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Finite Sample Size Optimality of GLR Tests
George V. Moustakides,Senior Member, IEEE

Abstract

In several interesting applications one is faced with the problem of simultaneous binary hypothesis

testing and parameter estimation. Although such joint problems are not infrequent, there exist no sys-

tematic analysis in the literature that treats them effectively. Existing approaches consider the detection

and the estimation subproblems separately, applying in each case the corresponding optimum strategy.

As it turns out the overall scheme is not necessarily optimumsince the criteria used for the two parts are

usually incompatible. In this article we propose a mathematical setup that considers the two problems

jointly. Specifically we propose a meaningful combination of the Neyman-Pearson and the Bayesian

criterion and we provide the optimum solution for the joint problem. In the resulting optimum scheme

the two parts interact with each other, producing detection/estimation structures that are completely novel.

Notable side-product of our work is the proof that the well known GLR test is finite-sample-size optimum

under this combined sense.

Index Terms

GLRT, Joint detection/estimation.

I. INTRODUCTION

There exist applications in practice where one must resolvethe following problem: decide between

two hypothesesH0 and H1 and then, depending on the decision, estimate a corresponding set of pa-

rametersθ0 or θ1. Characteristic example of a problem that can be formulatedunder this combined

detection/estimation framework istarget detection and localizationby MIMO radar, where one is not

only interested in the classical radar detection problem (presence/absence of a target) but also in estimating

its position every time a target is declared present [1], [2]. A second example isretrospective changepoint
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detectionwhere we are interested in determining whether there is a point in our samples after which the

statistical behavior of the data has changed and, once it is detected then localize this point of interest [3],

[4]. Clearly segmentation problems can by formulated as retrospective changepoint detection problems.

We would like to emphasize that our goal is not to solve the pure detection problem in the presence

of unknown parameters (for this case the parameter estimation subproblem constitutes only an auxiliary

step). In our approach the estimation part is avital goal in the whole setup and of the same importance

as the detection part. This is clearly the case in the two examples we mentioned before, where the

localization of the target in the first and of the changepointin the second, are of the same importance

as the detection part. Current literature does not treat combined problems systematically and the aim of

this article is to cover exactly this gap.

Before introducing in a formal way the combined problem, letus first recall, briefly, the corresponding

formulation and the available finite-sample-size optimality results for detection and parameter estimation.

For both problems we assume the existence of a random data vector X ∈ R
N of lengthN .

Binary hypothesis testing: We consider the following two hypothesesH0,H1 for X

Hi : X ∼ fi(X|θi), i = 0, 1, (1)

where “∼” means “distributed according to” andfi(X|θi), i = 0, 1, are two distinct pdfs withθi denoting

a vector of parameters under each hypothesis. Given a realizationX of X , one must decide between the

two hypothesesH0 andH1. If d ∈ {0, 1} denotes our decision, then under a Neyman-Pearson formulation

we are interested in the following constrained minimization problem

min P(d = 0|H1), subject toP(d = 1|H0) ≤ α, (2)

whereP(·) denotes probability andα ∈ (0, 1) the maximal allowable false alarm level. Optimization is

performed over all decision strategies that satisfy the constraint.

Under afinite-sample-sizesetting, when the two pdfs are completely known, i.e. there are no unknown

parameters, the optimum test is the celebrated Likelihood Ratio test. If the pdfs haveunknownparameters,

except the very rare case where a uniformly most powerful test can be found, the problem in (2) is not

well defined and one needs to resort to min-max formulations for which no systematic solution exists.

In this case it is very common to use the Generalized Likelihood Ratio (GLR) test

supθ1∈Θ1
f1(X|θ1)

supθ0∈Θ0
f0(X|θ0)

H1

T
H0

λ, (3)
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whereΘi denotes some a-priori known set of values forθi. For the GLR test there is no finite-sample-

size optimality result. In fact there are counterexamples against this claim [5], [6], [7]. Nevertheless

the use of the GLR test is widespread in applications and one important sideproduct of our analysis

is the demonstration that this popular detection scheme is in fact finite-sample-size optimumunder the

combined detection and estimation formulationwe are proposing here. We would like to stress that this

is no direct contradiction with the counterexamples reported in [5], [6], [7] since in these references the

GLR test is evaluated as a pure detector and not in the combined sense we are proposing in this article.

Regarding the problem in (2), if we assume that the parameters θi are randomwith known prior pdfs

πi(θi), i = 0, 1, then again (2) has a well defined solution which is the likelihood ratio test between the

two marginal pdfsfi(X) =
∫

fi(X|θi)πi(θi)dθi.

Parameter Estimation: In this problem, we assume thatX has a pdff(X|θ) where θ, as before,

denotes a vector of parameters. IfX is a realization ofX , the goal is to use the dataX in order to

provide an estimatêθ for θ. Under a finite-sample-size setup, optimum estimation structures are available

for the Bayesian formulation and only whenθ is assumed to be random with a known prior pdfπ(θ).

Specifically, if C(θ̂, θ) denotes the cost of providing the estimateθ̂ when the true parameter value isθ,

then the optimum estimator thatminimizes the average costis

θ̂ = arginf
U

∫

C(U, θ)f(X|θ)π(θ)dθ. (4)

With proper choice of the cost functionC(θ̂, θ), this formula gives rise to a number of well known

estimators as the MAP, the conditional mean or the conditional median.

Next we will combine the two problems and after defining a meaningful performance measure we will

develop the optimum detection/estimation structure for the joint problem.

II. COMBINED DETECTION AND ESTIMATION

As we realize from the previous discussion, in both problems, finite-sample-size optimum solutions

exist only if we assume that the parameters are random with some known prior. It is therefore natural

to expect that the same assumption will be transferred to themore general combined problem. With this

observation in mind, let us define the problem of interest.

Consider a random data vectorX ∈ R
N and the following two hypothesesH0,H1:

Hi : X ∼ fi(X|θi) with prior pdf πi(θi), i = 0, 1. (5)

Given any realizationX of X we would like to decide between the two hypothesesH0,H1; and if our
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decision is in favor ofHi, then we would like to provide an estimateθ̂i for the corresponding parameters

θi.

The priorsπi(θi) are considered to be generalized functions containing possible point masses. This

will allow for the unified analysis of the problem withθi taking a continuum or a discrete set of values.

Let us now define what we mean by combined detection/estimation scheme.

A. Combined Detection/Estimation Structure

We adopt the class ofrandomizeddetectors and estimators, and we propose the followingtwo-step

scheme: In the first step with the help of two randomization probabilities δ0(X), δ1(X) we decide between

H0,H1. Quantityδi(X) denotes the probability by which we decided = i using a random game. Clearly

δ0(X)+ δ1(X) = 1. In the second step we provide parameter estimates that we generate with the help of

randomized estimators. Specifically we define two conditional pdfsq0(θ̂0|X) andq1(θ̂1|X), that satisfy
∫

q0(θ̂0|X) dθ̂0 =
∫

q1(θ̂1|X) dθ̂1 = 1. These two density functions are applied as follows: if in the first

step we decided = i, then in the second step we use the pdfqi(θ̂i|X) to generate a random variable

θ̂i distributed according toqi(θ̂i|X). This variable constitutes our estimate. Randomized estimators are

the direct analog of randomized tests used in hypothesis testing and are not uncommon in Bayesian

approaches, as one can verify by consulting [8, page 65].

We should note thatqi(θ̂i|X) must have the same support as the priorπi(θi) since we expect our

estimateθ̂i to assume the same values as the true parameterθi. This is particularly important ifθi can

take only a finite number of values, in which caseπi(θi) andqi(θ̂i|X) will be comprised of point masses.

In the latter case, it is easy to see, that we can carry out the analysis using only probabilities instead of

pdfs and replace integrals overθi and θ̂i with sums.

Summarizing: the combined detection/estimation structure is comprized of the two probabilitiesδ0(X),

δ1(X) (used in the first step to distinguish between the two hypothesesH0, H1) and of the two pdfs

q0(θ̂0|X), q1(θ̂1|X) (used to provide the necessary parameter estimate in the second step). We denote

the complete detection/estimation structure asD = {δ0(X), δ1(X), q0(θ̂0|X), q1(θ̂1|X)}.

Remark 1:One might wonder if the adoption of a two-step procedure covers all possibilities for

a randomized detector/estimator. It turns out that we couldalso use one-step detectors/estimators that

simultaneouslydetect and estimate. However, it is straightforward to showthat such schemes can be

simulated by properly selected two-step procedures; furthermore, the opposite is also true, that is, any

two-step detector/estimator can be simulated by a proper one-step procedure. Consequently the two

approaches are fully equivalent and, without loss of generality, we may limit ourselves to the two-step

DRAFT November 25, 2009



MOUSTAKIDES: FINITE SAMPLE SIZE OPTIMALITY OF GLR TESTS 5

schemes introduced above1.

In the next subsection our aim is to to define a suitable performance measure forD and a corresponding

optimization problem that will lead to the identification ofthe optimum detection/estimation structure.

B. Combined Optimization Problem

As we mentioned in the Introduction, we are going to combine the Bayesian with the Neyman-Pearson

approach. To this end letCji(θ̂j , θi) denote the cost of deciding in favor of hypothesisHj in the first step

and providing the estimatêθj in the second step, when the true hypothesis isHi and the true parameter

is θi.

Let us consider the average costCi(D) given that the true hypothesis isHi. We can expressCi(D) in

terms of the complete detection/estimation structure as follows

Ci(D) =

∫
{

δ0(X)

∫

q0(θ̂0|X)D0i(θ̂0,X)dθ̂0 + δ1(X)

∫

q1(θ̂1|X)D1i(θ̂1,X)dθ̂1

}

dX, (6)

whereDji(U,X) =
∫

Cji(U, θi)fi(X|θi)πi(θi)dθi. As we can see the four functionsDji(U,X) depend

on the known cost functionsCji(U, θi) and on prior information, consequently they are also known and

independent from the detection/estimation structureD.

We can now define the following optimization problem that we propose as an alternative to the classical

problem depicted in (2).

inf
D

C1(D), subject toC0(D) ≤ α. (7)

Levelα constitutes the maximally allowable cost under hypothesisH0. As we can see by direct comparison

with (2), we follow a Neyman-Pearson like approach, having replaced the (conditional) error probabilities

of the classical approach with the conditional Bayesian costs. The problem defined in (7) makes a lot of

sense. Indeed if one is interested in parameter estimation under each hypothesis then the primal concern

is the induced average estimation cost, which quantifies thequality of the corresponding estimate. It is

therefore understandable that both, the detection and the estimation subproblems must contribute towards

the optimization of the same figure of merit.

Before continuing with the general solution of our problem,we would like to consider a special case

which establishes finite-sample-size optimality for the GLR test. The practical significance of this popular

test certainly justifies this special analysis. There is however an additional reason that makes this short

parenthesis necessary: we plan to use the GLR test as our prototype, therefore we will observe under

1Our claim is particularly easy to prove when the parametersθi take only a finite number of values.
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what conditions we can guarantee its optimality. Then we will apply similar assumptions in the general

case, in order to generate GLR-like tests that are compatible with various well known cost functions used

in applications. This will produce novel tests that are hopefully more suitable than the classical GLR

test, for these problems.

C. Optimality of the GLR Test

Consider the case whereθi takes a finite set of values. Without loss of generality, we will assume that

θi = 1, 2, . . . , Li and for simplicity, whenθi = l, we are going to denote the corresponding pdf asfil(X)

instead offi(X|θi = l). This immediately suggests that the two prior pdfsπi(θi) will be comprised

of an equivalent number of point masses. We denote the corresponding prior probabilities withπil. In

other words under hypothesisHi we haveX ∼ fil(X) with prior probability πil, wherei = 0, 1 and

l = 1, . . . , Li. Sinceθi assumes a finite number of values, the estimatorsqi(θ̂i|X) will be comprised

of point masses as well. Letqil(X) denote the corresponding probabilities. Our detection/estimation

structure can then be identified as the following collectionof probabilities

D = {δ0(X), δ1(X), q01(X), . . . , q0L0
(X), q11(X), . . . , q1L1

(X)} (8)

with the following properties

δi(X) ≥ 0; qil(X) ≥ 0; δ0(X) + δ1(X) =

Li
∑

l=1

qil(X) = 1. (9)

As before the probabilitiesδ0(X), δ1(X) are used in the first step to decide between the two main

hypotheses. Given that the decision in the first step is in favor of Hi, we go to the second step and with

the help of the probabilitiesqil(X), l = 1, . . . , Li, we decide with the help of a randomized test among

the possibilitiesfi1(X), . . . , fiLi
(X).

Consider now the following special case of cost functions

C10(θ̂1, θ0) = C01(θ̂0, θ1) = 1; C11(θ̂, θ) = C00(θ̂, θ) = 1{θ̂ 6=θ}, (10)

where1A denotes the indicator of the setA. In other words the cost is 0 only when both steps make

the correct selection and it is equal to 1 otherwise. The corresponding average costCi(D) is then equal

to the probability ofdetection/estimation-errorunder hypothesisHi. We have the following theorem that

solves the problem defined in (7).

Theorem 1. Consider the classJα of all detection/estimation strategies that satisfy the constraint

P(Detection/estimation-error|H0) ≤ α, (11)
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whereαmin < α < 1, with

αmin = 1 −

∫

max
1≤l≤L0

{π0lf0l(X)}dX. (12)

The test, within the classJα, that minimizes the probabilityP(Detection/estimation-error|H1) is given

by:

Step 1: The optimum strategy for deciding between the two main hypothesesH0 and H1 is

max
1≤l≤L1

{π1lf1l(X)}

max
1≤l≤L0

{π0lf0l(X)}

H1

T
H0

λ (13)

where, whenever the left hand side coincides with the threshold we perform a randomization between

the two hypotheses and selectH1 with probability γ.

Step 2: If in Step 1 we decide in favor of hypothesisHj then the optimum estimation strategy is

θ̂j = arg max
1≤l≤Lj

{πjlfjl(X)}. (14)

If more than one indexes attain the same maximum we perform anarbitrary randomization among them.

The thresholdλ and the randomization probabilityγ of Step 1 must be selected so that the constraint

in (11) is satisfied with equality.

Proof: We observe thatP(Detection/estimation-error|Hi) = 1 − P(Correct-detection/estimation|Hi),

therefore the constraint is equivalent toP(Correct-detection/estimation|H0) ≥ 1 − α. If we denote the

possibility {X ∼ fil(X)} with Hil then we can write

P(Correct-detection/estimation|Hi) =

Li
∑

l=1

P(Correct-detection/estimation|Hil)πil (15)

with

P(Correct-detection/estimation|Hil) =

∫

δi(X)qil(X)fil(X)dX. (16)

Instead of minimizing the probability of detection/estimation-error we can equivalently maximize the

probability of correct-detection/estimation. To solve the constrained optimization problem, letλ > 0 be a

Lagrange multiplier and, as in the classical Neyman-Pearson case, with the help of (15) and (16), define

November 25, 2009 DRAFT
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the corresponding unconstrained version. We then note

P(Correct-detection/estimation|H1) + λP(Correct-detection/estimation|H0)

=

∫

δ1(X)

{

L1
∑

l=1

q1l(X)π1lf1l(X)

}

dX + λ

∫

δ0(X)

{

L0
∑

l=1

q0l(X)π0lf0l(X)

}

dX (17)

≤

∫

δ1(X) max
1≤l≤L1

{π1lf1l(X)} dX + λ

∫

δ0(X) max
1≤l≤L0

{π0lf0l(X)} dX (18)

=

∫
[

δ1(X) max
1≤l≤L1

{π1lf1l(X)} + δ0(X)λ max
1≤l≤L0

{π0lf0l(X)}

]

dX (19)

≤

∫

max

{

max
1≤l≤L1

{π1lf1l(X)} , λ max
1≤l≤L0

{π0lf0l(X)}

}

dX. (20)

Inequality (18) is valid because the functionsqil(X), l = 1, . . . , Li are nonnegative and complementary

(their sum is equal to 1). Inequality (20) is also true because the same properties hold forδi(X), i = 0, 1.

Note that the final expression constitutes an upper bound on the performance of any detection/estimation

rule. Furthermore this upper bound is attainable by a specific detection/estimation strategy. Indeed we

note that we have equality in (18) when the estimation probabilities are selected as

qik(X) =







1 if k = argmin1≤l≤Li
{πilfil(X)}

0 otherwise,
(21)

and we randomize if there are more than one indexes attainingthe same maximum. This optimum

estimation process is the randomized equivalent of (14). Similarly we have equality in (20) when we

select the detection probabilities to be

δ1(X) =



















1 if max1≤l≤L1
{π1lf1l(X)} ≥ λmax1≤l≤L0

{π0lf0l(X)}

γ if max1≤l≤L1
{π1lf1l(X)} = λmax1≤l≤L0

{π0lf0l(X)}

0 otherwise,

(22)

andδ0(X) = 1 − δ1(X). Clearly this optimum detection procedure is the equivalent of (13).

As far as the false alarm constraint is concerned let us definethe following sets

A(λ) =

{

X :
max1≤l≤L1

{π1lf1l(X)}

max1≤l≤L0
{π0lf0l(X)}

> λ

}

B(λ) =

{

X :
max1≤l≤L1

{π1lf1l(X)}

max1≤l≤L0
{π0lf0l(X)}

= λ

}

.

(23)
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For the test introduced above, we can then write that

P(Detection/estimation-error|H0)

= 1 −

∫

A(λ)
max

1≤l≤L0

{π0lf0l(X)} dX − γ

∫

B(λ)
max

1≤l≤L0

{π0lf0l(X)} dX

≥ 1 −

∫

A(λ)∪B(λ)
max

1≤l≤L0

{π0lf0l(X)} dX

≥ 1 −

∫

max
1≤l≤L0

{π0lf0l(X)} dX = αmin.

(24)

The lower boundαmin is clearly attainable in the limit by selectingγ = 1 and lettingλ → 0. Also the

detection/estimation-error probability is bounded from above by 1 and we can see that this value can

also be attained in the limit by selectingγ = 0 and lettingλ → ∞. Existence of a suitable thresholdλ

and a randomization probabilityγ that assure validity of the false alarm constraint with equality, as well

as, optimality of the resulting test in the desired sense, can be easily demonstrated following exactly the

same steps as in the classical Neyman-Pearson case2. This concludes the proof.

We realize that in order to apply the test in (13) we need knowledge of the prior probabilitiesπil.

Whenever this information is not available we can consider equiprobable subcases and selectπil = 1/Li.

Under this assumption the optimum test in (13) is reduced to the familiar form of the GLR test,

max
1≤l≤L1

f1l(X)

max
1≤l≤L0

f0l(X)

H1

T
H0

λ, (25)

after absorbing the two prior probabilities inside the threshold.

Finally, we should mention that if hypothesisH0 is simple or, if under hypothesisH0 we are not

interested in the estimation problem (therefore we can treat it as simple by forming the marginal density)

then P(Detection/estimation-error|H0) becomes the usual false alarm probability with corresponding

αmin = 0. In other words the false alarm probability can take any value in the interval(0, 1) as in

the classical Neyman-Pearson problem.

Remark 2:We observe that the optimum test, under each main hypothesis, selects the most appropriate

subcase with the help of the MAP selection rule (14). The interesting point is that this selection is

performed independently of the other hypothesis and of the corresponding detection strategy. This is

clearly a very desirable characteristic since it separatesthe estimation from the detection problem. In our

2In the proof we simply replace the pdfsfi(X) with the functionsmax1≤l≤Li
{πilfil(X)}. Even though these functions are

not densities, the proof goes through without change.
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analysis we are going to provide sufficient conditions that can guarantee the same property under the

general formulation.

Remark 3:We obtain the GLR test by assuming that the prior probabilities areuniform. We will use the

same principle in our general formulation to obtain tests that can be used as alternatives to the classical

GLR test.

III. O PTIMUM DETECTION/ESTIMATION SCHEME

Let us now continue with the solution of the optimization problem defined in (7). We have the following

theorem that provides the desired optimal detection/estimation structure.

Theorem 2. Consider the classJα of detection/estimation structuresD that satisfyC0(D) ≤ α. The test

that minimizes the average costC1(D) within the classJα is given by

inf
U

[D01(U,X) + λD00(U,X)]

H1

T
H0

inf
U

[D11(U,X) + λD10(U,X)] (26)

with the optimum estimators defined by

θ̂j = arg inf
U

[Dj1(U,X) + λDj0(U,X)], j = 0, 1, (27)

and λ > 0 a threshold properly selected to satisfy the correspondingconstraint with equality.

Proof: Let λ > 0 be a Lagrange multiplier and consider the unconstraint minimization of the

combinationC1(D) + λC0(D). Using (6) we can write

C1(D) + λC0(D)

=

∫

{

δ0(X)

∫

q0(θ̂0|X)[D01(θ̂0,X) + λD00(θ̂0,X)]dθ̂0

+δ1(X)

∫

q1(θ̂1|X)[D11(θ̂1,X) + λD10(θ̂1,X)]dθ̂1

}

dX
(28)

≥

∫

{

δ0(X) inf
U

[D01(U,X) + λD00(U,X)] + δ1(X) inf
U

[D11(U,X) + λD10(U,X)]
}

dX (29)

≥

∫

min
{

inf
U

[D01(U,X) + λD00(U,X)], inf
U

[D11(U,X) + λD10(U,X)]
}

dX. (30)

The inequality in (29) is true because
∫

qi(θ̂i|X)[Di1(θ̂i,X) + λDi0(θ̂i,X)]dθ̂i ≥ inf
U

[Di1(U,X) + λDi0(U,X)]

∫

qi(θ̂i|X)dθ̂i

= inf
U

[Di1(U,X) + λDi0(U,X)]

(31)
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with equality iff qi(θ̂i|X) puts all its probability mass on the choiceθ̂i = arginfU [Di1(U,X)+λDi0(U,X)],

which is thereby optimum. Similarly we have that (30) is truebecauseδ0(X)+ δ1(X) = 1, and we have

equality iff

δ1(X) =



















1 if infU [D01(U,X) + λD00(U,X)] > infU [D11(U,X) + λD10(U,X)]

γ if infU [D01(U,X) + λD00(U,X)] = infU [D11(U,X) + λD10(U,X)]

0 if infU [D01(U,X) + λD00(U,X)] < infU [D11(U,X) + λD10(U,X)],

(32)

with 0 ≤ γ ≤ 1 and δ0(X) = 1 − δ1(X). This is the randomized version of (26). This completes the

proof.

Remark 4:For the levelα we haveαmin < α < αmax. It is possible to come up with an expression

for αmin. Indeed, from (6) it is easy to see that

C0(D) ≥

∫
{

δ0(X) inf
U

D00(U,X) + δ1(X) inf
U

D10(U,X)

}

dX (33)

≥

∫

min

{

inf
U

D00(U,X), inf
U

D10(U,X)

}

dX = αmin. (34)

This lower bound is in fact attainable by theoptimum schemedefined with (26), (27), if we letλ → 0.

Unfortunately a similar expression for the upper boundαmax was not possible to obtain.

Remark 5:As we can see from (26), (27) the optimal solutions for the detection and estimation

subproblems are interrelated. If we are interested in the same characteristic we encountered in the GLR

test, where the two estimation problems are independent from each other and from the detection part,

then the following special form of the cost functions can assure the validity of this property

C01(U, θ1) = C01(θ1) andC10(U, θ0) = C10(θ0). (35)

Indeed we can see that if (35) is true thenD01(U,X) = D01(X) and D10(U,X) = D10(X), which

implies that the optimum estimators in (27) simplify to

θ̂0 = arg inf
U

[D01(X) + λD00(U,X)] = arg inf
U

D00(U,X) (36)

θ̂1 = arg inf
U

[D11(U,X) + λD10(X)] = arg inf
U

D11(U,X), (37)

that is, they coincide with the classical Bayesian estimators which we obtain by treating each estimation

problem separately. The optimum detector in (26), under thesame assumptions takes the form

D01(X) − inf
U

D11(U,X)

H1

T
H0

λ

[

D10(X) − inf
U

D00(U,X)

]

, (38)

which of course relies on the optimum cost values.
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Remark 6:Observing (26) and (27) it seems as if the order of the two steps in our two-step procedure

has been reversed. This impression however is not exactly correct. We note that the minimum of a

function is unique and it is the two minimal values that are used in (26). The actual estimates that realize

the two minima, and are depicted in (27), are not necessarilyunique and therefore we might require

randomization which is performed in the second step. But even if the two estimators are deterministic, it

is the first step that will dictate which of the two values willbe used as our actual parameter estimate.

And this selection is performedafter the detection step. Therefore, strictly speaking, the order is not

reversed.

A. Special Case

We would like now to pay attention to a particular case that iscommon in applications. Consider

underH1 thatX ∼ f1(X|θ) whereθ a parameter vector with known priorπ(θ) and underH0 we assume

that X ∼ f0(X). In other words the pdf underH0 is completely known. In fact it is very common to

havef0(X) = f1(X|θ = 0). Our goal is to testH0 againstH1, and whenever we decide in favor of

H1 to provide an estimatêθ for the corresponding parameter vectorθ. We should mention that the two

application problems discussed in the Introduction, fall under this particular class.

Since parameter estimation is needed only underH1, this suggests that a combined detection/estimation

structure will be comprised of the following functionsD = {δ0(X), δ1(X), q1(θ̂|X)} that satisfyδj(X) ≥

0, j = 0, 1, q1(θ̂|X) ≥ 0, δ0(X) + δ1(X) =
∫

q1(θ̂|X)dθ̂ = 1. The two probabilitiesδ0(X), δ1(X) will

be used in the first step to decide between the two main hypotheses, whileq1(θ̂|X) will be employed in

the second step to provide the necessary estimate forθ, every time a decision in favor ofH1 is reached.

Regarding the estimation costs we have the following functionsC11(θ̂, θ), C10(θ̂), C01(θ) andC00. As

we can seeC00 is simply a constant, whereasC10(·) andC01(·) are functions of a single quantity. Consider

now the following selectionC00 = 0 andC10(θ̂) = 1, then it is easy to verify thatC0(D) = P(d = 1|H0),

i.e. the probability of false alarm. For this particular selection we have the following interesting corollary

of Theorem 2.

Corollary 1. Consider the average costC1(D) underH1 defined using the two cost functionsC11(θ̂, θ)

and C01(θ). The optimum detection/estimation structure that minimizesC1(D) under the constraint that

the false alarm probabilityP(d = 1|H0) is no larger thanα ∈ (0, 1), is given by

D01(X) − infU D11(U,X)

f0(X)

H1

T
H0

λ, (39)
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for the optimum detector and

θ̂1 = arginf
U

D11(U,X) (40)

for the corresponding optimum estimator. The two functionsD11(U,X), D01(X) are defined as follows

D11(U,X) =

∫

C11(U, θ)f1(X|θ)π(θ)dθ; D01(X) =

∫

C01(θ)f1(X|θ)π(θ)dθ. (41)

B. Discussion

In finite-sample-size optimum detection and estimation theneed for the prior pdfs constitutes a

very severe weakness. As we mentioned earlier, if this information is not available the corresponding

optimization problems must be treated in some min-max context. Unfortunately min-max formulations

tend to be very difficult to solve even asymptotically, and nosystematic solution exists for the problems

of detection and estimation. It is of course clear that the same limitation applies in the case of the more

general combined detection/estimation problem.

A simple (ad-hoc) method to bypass the need for resorting to min-max approaches, is to apply the

same idea used to demonstrate optimality for the GLR test, namely assume that the priors areuniform.

Of course this selection is arbitrary and does not guaranteeoptimality of the corresponding scheme under

any possible min-max sense. On the other hand, it is the only logical choice that reflects our complete

lack of knowledge about the priors. The corresponding tests, examples of which will be seen in the next

section, it is expected to have the same weakness as the GLR test, with one major difference: they will

be tailored to the specific cost function adopted in the estimation subproblem.

IV. EXAMPLES

In this section we present a number of interesting examples by selecting various well known forms

of cost functions. We basically concentrate on the popular costs encountered in the classical Bayesian

estimation theory. We start with the MAP estimate which demonstrates optimality of the GLR test in the

continuous case.

A. MAP Detection/Estimation

Consider the following combination of cost functions

C01(U, θ) = C10(U, θ) = 1; C00(U, θ) = C11(U, θ) =







0 ‖U − θ‖ ≤ ∆ ≪ 1

1 otherwise.
(42)
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We recall from the classical Bayesian estimation theory (see [9, Page 145]) that, as∆ → 0 and assuming

sufficient smoothness of the pdf functions, the specific selection of costs leads to the MAP parameter

estimation under each main hypothesis. Indeed we observe3

Djj(U,X) ≈

∫

fj(X|θ)πj(θ)dθ − fj(X|U)πj(U)Vj(∆) (43)

whereVj(∆) is the volume of a hypersphere of radius∆ (which can be different for each hypothesis if

the two parameter vectors are not of the same length). Substituting in (38) yields

supU f1(X|U)π1(U)

supU f0(U |X)π0(U)

H1

T
H0

λ
V0(∆)

V1(∆)
= λ′, (44)

and the optimum estimator under each hypothesis is the MAP estimator

θ̂j = arg sup
U

fj(X|U)πj(U). (45)

Similarly for the special case of Corollary 1 if we define

C11(U, θ) =







0 ‖U − θ‖ ≤ ∆ ≪ 1

1 otherwise,
(46)

and C01(θ) = 1, thenD11(U,X) ≈
∫

f1(X|θ)π(θ)dθ − f1(X|U)π(U)V1(∆) and the optimum test in

(39) takes the form

supU f1(X|U)π(U)

f0(X)

H1

T
H0

λ

V1(∆)
= λ′, (47)

with the optimum estimator beinĝθ = arg supU f(X|U)π(U). In both tests (44) and (47), the threshold

λ′ and the corresponding randomization probabilityγ are selected to satisfy the false alarm constraint

with equality. If the prior probabilitiesπi(θi), π(θ) are unknown and are replaced with the uniform over

some prior setsΘi we obtain the classical form of the GLR test depicted in (3).

B. MMSE Detection/Estimation

Let us now develop the first test that can be used as an alternative to the GLR test. Consider the

following costs

C01(U, θ1) = C01(θ1); C10(U, θ0) = C10(θ0); C00(U, θ) = C11(U, θ) = ‖U − θ‖2, (48)

3The approximate equality becomes exact as∆ → 0.
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whereC01(θ1), C10(θ1) are functions to be specified in the sequel. Due to the specificform of the costs,

the two estimators are independent from each other and also independent from the detection part. Under

each main hypothesis the optimum estimator is obtained by minimizing the corresponding mean square

error. Consequently the optimum estimator is the conditional mean of the parameter vector given the data

vectorX (see [9, Page 143]). Specifically we have

θ̂j = E[θj |X,Hj ] =

∫

θjfj(X|θj)πj(θj) dθj
∫

fj(X|θj)πj(θj) dθj

. (49)

The corresponding optimum test after substituting in (38) takes the form

A1(X)

H1

T
H0

λA0(X) (50)

where

A0(X) = ‖θ̂0‖
2f0(X) +

∫

[C10(θ0) − ‖θ0‖
2]f0(X|θ0)π0(θ0) dθ0

A1(X) = ‖θ̂1‖
2f1(X) +

∫

[C01(θ1) − ‖θ1‖
2]f1(X|θ1)π1(θ1) dθ1

fj(X) =

∫

fj(X|θj)πj(θj) dθj .

(51)

SelectingC01(θ1) = ‖θ1‖
2 andC10(θ0) = ‖θ0‖

2 simplifies the test considerably yielding

‖θ̂1‖
2

‖θ̂0‖2

f1(X)

f0(X)
=

‖θ̂1‖
2

‖θ̂0‖2

∫

f1(X|θ1)π1(θ1) dθ1
∫

f0(X|θ0)π1(θ0) dθ0

H1

T
H0

λ. (52)

We recognize in the second ratio the likelihood that is used to decide optimally between the two main

hypotheses. By including the first ratio of the two norm square estimates, the test performs simultaneously

optimum detection and estimation.

For the special case of Corollary 1 it is easy to verify that the corresponding test takes the form

‖θ̂1‖
2f1(X) +

∫

[C01(θ) − ‖θ‖2]f1(X|θ)π(θ) dθ

f0(X)

H1

T
H0

λ, (53)

which, if we selectC01(θ) = ‖θ‖2, simplifies to

‖θ̂‖2 f1(X)

f0(X)

H1

T
H0

λ, (54)

whereθ̂ = E[θ|X,H1] =
∫

θf(X|θ)π(θ)dθ/
∫

f(X|θ)π(θ)dθ andf1(X) =
∫

f(X|θ)π(θ)dθ.

In both tests in (50) and (53), if the priors are not known and are replaced by uniforms, we obtain

tests that are the equivalent of the GLR test for the MMSE criterion.
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C. Median Detection/Estimation

As our final example we present the case of the median estimation whereθi, θ̂i, θ, U are scalars and

we select the cost functions as follows

C01(U, θ) = C01(θ); C10(U, θ) = C10(θ); C00(U, θ) = C11(U, θ) = |U − θ|. (55)

The estimators are again independent from each other and from detection part. Under each hypothesis

we perform optimum Bayes estimation and for this specific cost function we know that the optimum

estimator is the conditional median [9, Page 143]

θ̂j = arg

{

y : P(θj ≤ y|X,Hj) =

∫ y

−∞ fj(X|θj)πj(θj) dθj
∫

fj(X|θj)πj(θj) dθj

=
1

2

}

. (56)

The optimum test, as before, becomes

A1(X)

H1

T
H0

λA0(X) (57)

where

A0(X) =

∫

[

C10(θ0) + θ0sgn(θ̂0 − θ0)
]

f0(θ0|X)π0(θ0)dθ0

A1(X) =

∫

[

C01(θ1) + θ1sgn(θ̂1 − θ1)
]

f1(θ1|X)π1(θ1)dθ1.

(58)

If additionally we selectC01(θ1) = |θ1| and C10(θ0) = |θ0| then the optimum test takes the more

convenient form

∫ θ̂1

0 θ1f1(X|θ1)π1(θ1)dθ1
∫ θ̂0

0 θ0f0(X|θ0)π0(θ0)dθ0

H1

T
H0

λ. (59)

For the special case of Corollary 1 and forC01(θ) = |θ|, the corresponding optimum test reduces to

∫ θ̂

0 θf(X|θ)π(θ) dθ

f0(X)

H1

T
H0

λ, (60)

while the optimum estimator iŝθ = arg{y : P(θ ≤ y|X,H1) = 0.5}. Finally when the priors are selected

to be uniform, we obtain a test that is the alternative to the GLR test but tuned to the specific Bayesian

criterion we employ in the estimation part.
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V. A PPLICATION TO RETROSPECTIVECHANGEPOINT DETECTION

Perhaps the most appropriate application where one would readily need to replace the GLR test with

an alternative scheme, is the problem of target detection and localization. Clearly for this problem the

most suitable cost function is the mean square error betweenthe location estimate and the true position.

This choice will inevitably lead to the use of tests that are similar to (53), proposing a completely novel

approach for this intriguing problem. Unfortunately the corresponding derivations are lengthy and thus

impossible to detail here. In the limiting space we have to our disposal it is feasible to treat, with our

preceding methodology, the second application we mentioned in the Introduction, namely the retrospective

changepoint detection problem. We would like to mention that even though in this problem the estimation

costs are MAP-like, suggesting use of the GLR test, as we willsee, there is sufficient simplicity and

originality in our results that make our analysis interesting and worth including in this article.

In its simplestform, retrospective changepoint detection is about an observation vectorX ∈ R
N and

two pdfs f∞(X) and f0(X) which are completely known. IfX = [χ1, . . . , χN ]t then we assume that

there is an unknown pointτ such that the samples{χ1, . . . , χτ} follow the nominal measuref∞(X)

while the {χτ+1, . . . , χN} switch to the alternativef0(X). Consequently, the changepointτ is the last

point where the samples follow the nominal regime4.

We are interested in deciding whether the change took place within or before the given collection of

samples, that isτ < N , or the change will take place at some future point (possiblyat infinity), that is

τ ≥ N . In the former case we would also like to obtain an estimateτ̂ of the changepointτ . The combined

detection/estimation version of the retrospective changepoint detection problem, as we mentioned in the

Introduction, is suitable for formulating segmentation problems.

Let us first define the joint pdffτ (X) of the samplesX given τ . We distinguish three sets of values

for τ , namelyτ ≤ 0, τ ∈ {1, . . . , N − 1} andτ ≥ N . The first corresponds to a change occurring before

taking any samples, the second to a change within the available sample set and the third to the change

occurring after we acquired the samples. The most common model for the induced joint pdf is [10], [11]

fτ (X) =



















f0(X) for τ ≤ 0

f∞(Xτ
1 )f0(X

N
τ+1|X

n
1 ) for 0 < τ ≤ N − 1

f∞(X) for N ≤ τ,

(61)

4Notation seems to be somewhat awkward compared to the usual one used in hypothesis testing. We simply follow the standard

practice of sequential changepoint detection theory.
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whereX = [x1, . . . , xN ]t and for a ≤ b we defineXb
a = [xa, . . . , xb]

t. We can see that if the change

takes place before the samples are acquired, all samples areunder the alternative regime. If the change

takes place within the available set, then the initial portion of the samples follows the pdf of the nominal

regime while the final portion theconditional pdf of the alternative regime. Finally if the change does

not occur before or inside the available data set, all samples are under the nominal regime.

Regarding the changepointτ there are different models. Detailed discussion of the various possibilities

can be found in [10], [11]. Here we limit ourselves to Shiryaev’s popular Bayesian model. Specifically

we assume thatτ is a random variable with a prior{̟n} defined as̟ 0 = P(τ ≤ 0), ̟n = P(τ = n)

for 0 < n ≤ N − 1, ̟N = P(τ ≥ N) and such that
∑N

n=0 ̟n = 1.

As we mentioned, the goal is to test{τ ≤ N − 1} against{τ ≥ N}, and in the former case provide

and estimatêτ for τ . Formulating the problem according to our previous theory,we have that under

H0 the samples follow the nominal pdff∞(X) while underH1 we haveN different possibilities with

corresponding pdffτ (X) and priorπτ = ̟τ/(
∑N−1

k=0 ̟k) = ̟τ/(1 − ̟N ), where0 ≤ τ < N .

Let us now consider the combined detection/estimation problem in the sense of Corollary 1, namely

minimize the average cost underH1 subject to a false alarm probability constraint underH0. We propose

the following cost functionsC11(τ̂ , τ) = 1{τ̂ 6=τ}, where1A denotes the indicator function of the setA,

and C01(τ) = 1. In other words we penalize with 1 the incorrect detection ofH1 but also the correct

detection ofH1 followed by an incorrect estimation ofτ . The average cost is simply the probability of

detection/estimation-error introduced in Subsection II.C. Applying the results of Corollary 1 and using

the Bayes rule and (61), the optimum detection/estimation structure is given by

max
0≤n<N

{

πn
fn(X)

f∞(X)

}

= max
0≤n<N

{

πn

f0(X
N
n+1|X

n
1 )

f∞(XN
n+1|X

n
1 )

}

H1

T
H0

λ (62)

for the optimum detector and

τ̂ = arg max
0≤n<N

{

πn

f0(X
N
n+1|X

n
1 )

f∞(XN
n+1|X

n
1 )

}

(63)

for the corresponding optimum estimator. If the priorsπn, n = 0, . . . , N −1, are unknown and we select

them to be equal, then we obtain the GLR test version of the problem

SN = max
0≤n<N

{

f0(X
N
n+1|X

n
1 )

f∞(XN
n+1|X

n
1 )

}

H1

T
H0

λ (64)

whereSN is known as theCUSUM statisticfor point N .
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The previous result was of course expected since we followedthe same formulation as the one used in

Subsection II.C to prove optimality of the GLR test. Interestingly, our theory allows for the development

of alternative detection/estimation structures in a simple and straightforward manner. For example one

might argue that the costC11(τ̂ , τ) = 1{τ̂ 6=τ} is overly stringent and propose as alternative the function

C11(τ̂ , τ) = 1{|τ̂−τ |>m} where0 ≤ m ≪ N is a nonnegative integer. In other words we tolerate errors

in the estimate ofτ that do not exceedm points. If m = 0 the problem is reduced to the case already

discussed. Clearly most practical segmentation problems would allow m > 0.

Again we adopt the setup proposed in Corollary 1. It is then easy to verify that we obtain the following

optimum structure

max
m≤n<N−m

{

m
∑

k=−m

πn+k
fn+k(X)

f∞(X)

}

= max
m≤n<N−m

{

m
∑

k=−m

πn+k

f0(X
N
n+k+1|X

n+k
1 )

f∞(XN
n+k+1|X

n+k
1 )

}

H1

T
H0

λ (65)

for the detector and

τ̂ = arg max
m≤n<N−m

{

m
∑

k=−m

πn+k

f0(X
N
n+k+1|X

n+k
1 )

f∞(XN
n+k+1|X

n+k
1 )

}

(66)

for the estimator. Finally assuming uniform priors for the case where the probabilities{π0, . . . , πN−1}

are unknown, leads to the test

S̄N = max
m≤n<N−m

{

m
∑

k=−m

f0(X
N
n+k+1|X

n+k
1 )

f∞(XN
n+k+1|X

n+k
1 )

}

H1

T
H0

λ, (67)

which is completely novel and replaces the GLR test in (64), with S̄N being clearly different than the

CUSUM statistic.

VI. CONCLUSION

By introducing a joint detection/estimation formulation that properly combines the Neyman-Pearson

methodology (for detection) and the Bayesian methodology (for estimation), we derived optimum schemes

for problems that require simultaneous detection and estimation. Important side-product of our analysis is

the demonstration that the well known GLR test is finite-sample-size optimum under this joint-problem

sense. Furthermore we were able to provide completely novelGLR-type tests, that were derived by

replacing the MAP estimation cost function with other well known choices as the mean square or

mean absolute estimation error. Finally, we used our proposed methodology to analyze the problem of

retrospective changepoint detection. This led to the development of a novel detection/estimation structure

that can replace the CUSUM approach which is obtained when weapply the GLR test.
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[4] I. Berkesa, E. Gombay and L. Horváth, “Testing for changes in the covariance structure of linear processes,”J. Stat. Plann.

Infer. vol. 139, pp. 2044-2063, 2009.

[5] F.C. Robey, et al. “A CFAR adaptive matched filter detector,” IEEE Trans. Aeros. Elect. Systems, vol.28, no.1, pp.208-216,

Jan. 1992.

[6] S. Bose and A.O. Steinhardt, “A maximal invariant framework for adaptive detection with structured and unstructured

covariance matrices,”IEEEE Trans. Sign. Proc., vol. 43, no. 9, pp. 2164-2175, Sept. 1995.

[7] S. Bose and A.O. Steinhardt, “Optimum array detector fora weak signal in unknown noise,”IEEE Trans. Aeros. Elect.

Systems, vol. 32, no. 3, pp.9 11-922, July 1996.

[8] C.P. Robert,The Bayesian Choice, 2nd edition, Springer, New York, 2007.

[9] H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd edition, Springer, New York, 1994.

[10] G.V. Moustakides, “Sequential change detection revisited,” Ann. Stat., vol. 36, no. 2, pp. 787-807, April 2008.

[11] G.V. Moustakides, “Change-time models and performance measures for sequential change detection,” in Proc. 2nd Int.

Workshop Sequential Methodologies, IWSM 2009, Troyes, France, 2009.

DRAFT November 25, 2009


