-
ten in terms of Eddington-Robertson expansion parame-
ters as λ1 = 1/4 + 2(β − γ). While γ controls also other
relativistic effects, in particular those related to gravito-
magnetism, it mainly affects electromagnetic propaga-
tion. The differential displacement of the stellar im-
ages near the Sun historically was the first experimen-
tal effect to be investigated and is now of great impor-
tance in accurate astrometry. The bending of a light
ray also increases the light-time between two points, an
important effect usually named after its discoverer I. I.
Shapiro [49]. Several experiments to measure this de-
lay have been successfully carried out, using wide-band
microwave signals passing near the Sun and transponded
back, either passively by planets, or actively, by space
probes, see [40, 46]. The very long baseline interferom-
etry (VLBI) has achieved accuracies of better than 0.1
mas (milliarcseconds of arc), and regular geodetic VLBI
measurements have frequently been used to determine
the space curvature parameter γ [43, 45, 47, 48, 50],
resulting in the accuracy of better than ∼ 0.045% in

the tests of gravity via astrometric VLBI observations.
Detailed analysis of VLBI data have yielded a consis-
tent stream of improvements γ = 1.0000.003 [47, 48],
γ = 0.99960.0017 [45], γ = 0.999940.00031 [43] and
γ = 0.999830.00045 [50] resulting in the accuracy of bet-
ter than ∼ 0.045%. The major advances in several dis-
ciplines notably in microwave spacecraft tracking, high
precision astrometric observations, and lunar laser rang-
ing (LLR) suggest new experiments. LLR, a continuing
legacy of the Apollo program, provided improved con-
straint on the combination of parameters 4β− γ− 3 [52–
55]. The analysis of LLR data [53] constrained this com-
bination as 4β−γ−3 = (4.0±4.3)×10−4, leading to an ac-
curacy of ∼ 0.011% in verification of general relativity via
precision measurements of the lunar orbit. A significant
improvement was reported in 2003 from Doppler tracking
of the Cassini spacecraft while it was on its way to Sat-
urn [41], with a result γ−1 = (2.1±2.3)×10−5. This was
made possible by the ability to do Doppler measurements
using both X-band (7175 MHz) and Ka-band (34316
MHz) radar, thereby significantly reducing the dispersive
effects of the solar corona. In addition, the 2002 superior
conjunction of Cassini was particularly favorable: With
the spacecraft at 8.43 astronomical units from the Sun,
the distance of closest approach of the radar signals to
the Sun was only 1.6R⊙. This experiment has reached
the current best accuracy of ∼ 0.002% [42]. Keeping in
mind aforesaid, the best fit for satisfactory agreement be-
tween the proposed theory of gravitation and observation
can be reached at λ1 − 1/4 = (2.95± 3.24)× 10−5.

IV. THE RELATIVISTIC FIELD THEORY OF

INERTIA

As we mentioned in Sect.2, in the proposed theory of
gravitation, the preferred systems and group of transfor-
mations of the real-curvilinear coordinates relate only to
the real gravitational fields. This prompts us to intro-
duce separately the distortion inertial fields, which have
other physical source than that of gravitation, and con-
struct the relativistic field theory of inertia. The latter,
similarly to gravitation theory, treats the inertia as a dis-
tortion of local internal properties of flat M2 space. The
geometry of Sect.3 is a language which is almost indis-
pensable for the treatment of this problem.

A. The case of unbalanced net force other than

gravitational

First, we shall discuss the inertia effects in particu-
lar case when the relativistic test particle accelerated
in the flat space under unbalanced net force other than
gravitational. Let us concentrate our attention on the
first observer in two-dimensional Minkowski flat space
M2 = R1

(+) ⊕ R1
(−) = R1 ⊕ T 1, being regarded as in a

state of rest or uniform motion. Suppose this unaccel-
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erated observer for the position of free test particle in
M2 uses the inertial coordinate frame S(2) correspond-

ing to spatial q ∈ R1 and temporal t ∈ T 1 variables
qa(q1, q0) ≡ (q, t) (a = 1, 0), and to the formula for in-
terval dη̂2 = ds2q = dt2 − dq2, while the ingredient spaces

R1
(±) are spanned by the coordinates η(±1), respectively.

Translating this into the language of geometry of the
Sect.3, upon reduction we may write

dη̂ = (O+dη
(+1) +O−dη

(−1))× σ1 =
dq̂ ≡ e0dt+ eqdq,

(44)

where e0 = ξ0 × σ1 and eq = ξ × σ1 are, respectively, the
temporal and spatial basis vectors along the axes of S(2),

and that q = (1/
√
2)(η(+1)−η(−1)), t = (1/

√
2)(η(+1)+

η(−1)), and v(±1) = (dη(±1)/dt) = (1/
√
2)(1 ± vq), vq =

(dq/dt) = const. The law of inertia states that a free
particle in motion of uniform speed (vq = const) in a
straight line in free space R1 tends to stay in this mo-
tion and a particle at rest tends to stay at rest unless
acted upon by an unbalanced force. Below, we introduce
the most important for the treatment of inertia new con-
cepts of relative state and universal, so-called, absolute
state of ingredient space R1

(±). The key measure for these

states will be the magnitude of the velocity components
(v(+1), v(−1)) of particle of interest.
Definition. The space R1

(±) is in the absolute (abs)

state if v(±1) = 0; the space R1
(±) is in the relative (rel)

state if v(±1) 6= 0.
According to it, the space M2 can be realized respec-

tively in the following three states: the semi-absolute
states (rel, abs) or (abs, rel), and total relative state
(rel, rel). It is remarkable that the total-absolute state
(abs, abs) ofM2, which is equivalent to the unobservable
Newtonian absolute two-dimensional spacetime, cannot
be realized because of v+1 + v−1 =

√
2c (we re-instate

the factor (c)), where v±1 ≥ 0. The existence of abso-
lute state of R1

(+) is the immediate cause of the light

traveling in free space R1 along q-axis with the resulting
maximal velocity vq = c, respectively, in (+)-direction

in case of (v(+1), 0) ⇔ (rel, abs) and in (−)- direc-
tion in case of (0, v(−1)) ⇔ (abs, rel). Also note that
the absolute state of R1

(+) manifests its absolute char-

acter in the important for special relativity fact that
the resulting velocity of light in free space R1 is the
same for all inertial frames, that is, if v(±1) = 0 then
v(±1) = v(±1)′ = v(±1)′′ = ... = 0. The velocity v(±1) 6= 0
is the measure of difference from the absolute state. We
might expect that this has a substantial effect in alter-
ation of particle motion under the unbalanced force. Sim-
ilar reasoning prompts us, further, to introduce the dis-
tortion inertial field potential which depends on the rate
of change of this measure and allows the physical inter-
pretation of the RLI as follows:
RLI: The rate of change of constant velocity (v(±1))

(both magnitude and direction) of massive (m) test par-
ticle under the unbalanced net force (f) is the immedi-

ate cause of distortion of local internal properties of flat
space M2 → R2 conducted under the distortion inertial
field potential

æa
(±1)
(in) (q, t) = ±̺(q, t,m, f)v(±1). (45)

The function ̺(q, t,m, f), which dependents on the rate
of change of the v(±1), will be determined below. Fol-
lowing general prescription of Eq. (12), the distortion
transformations of basis vectors Oλ may be recast as

Õ(+1) = Qτ
(+1)(a)Oτ = O+ +æa

(+1)
(in) O−,

Õ(−1) = Qτ
(−1)(a)Oτ = O− +æa

(−1)
(in) O+.

(46)

Now let a second observer, who makes measurements

using a frame of reference S̃(2) which is held station-
ary in distorted space R2, uses for the test parti-
cle the real-curvilinear coordinates q̃a(q̃, t̃), where q̃ =

(1/
√
2)(η̃(+1) − η̃(−1)), t̃ = (1/

√
2)(η̃(+1) + η̃(−1)). The

choice of (46) has completely fixed the original form of

the interval we are to use ds̃2q ≡ dˆ̃η2, provided

d̂̃η = (Õ(+1)dη̃
(+1) + Õ(−1)dη̃

(−1))× σ1 =

dˆ̃q = ẽ0dt̃+ ẽqdq̃,
(47)

where ẽ0 = ξ̃01 × σ1 and ẽq = ξ̃1 × σ1 are, respectively,

the temporal and spatial basis vectors, and that ξ̃01 =

(1/
√
2)(Õ(+1) + Õ(−1)), ξ̃1 = (1/

√
2)(Õ(+1) − Õ(−1)).

The Eq. (3) now gives

dη̃A = ∂η̃A

∂ηC dη
C =[

< ÕA, OC > + < ÕA, χC(e, F ) >
]
dηC ,

(48)

where the capital Latin indices A,C, etc. run over (±1).
In terms of corresponding matrices (· · · ) it can be re-
written as

(dη̃A) =
[
(< ÕA, OC >) + (< ÕA, χC >)

]
(dηC), (49)

where (dη̃A) =

(
dη̃(+1)

dη̃(−1)

)
and so on. Denoting Qη =

(< ÕA, O
C >), we obtain

(< ÕA, OC >) = Q−1
η =

γa

(
1 −æa

(+1)
(in)

−æa
(−1)
(in) 1

)
,

(50)

where γa = (1−æ2a
(+1)
(in) a

(−1)
(in) )

−1 = (1+ ̺2/2γ2q)
−1, γq =

(1−v2q)−1/2. The transformation equation for coordinates
becomes

dη̃(±1) = γa(dη
(±1) ∓ ̺v(±1)dη(∓1)), (51)

while χ(±1) = e(±1)ω(0) = 0. Actually, the tempo-

ral æa0(in) = ̺vq and spatial æa1(in) = ̺ compo-

nents of inertial field yield F10 = ∂q(̺vq) − ∂0̺ = 0.
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Then, dˆ̃q = dq̂ or ds̃2q = ds2q = dt2/γ2q , that is,

gab = (∂qc/∂q̃a)(∂qd/∂q̃b)ηcd, (a, b, c, d = 0, 1), where
the components of the metrical tensor ηcd assume the
values (−1, 1, 0). Introducing new coordinates dη̃′A =
γ−1
a dη̃A, the metrical tensor transformed to g′AB =

(∂η̃C/∂η̃′A)(∂η̃D/∂η̃′B)gCD = γ2agAB, where gAB =
DC
AD

C
B . To retain former notational conventions, from

now on we will omit the prime at the quantities η̃′(A), q̃′,
g′AB, ... The Eq. (51) then becomes

dη̃(±1) = dη(±1) ∓ ̺v(±1)dη(∓1) = (v(±1) ∓ ̺
2γ2

q
)dt.

(52)
The generally covariant expression for interval is ds̃2q =

(dˆ̃q)2 = gabdq̃
adq̃b, provided

g00 = (1 + ̺2

2γ2
q
)−2[(1 +

̺vq√
2
)2 + ̺2

2 ],

g11 = −(1 + ̺2

2γ2
q
)−2[(1− ̺vq√

2
)2 − ̺2

2 ],

g10 = g01 = −
√
2̺ (1 + ̺2

2γ2
q
)−2.

(53)

It is easily verified that the resulting curvature is not zero
because of inequalities ∂qψ

0
0 6= Γ0

01ψ
0
0 , or ∂qψ

1
1 6= Γ1

11ψ
1
1 ,

etc, where ψµl = Dµ
l . The difference of the vectors dη̂

(44) and d̂̃η (47) could be interpreted by the second ob-
server as being due to the distortion of basis vectors O±
of flat space. However, this difference with equal justice
could be interpreted by him as a definite criterion for the
absolute character of his own state of acceleration, rather
than to any absolute quality of distortion of local inter-
nal properties of flat space. To prove this assertion, we
may derive from the Eq. (52) the general transformation
equations for spatial and temporal intervals to acceler-
ated axes as

dq̃ = dq(1 +
̺vq√

2
)− √̺

2
dt,

dt̃ = dt(1− ̺vq√
2
) + √̺

2
dq.

(54)

The foregoing transformation equations give a reason-
able change at low velocities ̺/

√
2 << 1 (vq ∼ 0) :

dq̃ ≃ dq − (̺/
√
2)dt, dt̃ ≃ dt, which become conven-

tional transformation equations to accelerated (a 6= 0)

axes at ̺/
√
2 =

∫ t
0 adt

′. This immediately indicates that
we may introduce (in Newton’s terminology) the absolute
acceleration as

aabs ≡ eq
d̺√
2dsq

. (55)

We may also introduce the, so-called, inertial accelera-
tion

ain ≡ eqa
1 = eq

d2q̃
ds2q

= eq
1√
2
(d

2η̃(+1)

ds2q
− d2η̃(−1)

ds2q
). (56)

Combining (52), (55) and (56), we obtain the key rela-
tion

γqain = −aabs. (57)

Suppose the position of test particle in the space M4,
in general, is specified by the coordinates xl(s) (l =

1, 2, 3, 0) with respect to the axes of inertial system
S(4). The specific problem that now arises is to obtain
equations connecting the absolute acceleration (Eq. (55))
given in the inertial system S(2) to the unbalanced rela-

tivistic force ([59]): f l(f, f0) = m(d2xl/ds2) = Λlk(v)F
k,

exerted on the test particle. Here F k(F, 0) is the force
in the proper reference frame of test particle, Λlk(v) is
the Lorentz transformation matrix (i, j = 1, 2, 3): Λij =

δij−vivj(γ−1)/v2, and Λ0
i = γvi, where γ = (1−v

2)−1/2.
Then the two systems can be chosen so that the axis eq
of S(2) lies along the acting force f = ef |f| while the
time coordinates in the two systems are taken the same
q0 = x0 = t. This choice (eq = ef ) of unit vectors, which
can always be made, implies vq = (ef · v), and that the
rate of change of the measure of difference from the ab-
solute state of massive (m) test particle under the unbal-
anced net force f l(f, f0) other than gravitational can be
determined as

1√
2

d̺
dsq

= 1
m |f l| = 1

mγ |f|. (58)

The key relation (57) provides quantitative means for
the RLI as

f(in) = main = eq(−mΓ1
ab(̺)

dq̃a

ds̃q

dq̃b

ds̃q
) =

−maabs/γq = −[F+ (γ − 1)v(v ·F)/v2]/γqγ,
(59)

where f(in) is the inertial force, also we have taken into
account that the trajectory of the particle in curved space
R2 is given by the equation for the geodesic. At low ve-
locities vq ≃ |v| ≃ 0, the Eq. (59) reduces to conventional
law of inertia

f(in) = −F. (60)

At high velocities |v| ∼ 1, we have ef ≃ ev, where v =
ev|v|, and that vq ≃ |v| ∼ 1. The Eq. (59) then gives

f(in) ≃ −ev(ev ·F)/γ, (61)

which vanishes in the limit of the photon (m = 0). This
can be easily understood. Certainly, the acceleration of
photon in free space along its traveling direction is im-
possible, as well as its deflection by some force is also
discarded because otherwise its velocity becomes greater
than (c). Thus, it takes force to disturb inertia state, i.e.
to make absolute (aabs) acceleration. The absolute ac-
celeration is due to the existence of the absolute state of
ingredient space R1

(±) and, evidently, it is admitted as the

immediate cause of the real distortion of the local inter-
nal properties of flat space M2. The relative (d̺/dsq = 0)
acceleration (in Newton’s terminology) (both magnitude
and direction), in contrary, cannot be the cause of the
distortion of the space and, thus, it does not produce
inertia effect.

B. Involving gravitation; the Principle of

Equivalence

In the development of the relativistic field theory of
inertia in the more general case when gravitational ac-
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tion is involved, we are at once led to seek equations
in the form of generally covariant tensor expression us-
ing any set of general coordinates which we may desire
to introduce. Let the distortion gauge field (al) under-
lies gravitation. Then, the generally covariant expres-
sion for interval in four-dimensional Riemannian space
R4 is ds̃2 = gµν(a)dx̃

µdx̃ν , and Γλµν(a) denotes affine
connection agreed with the metric gµν(a). Although in-
ertial forces do not exactly cancel for freely falling sys-
tems in an inhomogeneous or time-dependent gravita-
tional field, in accordance with the Principle of Equiva-
lence, we may still maintain for a sufficiently small re-
gion that the effects of gravitation could be removed

by the use of local freely falling coordinate frame S
(l)
4 ,

having the natural acceleration due to gravity for that
region. This implies that the local spacetime structure
can be identified with the Minkowski spacetime possess-
ing Lorentz symmetry, and that the physical laws in the

frame S
(l)
4 will be the same as in any inertial coordinate

frame S(4). This is similar to assumption of approxi-
mate replacement of a curved surface by its tangent plane
at a given point, made use of in geometrical considera-
tions. Therefore, we can always choose natural coordi-
nates Xα(X,Y, Z, T ) = (X, T ) with respect to the axes

of the system S
(l)
4 in immediate neighbourhood of any

spacetime point (x̃p) ∈ R4 in question, over a differential
region taken small enough so that we can neglect the spa-
tial and temporal variations of gravity for the range in-
volved. In this coordinates, the special relativity formula
for interval will be dS2 = ηlkdX

ldXk = ds̃2, where the
components of the metrical tensor ηlk assume the special
relativity values (−1, 1, 0), and the first differential coef-
ficients of the ηlk with respect to these coordinates will
be zero at the point (p). In general, however, the second
differential coefficients will not be zero except for the spe-
cial case of spacetime that actually is flat. The values of
metrical tensor gµν(a) and affine connection Γλµν(a) at the
point (x̃p) is necessarily sufficient information for deter-
mination of the natural coordinates Xα(x̃µ) in the small
region of neighbourhood of selected point [59]. The whole
scheme outlined in the previous subsection will then hold

in the frame S
(l)
4 , provided as a preliminary step we first

examine the possibility of re-expressing the special rela-
tivity formula for the free (f(l) = 0) test particle dUα/dS

= d2Xα/dS2 = 0, (α = 1, 2, 3, 0) in generally covariant
form as DUα/Ds̃ = D2Xα/Ds̃2 = 0, where f(l) is the
special relativity value of unbalanced relativistic force

other than gravitational in the frame S
(l)
4 and, accord-

ing to the general prescription D/Ds̃ is the covariant
derivative along the curve x̃µ(s̃) ∈ R4. The relativistic
gravitational force fµg (x̃) exerted on the test particle of
the mass (m) is

fµg (x̃) = md2x̃µ

ds̃2 = −mΓµνλ(a)
dx̃ν

ds̃
dx̃λ

ds̃ . (62)

The frame S
(l)
4 will be valid if only the gravitational force

given in this coordinate frame

fαg(l) =
∂Xα

∂x̃µ f
µ
g , (63)

could be removed by the inertial force which, in turn,
is due to the distortion inertial field potential Eq. (45).

Whereas, the two systems S2 and S
(l)
4 can be chosen so

that the axis eq of S(2) now lies along (eq = ef ) the acting
net force f = f(l) + fg(l)(a), while the time coordinates in

the two systems are taken the same q0 = t = X0 = T.
Instead of Eq. (58), we now have

1√
2

d̺
dsq

= 1
m |fα(l) + fαg(l)(a)|. (64)

Hence, in general, the RLI can be obtained as

f(in) = main = eq(−mΓ1
ab(̺)

dq̃a

ds̃q

dq̃b

ds̃q
) =

−maabs

γq
= − ef

γq
|fα(l) −m∂Xα

∂x̃σ Γσµν(a)
dx̃µ

dS
dx̃ν

dS |.
(65)

In spite of totally different and independent sources of
gravitation and inertia, at f(l) = 0 when the mass (m) is
canceled out in Eq.(65), the RLI indeed furnishes justi-
fication for introduction of the Principle of Equivalence.
A remarkable feature is that the inertial force is of the
same nature as gravitational force, i.e., both are due to
the distortion of local internal properties of the flat space.
The non-vanishing inertial force acting on the photon of
energy hν, and that of effective mass

(
hν/c2

)
after in-

serting a factor (c2) which so far was suppressed, can be
obtained from the Eq. (65), at f(l) = 0, as

f(in) = −
(
hν
c2

)
ef |∂X

α

∂x̃σ Γσµν(a)
dx̃µ

dT
dx̃ν

dT | =
−
(
hν
c2

)
ef |( d

2 t̃
dT 2 )

dXα

dt̃
+ ( dt̃dT )

2 ∂Xα

∂x̃i
dui

dt̃
|, (66)

provided ef = (X/|X|), vq = (ef · u) = |u|, (γq = γ)

where (u) is the velocity of photon and (du/dt̃) is the
acceleration, and that, gµν(a)(dx̃

µ/dT )(dx̃ν/dT ) = 0. To
obtain some feeling for this, we may turn now to the
(PPN) approximation [37–40], which can be regarded
as a deformation of a background asymptotically flat
Minkowski metric. In this context we calculate the iner-
tial force for the photon in gravitating system of particles
that are bound together by their mutual gravitational at-
traction to order v̄2 ∼ GNM̄/r̄ of small parameter, where
v̄, M̄ and r̄ are typical , respectively, the average values
of their velocities, masses and separations. In doing this,
we may expand the metrical tensor to the following or-

der: g00 = 1+
2
g00 +

4
g00 +..., gij = −δij+

2
gij +

4
gij

+..., gi0 =
3
gi0 +

5
gi0 +...., where

N
gµν denotes the term

of order v̄N . Taking into account the standard expansions

of affine connection Γσµν =
2

Γσµν +
4

Γσµν +... for the compo-

nents Γi00, Γ
i
jk, Γ

0
0i, and that Γσµν =

3

Γσµν +
5

Γσµν +... for the

components Γi0j , Γ
0
00, Γ

0
ij , where

2

Γi00=
2

Γ0
0i= −(1/2)(∂

2
g00
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/∂x̃i) etc., hence to the required accuracy we obtain

2

f(in)= −
(
hν
c2

)
ef |

1

(∂X
α

∂x̃σ )
2

(d
2x̃σ

dT 2 ) | = −
(
hν
c2

) 2

(du
dt̃
)=

−
(
hν
c2

)
[−2∇φ+ 4u(u · ∇φ) +O(v̄3)],

(67)

where φ is the Newton’s potential, such that
2
g00= 2φ,

2
gij= 2δijφ, and |u| = 1 + 2φ+O(v̄3).

V. THE REARRANGEMENT OF VACUUM

STATE

Collecting together the results just established in pre-
vious sections we finally arrive at discussion of the rear-
rangement of vacuum in gravitation. To trace this line,
in realization of the gravitation gauge group GR we im-
plement the abelian local group

U loc = U(1)Y × U(1) ≡ U(1)Y × diag[SU(2)], (68)

with the group elements of exp [iY2 θY (η)] of U(1)Y and

exp [iT 3 θ3(η)] of U(1). The group Eq. (68) leads to the
renormalizable theory on M6 because gauge invariance
gives conservation of charge, also ensures the cancelation
of quantum corrections that would otherwise result in
infinitely large amplitudes. This has two generators, the
third component T 3 of isospin T related to the Pauli spin
matrix τ

2 , and hypercharge Y implying

Qd = T 3 + Y
2 ,

where Qd is the distortion charge operator assigning
the number -1 to particles, but +1 to anti-particles.
The group Eq. (68) entails two neutral gauge bosons
W 3
A of U(1) or that coupled to T 3, and BA of U(1)Y ,

or that coupled to hypercharge Y . Gauge invariant
Lagrangian of fermion field is given in standard form
L = ψ(η)iγADAψ(η), provided by covariant derivative
DA ψ(η) =

(
∂A − ig T 3W 3

A − ig′ (Y/2)BA
)
ψ(η), and

g, g′ being the U(1), U(1)Y coupling strength, respec-
tively. Spontaneous symmetry breaking can be achieved
by introducing the neutral complex scalar Higgs field

φ =

(
0
φ0

)
, Y (φ) = 1, φ0 = 1√

2
(φ1 + iφ2),

with the standard potential energy density function

V (φ) = −µ2φ+ φ + λ (φ+ φ)
2
, where µ2 > 0, λ > 0.

This is ingredient of the gauge invariant Lagrangian
of Higgs field LH = (DA φ)

+ (
DA φ

)
− V (φ), where

DA φ(η) = (∂A − ig T 3W 3
A − ig′ (Y/2)BA)φ(η). Mini-

mization of the vacuum energy fixes non-vanishing VEV:

< φ >0≡< 0|φ|0 >=
(

0
v√
2

)
, v =

(
µ2

λ

)1/2
,

leaving one Goldstone boson. The VEV of spontaneously
breaks the theory, leaving the U(1)d subgroup intact.
The unitary gauge

φ(η) = U−1(ξ3)

(
0

v+ζ(η)√
2

)
, U(ξ3) = exp

[
iξ3·τ3

v

]
,

is parameterized by two real shifted fields ξ3 and ζ, such
that < 0|ξ3|0 >=< 0|ζ|0 >= 0. The gauge transforma-
tion

φ′ = U(ξ3)φ = v+ζ√
2
χ, χ =

(
0
1

)
,

leads to V (φ′) = µ2ζ2 + λvζ3 + (λ/4) ζ4, which gives

the mass of Higgs boson MH =
√
2µ. An examination

of the v2-terms in the kinetic piece of the Lagrangian
LH = (DA φ

′)
+ (
DA φ′

)
− V (φ′) reveals the mass terms

for the physical gauge bosons:

v2

2

∣∣(i g2 τ3W ′3
A + ig′ Y2 B

′
A

)
χ
∣∣2 =

1
2 (ZA, AA)

(
M2
Z 0
0 0

)(
ZA

AA

)
.

(69)

The mass matrix can be diagonalized by the standard
orthogonal transformations:

ZA = cos θW W ′3
A + sin θW B′

A,
AA = sin θW W ′3

A + cos θW B′
A,

MZ = v
2

√
g2 + g′2, MA = 0,

(70)

where tan θW = g′/g. Namely, the neutral gauge field
W ′3

A mixes with the abelian gauge field B′
A to form the

physical states ZA and AA, with the massesMZ andMA,
respectively. For neutral current we get

Lint = æ
(
J (0)
A AA + J (M)

A ZA
)
≡ æ

(
JA aA

)
, (71)

where æ = g sin θ, and

J (0)
A = ψ(η)iγAQ

d ψ(η),

J (M)
A = ψ(η)iγAQ

(in) ψ(η),

JA = ψ(η)iγA ψ(η), Q(in) = T 3−sin2 θW , Qgr

sin θW cos θW
, .

(72)

These relations show that an additional substantial
change of properties of the spacetime continuum besides
the curvature may be arisen at huge energies. A more de-
tailed analysis and calculations on this will be presented
on the later date.

VI. CONCLUDING REMARKS

Overall, we would sum up our investigation as fol-
lows. Following the powerful method of phenomeno-
logical Lagrangians, in the framework of GGP we con-
nect the gravitation gauge group GR to nonlinear re-
alization of the Lie group GD of distortion of the flat
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space M6. The fundamental fields are distortion gauge
fields, and that the metric and connection are related to
these gauge fields. The agreement between this theory
and observation is satisfactory. On the suggested the-
oretical basis, we construct the relativistic field theory
of inertia which treats inertia as a distortion of local in-
ternal properties of flat space M2. We derive the RLI
which furnishes justification for introduction of Principle
of Equivalence. Finally, we address the rearrangement
of vacuum state in gravity. Whereas, the missing in-
gredient is the Higgs boson. The principle assumption
went into the building of this approach that the Higgs
boson is coupled only with distortion field, but not with
the matter fields. The matter fields have interacted with
the Higgs boson only via the metrical tensor. The four
parameters g, g′, µ, λ are inserted by hand, which con-
sequently determine two coupling constants æA, æZ ,
and two masses MH , MZ . However, two relations can
be imposed upon these parameters. First, the Comp-
ton wave-length λZ of massive component Za is finite,
which will be of vital interest for the physics of super-
dense matter in very compact astrophysical sources if, for

example, we set λZ = 2~/cv
√
g2 + g′2 ≤ 0.4 fm, where

≃ 0.4 fm is the distance between the particles at nu-
clear density (we re-instate ~ and c). Second, we have

2
√
πGN = g g′/

√
g2 + g′2.
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Appendix A: Further topics on the GGP

1. Field equations

Field equations can be derived from an invariant action

S = Sa + SΦ̃ =
∫ √−η La d4x+

∫ √−g LΦ̃ d
4x̃, (A1)

where La is the Lagrangian of distortion field (a), LΦ̃ is
the Lagrangian of matter fields, whereas the dependence
on distortion gauge field comes only through the com-
ponents of metrical tensor. The La is invariant under
(Λ)-coordinate and U loc-gauge groups. The Lagrangian
LΦ̃, in turn, is invariant under gauge group of gravita-
tion GR. In terms of Euler-Lagrange variations in M4

and R4, we readily obtain

δ(
√
−η La)
δ al

= −∂ gµν

∂ al

δ(
√−g LΦ̃)

δ gµν = −
√
−g
2

∂ gµν

∂ al
T̃µν ,

δL̃Φ̃

δ Φ̃
= 0,

δ LΦ̃

δΦ̃
= 0,

(A2)

where T̃µν is the energy-momentum tensor of matter

fields Φ̃(x̃).

2. The unitary map matrix

In this subsection we will determine the unitary map
matrix R(a) and gauge invariant scalar function S(F ) for
the fields of spin 0, 1, and 1/2. Our strategy is as follows:
we, first, insert Eq. (8) into Eq. (9) to obtain an identity,
and then equate the coefficients in front of ∂ Φ and Φ to
zero. In this way we may obtain the required relations
to determine R(a) and S(F ).
1) A straightforward calculation for the fields of spin

j = 0, 1 gives the unitary matrix

R(x̃, x) = R(x)Rg(x̃) = exp (−iΘ(x)−Θg(x̃)) , (A3)

provided

Θ(x) = æ
∫ x
0 al(x) d x

l,

Θg(x̃) =
∫ x̃
0

[
R+ ΓµR + ψ−1∂̃µ ψ

]
d x̃µ,

(A4)

where ψ ≡ (ψµl ) , Θg = 0 for scalar field, and Θg +
Θ+
g = 0 for vector field because of Γµ + Γ+

µ = 0, Γµ is
the connection. The scalar function S(F ) is given in the
Eq. (6):

S(F ) = 1
4 R

+(ψlµD
µ
l )R = 1

4 ψ
l
µD

µ
l . (A5)

2) Unitary map of spinor field Ψ(x) (j = 1/2) can be
written as

Ψ̃(x̃) = R(a)Ψ(x),

gµ(x̃)∇µ Ψ̃(x̃) = S(F )R(a) γlDlΨ(x),
(A6)

where

∇µ = ∂̃µ + Γµ,

Γµ(x̃) = (1/2)Σαβ V να (x̃)∂̃µ Vβν(x̃),

R̃ = γ0Rγ0, Σαβ = 1
4 [γ

α, γβ],
Γµ(x̃) =

1
4∆µ,αβ(x̃)γ

αγβ ,

(A7)

∆µ,αβ(x̃) denote the Ricci rotation coefficients. The uni-
tary map matrix R(a) is in the form of Eq. (A3), provided
we make single change

Θg(x̃) =
1
2

∫ x̃
0 R+ {gµΓµR, gν d x̃ν} . (A8)

The calculations now give

S(F ) = 1
8Kψ

l
µ

{
R̃+gµR, γl

}
= inv,

K = R̃+R = R̃+
g Rg,

(A9)

and hence

K = exp
(
− 1

2

∫ x̃
0

({
R+Γ̃+

µ g
µ, gνdx̃

ν }R+
R+ {gµΓµR, gνdx̃ν})) ,

(A10)

where Γ̃+
µ = γ0Γ+

µ γ
0. Taking into account a commutation

relation [R, gν ] = 0, and substituting [61]:

Γ̃+
µ g

ν + gνΓµ = −∇µg
ν = 0, (A11)
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we obtain K = 1. Note that

Ũ+
RUR = R̃U+R̃′+R′UR+ = R̃U+R̃+RUR+, (A12)

and R̃′+R′ = R̃+R = 1, therefore

Ũ+
RUR = γ0U+

R γ
0UR = 1. (A13)

3. The GGP for any spin

The results above can be readily extended to any spin
j. In doing this we employ the Bargman-Wigner’s wave
functions for higher-spin in flat space [62]. The formal-
ism of GGP will then hold, wheras the field of arbi-
trary spin j can be treated as a system of 2j fermions
of half-integer spin. The wave function of spin-j = n/2
particle with momentum ~p defined on the M4 can be
obtained by Lorentz transformation from the symmetric
Dirac spinor of rank n corresponding to the particle in

the rest Uα1...αn
(0) implying (γ4 − 1)β

′

β Uβ′β2...βn
(0) for

each index

Uβ1...βn
(~p) = S

β′

1

β1
(α(~p)) . . . S

β′

n

βn
(α(~p))Uβ′

1...β
′

n
(0),

(A14)
where

U
′
(~p)U ′(~p) = U(Λ−1~p)U(Λ−1~p). (A15)

A spin part is written Σµν = (1/2)
∑n
r=1 Σ

(r)
µν , where a

matrix Σ
(r)
µν acts only on the r-th index

(
Σ

(r)
µν

)β1...βn

α1...αn

= δβ1
α1

· · · δβr−1
αr−1

(
Σ

(r)
µν

)βr

αr

δ
βr+1
αr+1 · · · δβn

αn
,

(A16)

that Σ
(r)
µν = (1/4)[γrµ, γ

r
ν ], and

(
γrµ
)β1...βn

α1...αn
= δβ1

α1
· · · δβr−1

αr−1

(
γrµ
)βr

αr
δ
βr+1
αr+1 · · · δβn

αn
. (A17)

The spin-j field Φβ1...βn
(x) (Eq. (A14)) takes values in

standard fiber over x : π−1(Ui) = Ui × Fx. In the frame-

work of GGP, the mapped spin-j field Φ̃
(r)
β1...βn

(x̃), where

Φ̃(r) = R(r)Φ, takes values in the fiber over x̃ : π̃−1(Ũi) =
Ũi×F̃x̃. The unitary map matrix R(r) is given in the form
of Eq. (A3) and Eq. (A8), but now refers to the r-th in-
dex. The Lagrangian of this field will be invariant under
the local gauge transformations

Φ̃′(x̃) = U
(r)
R Φ̃(x̃),(

gµ(r)(x̃)∇
(r)
µ Φ̃(x̃)

)′
= U

(r)
R

(
gµ(r)(x̃)∇

(r)
µ Φ̃(x̃)

)
,

(A18)

where gµ(r)(x̃) = V µα (x̃)γα(r), ∇
(r)
µ denotes the covariant

derivative on R4 defined only for the r-th index by the
conventional substitution [56]:

∇(r)
µ Ũβ1...βn

→
Λα

′

α (x̃)S
β′

1

β1
(α(Λ)) . . . S

β′

n

βn
(α(Λ))∇(r)

µ Ũβ1...βn
.

(A19)

Here, as usual, we denote ∇(r)
α = V µα (∂̃µ+Γ

(r)
µ ), and that

Γ
(r)
µ = 1

2 Σ
αβ
(r) V

ν
α (x̃) ∂µVβν(x̃) =

1
4∆

(r)
µ,αβ γ

α
(r) γ

β
(r),

(A20)

∆
(r)
µ,αβ(x̃) are the Ricci rotation coefficients. The

Eqs. (A18) hold if

gµ(r)∇
(r)
µ Φ̃(r) = R(r) S(r) (γlDl Φ), (A21)

where Dl = ∂l − ig al(x), the R
(r), S(r)(F ) are, respec-

tively, unitary map matrix and gauge invariant scalar
function of Eq. (A6) but referred to r-th index. Accord-
ing to the results of subsection A.2, we get

Ũ
(r)
R

+

U
(r)
R = γ0 U

(r)
R

+
γ0 U

(r)
R = 1. (A22)

The Lagrangian of the spin-j field may be recast as

L(x) = JψL̃(x̃) =

Jψ

{
i
2

[
Φ̃(r)(x̃) gµ(r)(x̃)∇

(r)
µ Φ̃(r)(x̃)−

(∇(r)
µ Φ̃(r)(x̃)) gµ(r)(x̃)Φ̃

(r)(x̃)
]
−

mΦ̃(r)(x̃)Φ̃(r)(x̃)
}
=

Jψ

{
S(r)(a) i2

[
Φ γl(r)Dl Φ− (DlΦ) γ

l
(r)Φ

]
−mΦΦ

}
,

(A23)
where Jψ ≡ ‖ψ‖√−g. Generalized Bargman-Wigner’s
equation for the spin-j = n

2 particle in curved space stems
from the Lagrangian eq. (A23):

(
g′
µ∇′

µΦ̃
(r) −m

)β′

β
Φ̃β′β2...βn

(~̃p) =

[R′ (S′D −m)]
β′

β Φβ′β2...βn
(~p) = 0,

(A24)

where R′, S′, . . . refer to index β′.

4. The conserved currents

The general transformation of the group GD is written
as

GD = Q(a)H(θ), (A25)

where the transformation Q(a) belongs to the left ad-
jacent class GD/H . Acting from the left by the group
element g we define the transformations of parameters a
and θ:

GD(g)Q(a)H(θ) = Q(a′(a, g))H(θ′(θ, a, g)). (A26)

The Cartan’s forms allow an exponentiation of the group
element Q(a) = exp(iaiKi), which determines the modi-
fied distortion fields a(a)

d eA(a) =
[
exp(−iaiKi) d exp(iaiKi)

]
eA(a). (A27)

Exponential parametrization of the finite transforma-
tions of the group is equivalent to the choice of normal
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coordinates in quotien space GD/H . The solution of the
structure equations (29) reads

ωi(a, d a) = (sin
√
τ/

√
τ )
i
k d a

k,

ϑα(a, d a) = [(1− cos
√
τ ) /τ ]

i
k d a

k εαil a
l,

τ ik = −εijαεαkl aj ak.
(A28)

By virtue of the relations

(
τ (n)

)i
j
= (a2)n−1

(
τ (1)

)i
j
,

τ ij = εilkεkjna
lan = a2δij − aiaj ,

(A29)

the Eq. (A28) may be recast as

ωiA = ωi(a, ∂A a) = ∂A a
i+

(δik − aiak/a2)
(
sin

√
a2/

√
a2 − 1

)
∂A a

k,

ϑiA = ϑi(a, ∂A a) =
[(

1− cos
√
a2
)
/a2
]
∂A a

l εilj a
j .

(A30)
In exponential parametrization the Eq. (A26) gives

GD(g) exp(ia
iKi) exp(iθ

αIα) =
exp

[
iai(a, g)Ki

]
exp [iθ′α(a, g)Iα] .

(A31)

According to the Eq. (A31), the transformation of pa-
rameters a and θ at the infinitesimal translationGD(g) =
(1 + iεiKi) +O(ε2) can be written as

(1 + iεiKi) exp(iKia
i) =

exp
[
iKi(a

i + δ ai(a, ε))
]
exp [iδ θα(a, ε))Iα] .

(A32)

Employing the Feynman’s method of ordering by means
of auxiliary parameter (t) [63] which implies

∫ y
x
A(t)d t =

A(y − x), in standard manner we expand

exp
[
iKi(a

i + δ ai)
]
= exp(iKia

i) + i exp(iKia
i)×

×
∫ 1

0
d t exp(−iKia

i t) (δ aiKi) exp(iKia
i t) + · · · .

(A33)
Then the Eq. (A32) gives

iεiKi(1) = i
∫ 1

0
d tδ aiKi(t) + iδ θα(a, θ)Iα, (A34)

where

Kj(t) = exp(−iKait)Kj exp(iKia
it). (A35)

In analogy, defining the Iα(t), and taking derivatives of
the Kj(t) and Iα(t) with respect to parameter (t), we
obtain

∂
∂t Kj(t) = iεαjia

i Iα(t); Kj(0) = Kj,
∂
∂t Iα(t) = iεlαka

kKl(t); Iα(0) = 0,
(A36)

the solution of which can be written in the form of
Eq. (A28)

Kj(t) = (cos
√
τ t)

i
j Kj+

i (sin
√
τ t/

√
τ )
l
j εαlk a

k Iα.
(A37)

Inserting this solution into the Eq. (A34) and equating
the coefficients at the same generators KjIα, we finally
obtain

δ ai(a, θ)) = −(
√
τ coth

√
τ )ikε

k +O(ε2),
δ θα(a, θ)) = {[sin √

τ − coth
√
τ(1−

cos
√
τ)]/

√
τ}li εi εαlkak.

(A38)

The transformation of parameters in case of rotation
GD(g

′) = (1 + iξα Iα) + O(ξ2) can be obtained in the
same manner as

δ ai(ξ)) = −εiαk ξα ak +O(ξ2), δ θα(a, ξ)) = ξα.
(A39)

Let the fields undergo the infinitesimal transformations

Φj(η) → Φj(η) + ε(η)k
∏j
k(Φ), (A40)

where
∏j
k(Φ) is the nonlinear function of the fields. The

current related to these transformations

JAk = −δ L(Φ, ∂ Φ)/δ (∂A εk) =
−∏j

k(Φ) δ L(Φ, ∂ Φ)/δ (∂A Φj),
(A41)

implies

∂A J
A
k = −δ L(Φ, ∂ Φ)/δ εk.

If the Lagrangian is invariant with respect to constant
transformations of Eq. (A40), then the corresponding
currents are conserved. According to equations (A28),
(A38) and (A39) the conserved currents can be calcu-
lated in normal coordinates as

Jk(a, ∂ a) ≡ ωk(2a, ∂ a) = (sin 2
√
τ/2

√
τ )ki ∂ a

i,
Jα(a, ∂ a) ≡ ϑα(2a, ∂ a) =

− [(1− cos 2
√
τ) /2τ ]

i
k ∂ a

k εαil a
l,

(A42)
where we left the indices (A) implicit.
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