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Finite Sample Size Optimality of GLR Tests
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Abstract

In several interesting applications one is faced with thebjfam of simultaneous binary hypothesis
testing and parameter estimation. Although such joint lgrob are not infrequent, there exist no sys-
tematic analysis in the literature that treats them efietti Existing approaches consider the detection
and the estimation subproblems separately, applying ih ease the corresponding optimum strategy.
As it turns out the overall scheme is not necessarily optinsimoe the criteria used for the two parts are
usually incompatible. In this article we propose a mathé&abhsetup that considers the two problems
jointly. Specifically we propose a meaningful combinationtiee Neyman-Pearson and the Bayesian
criterion and we provide the optimum solution for the joimblplem. In the resulting optimum scheme
the two parts interact with each other, producing detefigtimation structures that are completely novel.
Notable side-product of our work is the proof that the welblum GLR test is finite-sample-size optimum

under this combined sense.

Index Terms

GLRT, Joint detection/estimation.

. INTRODUCTION

There exist applications in practice where one must restiieefollowing problem: decide between
two hypothesedd, and H; and then, depending on the decision, estimate a corresppiséit of pa-
rametersfy or #,. Characteristic example of a problem that can be formulateder this combined
detection/estimation framework target detection and localizatioby MIMO radar, where one is not
only interested in the classical radar detection problemes@nce/absence of a target) but also in estimating

its position every time a target is declared present [1],A2$econd example igetrospective changepoint
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detectionwhere we are interested in determining whether there is iat poiour samples after which the
statistical behavior of the data has changed and, once étectkd then localize this point of interest [3],
[4]. Clearly segmentation problems can by formulated a®seective changepoint detection problems.

We would like to emphasize that our goal is not to solve theepietection problem in the presence
of unknown parameters (for this case the parameter estimatibproblem constitutes only an auxiliary
step). In our approach the estimation part igital goal in the whole setup and of the same importance
as the detection part. This is clearly the case in the two elesmwe mentioned before, where the
localization of the target in the first and of the changepaointhe second, are of the same importance
as the detection part. Current literature does not treatoowed problems systematically and the aim of
this article is to cover exactly this gap.

Before introducing in a formal way the combined problem ugffirst recall, briefly, the corresponding
formulation and the available finite-sample-size optityaiesults for detection and parameter estimation.
For both problems we assume the existence of a random datiar vée= RV of length N.

Binary hypothesis testingMe consider the following two hypothesklg, H, for X

Hi . X ~ fz(X‘Hz); 1= O, 1, (1)

where “~” means “distributed according to” anfi(X6;), ¢ = 0, 1, are two distinct pdfs witt#; denoting
a vector of parameters under each hypothesis. Given aatatizX of X, one must decide between the
two hypothesesl, andH;. If d € {0, 1} denotes our decision, then under a Neyman-Pearson foiorulat

we are interested in the following constrained minimizataroblem
min P(d = 0|H;), subject toP(d = 1|Hp) < a, 2)

whereP(-) denotes probability and € (0,1) the maximal allowable false alarm level. Optimization is
performed over all decision strategies that satisfy thestamt.

Under afinite-sample-sizsetting, when the two pdfs are completely known, i.e. theeen@ unknown
parameters, the optimum test is the celebrated LikelihoatibRest. If the pdfs havenknownparameters,
except the very rare case where a uniformly most powerfuldas be found, the problem in (2) is not
well defined and one needs to resort to min-max formulati@nsaphich no systematic solution exists.

In this case it is very common to use the Generalized LikelihRatio (GLR) test

H
supg, o, f1(X[01) =

Sup@oG@o fO(X’H()) HZ

0

A, 3)
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where®; denotes some a-priori known set of values fiar For the GLR test there is no finite-sample-
size optimality result. In fact there are counterexamplgairest this claim [5], [6], [7]. Nevertheless
the use of the GLR test is widespread in applications and oyitant sideproduct of our analysis
is the demonstration that this popular detection scheme fagt finite-sample-size optimumnder the
combined detection and estimation formulatiwa are proposing here. We would like to stress that this
is no direct contradiction with the counterexamples regmbit [5], [6], [7] since in these references the
GLR test is evaluated as a pure detector and not in the conhlsieiese we are proposing in this article.

Regarding the problem in (2), if we assume that the paraméteare randomwith known prior pdfs
m;:(0;),1 = 0,1, then again (2) has a well defined solution which is the Ilieiid ratio test between the
two marginal pdfsf;(X) = [ f;(X|60;)m;(6;)d0;.

Parameter EstimationIn this problem, we assume that has a pdff(X|0) where 6, as before,

denotes a vector of parameters. Xf is a realization ofX’, the goal is to use the datd in order to
provide an estimaté for 6. Under a finite-sample-size setup, optimum estimatiorctires are available
for the Bayesian formulation and only whénis assumed to be random with a known prior pdb).
Specifically, ifC(é,G) denotes the cost of providing the estimétevhen the true parameter valuefis

then the optimum estimator thatinimizes the average coist

0= arginf / C(U,0)f(X|0)(8)db. (4)

With proper choice of the cost functioﬁ(é,@), this formula gives rise to a number of well known
estimators as the MAP, the conditional mean or the conditiomedian.
Next we will combine the two problems and after defining a niegfal performance measure we will

develop the optimum detection/estimation structure fer jtint problem.

II. COMBINED DETECTION AND ESTIMATION

As we realize from the previous discussion, in both problefimte-sample-size optimum solutions
exist only if we assume that the parameters are random wittedmown prior. It is therefore natural
to expect that the same assumption will be transferred tonbiee general combined problem. With this
observation in mind, let us define the problem of interest.

Consider a random data vectar € RY and the following two hypothesésy, H:
Hi: & ~ fi(X|0;) with prior pdf m;(6;), i =0, 1. (5)
Given any realizationX of X we would like to decide between the two hypothebBgsH,; and if our
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decision is in favor oH;, then we would like to provide an estimatefor the corresponding parameters
0;.

The priorsm;(6;) are considered to be generalized functions containingilpespoint masses. This
will allow for the unified analysis of the problem wi#) taking a continuum or a discrete set of values.

Let us now define what we mean by combined detection/estmatheme.

A. Combined Detection/Estimation Structure

We adopt the class afandomizeddetectors and estimators, and we propose the followivgstep
schemeln the first step with the help of two randomization probies 6, (X), 4, (X) we decide between
Ho, H;. Quantityd; (X) denotes the probability by which we decide- : using a random game. Clearly
do(X)+01(X) = 1. In the second step we provide parameter estimates that mexage with the help of
randomized estimators. Specifically we define two condtiguufs qo(6o|X) and g, (61| X), that satisfy
[ q0(60|X) dby = [ q1(6:]X)dh; = 1. These two density functions are applied as follows: if ia fiist
step we decidel = 4, then in the second step we use the pdf};|X) to generate a random variable
0; distributed according tq;(6;|X). This variable constitutes our estimate. Randomized estira are
the direct analog of randomized tests used in hypothesi;igeand are not uncommon in Bayesian
approaches, as one can verify by consulting [8, page 65].

We should note that;(6;|X) must have the same support as the prigt;) since we expect our
estimated; to assume the same values as the true parafigt@his is particularly important i; can
take only a finite number of values, in which caséd;) andg;(6;|X) will be comprised of point masses.
In the latter case, it is easy to see, that we can carry outriblysis using only probabilities instead of
pdfs and replace integrals ovér andd; with sums.

Summarizing: the combined detection/estimation strecisicomprized of the two probabilitiég (X),
51(X) (used in the first step to distinguish between the two hymsethH,, H;) and of the two pdfs
q0(60|X), ¢1(01]X) (used to provide the necessary parameter estimate in timdatep). We denote
the complete detection/estimation structurelfas: {5y(X), 1 (X), qo (60| X), q1 (61 X)}.

Remark 1:0ne might wonder if the adoption of a two-step procedure & possibilities for
a randomized detector/estimator. It turns out that we caldd use one-step detectors/estimators that
simultaneouslydetect and estimate. However, it is straightforward to shioat such schemes can be
simulated by properly selected two-step procedures; dantiore, the opposite is also true, that is, any
two-step detector/estimator can be simulated by a properstep procedure. Consequently the two

approaches are fully equivalent and, without loss of gditgrave may limit ourselves to the two-step
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schemes introduced abdve
In the next subsection our aim is to to define a suitable padoce measure fdp and a corresponding

optimization problem that will lead to the identification ihfe optimum detection/estimation structure.

B. Combined Optimization Problem

As we mentioned in the Introduction, we are going to combireRBayesian with the Neyman-Pearson
approach. To this end I(ﬂ’ji(éj,ei) denote the cost of deciding in favor of hypothedisin the first step
and providing the estimat@- in the second step, when the true hypothesid;ignd the true parameter
is 6;.

Let us consider the average cG§{(D) giventhat the true hypothesis I8;. We can expres®;(D) in

terms of the complete detection/estimation structure Bawie
(D) = / {50()() / 40(801X) Zi (B0, X)dy + 61 (X) / ql(él\X)@u(él,X)dél}dX, 6)

where 2;;(U, X) = [ C};(U, ;) f;(X|0;)m:(6;)d6;. As we can see the four functior8;;(U, X) depend
on the known cost function§';;(U, 6;) and on prior information, consequently they are also knonth a
independent from the detection/estimation structre
We can now define the following optimization problem that wegwse as an alternative to the classical
problem depicted in (2).
i%f ¢1(D), subject to%y(D) < a. (7)

Level a constitutes the maximally allowable cost under hypothidgisAs we can see by direct comparison
with (2), we follow a Neyman-Pearson like approach, haveygaced the (conditional) error probabilities
of the classical approach with the conditional Bayesiariscdghe problem defined in (7) makes a lot of
sense. Indeed if one is interested in parameter estimatidarieach hypothesis then the primal concern
is the induced average estimation cost, which quantifiegjtiadity of the corresponding estimate. It is
therefore understandable that both, the detection andstitaaion subproblems must contribute towards
the optimization of the same figure of merit.

Before continuing with the general solution of our problemg would like to consider a special case
which establishes finite-sample-size optimality for theRatest. The practical significance of this popular
test certainly justifies this special analysis. There is én®v an additional reason that makes this short

parenthesis necessary: we plan to use the GLR test as owtypet therefore we will observe under

10ur claim is particularly easy to prove when the paramefiermke only a finite number of values.
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what conditions we can guarantee its optimality. Then wé agbly similar assumptions in the general
case, in order to generate GLR-like tests that are compatilth various well known cost functions used
in applications. This will produce novel tests that are Holte more suitable than the classical GLR

test, for these problems.

C. Optimality of the GLR Test

Consider the case whete takes a finite set of values. Without loss of generality, wik agsume that
0; =1,2,...,L; and for simplicity, wher¢; = [, we are going to denote the corresponding pdf;asX)
instead of f;(X6; = [). This immediately suggests that the two prior paf$6;) will be comprised
of an equivalent number of point masses. We denote the ameing prior probabilities withr;;. In
other words under hypothesi$; we haveX ~ f;(X) with prior probability 7;;, wherei = 0,1 and
I =1,...,L;. Sinced; assumes a finite number of values, the estimaggi@|X) will be comprised
of point masses as well. Let;(X) denote the corresponding probabilities. Our detectidim@sion

structure can then be identified as the following collectidrprobabilities

D = {60(X),01(X),q01(X), -+, qoL, (X), q11(X), .., 1L, (X) } (8)

with the following properties
L;
5i(X) > 0; ga(X) > 0; 60(X) +61(X) =D qu(X) =1. ©)
=1

As before the probabilitiegy(X),0:(X) are used in the first step to decide between the two main
hypotheses. Given that the decision in the first step is inrfav H;, we go to the second step and with
the help of the probabilitieg;;(X), | =1,..., L;, we decide with the help of a randomized test among
the possibilitiesf;; (X), ..., fir,(X).

Consider now the following special case of cost functions

Cho(01,60) = Co1(6o,61) = 1; C11(8,6) = Coo(8,6) (10)

= Ligzop
where1 4 denotes the indicator of the sdt In other words the cost is 0 only when both steps make
the correct selection and it is equal to 1 otherwise. Theesponding average cogt(D) is then equal

to the probability ofdetection/estimation-erronnder hypothesisl;. We have the following theorem that

solves the problem defined in (7).

Theorem 1. Consider the class/, of all detection/estimation strategies that satisfy thestoint

P(Detection/estimation-erroiy) < «, (11)
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whereap;, < a < 1, with

Qmin = 1 — /1I<I}ax {WOlfOI )}dX (12)

The test, within the clasg,, that minimizes the probabilit{?(Detection/estimation-errdil, ) is given
by:
Step 1: The optimum strategy for deciding between the twa mmgpothesesly and H; is

T

A {mufu(X)}

max {morfor(X)} o

A (13)

ANV

where, whenever the left hand side coincides with the tlotdsive perform a randomization between

the two hypotheses and selétt with probability .

Step 2: If in Step 1 we decide in favor of hypothésjsthen the optimum estimation strategy is

A~

0; = arg max {mfu(X)}- (14)

If more than one indexes attain the same maximum we perforantaimary randomization among them.

The threshold\ and the randomization probability of Step 1 must be selected so that the constraint

in (11) is satisfied with equality.

Proof: We observe thaP(Detection/estimation-errgil;) = 1 — P(Correct-detection/estimatigh; ),
therefore the constraint is equivalent RgCorrect-detection/estimatigity) > 1 — «. If we denote the

possibility {X ~ f;(X)} with H;; then we can write

L,
P(Correct-detection/estimatig; ) = Z P(Correct-detection/estimatigy; ) r; (15)
=1
with
P(Correct-detection/estimatig;) = /5i(X)qil(X)fil(X)dX. (16)

Instead of minimizing the probability of detection/estiia-error we can equivalently maximize the
probability of correct-detection/estimation. To solve ttonstrained optimization problem, let> 0 be a

Lagrange multiplier and, as in the classical Neyman-P@acase, with the help of (15) and (16), define
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the corresponding unconstrained version. We then note

P(Correct-detection/estimatigi ) + \ P(Correct-detection/estimati¢ih )

/ {thl )T ful )}dX+>\/50( {ZQOI )7ou fou( )}dX (17)

< [800) max (mufu(O}X 42 [ 80 max {rufu(X))dX (18)

_ / {51()() e {mfu(X)} + 3o (X)N masx {mo fOl(X)}] X (19)

< / max {12@1 (riufu(X)} A mas {ro fOl(X)}} dx. (20)
Inequality (18) is valid because the functiopg( X ), [ = 1,..., L; are nonnegative and complementary

(their sum is equal to 1). Inequality (20) is also true beeahs same properties hold fo( X ), i = 0, 1.
Note that the final expression constitutes an upper bounti@performance of any detection/estimation
rule. Furthermore this upper bound is attainable by a speddiection/estimation strategy. Indeed we

note that we have equality in (18) when the estimation pribtiab are selected as

(21)

1 if k= argmin; <<z, {mifu(X)}
qin(X) = .
0 otherwise

and we randomize if there are more than one indexes attaii@gsame maximum. This optimum
estimation process is the randomized equivalent of (14nil&ily we have equality in (20) when we

select the detection probabilities to be

1 if maxy<<r, {mufu(X)} > Amaxi<i<r, {morfor(X)}
0(X) =19 ~ if maxig<p, {mufu(X)} = Amaxi<<r, {morfor(X)} (22)

0 otherwise

anddp(X) =1 — 6;(X). Clearly this optimum detection procedure is the equivatér(13).

As far as the false alarm constraint is concerned let us d#iméollowing sets

)
)
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For the test introduced above, we can then write that

P(Detection/estimation-errg)

—1— /A(/\) max {morfor(X)} dX — 7/8@)  max {morfor(X)} dX

(24)

>1—
- /“4(>\)UB(>\) 212, {morfor(X)} dX

> 1 — — L
= 1 /122}[{/0 {TrOlfOl(X)}dX Qmin

The lower boundv,,;, is clearly attainable in the limit by selecting= 1 and lettingA — 0. Also the
detection/estimation-error probability is bounded froboee by 1 and we can see that this value can
also be attained in the limit by selecting= 0 and lettingA — oo. Existence of a suitable threshold
and a randomization probability that assure validity of the false alarm constraint with ditygyaas well
as, optimality of the resulting test in the desired sense,measily demonstrated following exactly the
same steps as in the classical Neyman-PearsoR.cHsis concludes the proof. ]

We realize that in order to apply the test in (13) we need kedgé of the prior probabilities;;.
Whenever this information is not available we can considgiigrobable subcases and selegt= 1/L;.

Under this assumption the optimum test in (13) is reducedheofamiliar form of the GLR test,

max fu(X) i
>

1<i<L;

e DN (25)
X <

12}2)50]“01( ) n

after absorbing the two prior probabilities inside the sald.

Finally, we should mention that if hypothedi is simple or, if under hypothesid, we are not
interested in the estimation problem (therefore we cart ittees simple by forming the marginal density)
then P(Detection/estimation-errgy) becomes the usual false alarm probability with correspandi
amin = 0. In other words the false alarm probability can take any @ahu the interval(0,1) as in
the classical Neyman-Pearson problem.

Remark 2:We observe that the optimum test, under each main hypothsedécts the most appropriate
subcase with the help of the MAP selection rule (14). Ther@gng point is that this selection is
performed independently of the other hypothesis and of tireesponding detection strategy. This is

clearly a very desirable characteristic since it sepathiegstimation from the detection problem. In our

%In the proof we simply replace the pdfs(X) with the functionsmaxi<;<r, {m fi(X)}. Even though these functions are

not densities, the proof goes through without change.
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analysis we are going to provide sufficient conditions themt guarantee the same property under the
general formulation.

Remark 3:We obtain the GLR test by assuming that the prior probadditireuniform We will use the
same principle in our general formulation to obtain testt ttan be used as alternatives to the classical
GLR test.

[1l. OPTIMUM DETECTIONESTIMATION SCHEME

Let us now continue with the solution of the optimizationlgieam defined in (7). We have the following

theorem that provides the desired optimal detection/edtim structure.

Theorem 2. Consider the clasg/,, of detection/estimation structurgs that satisfy4,(D) < «. The test

that minimizes the average cost(D) within the class7, is given by

Hi
inf(Z01 (U, X) + AZo0(U, X)] 2 inf[211(U, X) + AZ1o(U, X)] (26)
HO

with the optimum estimators defined by
0; = arg inf[2;1(U, X) + AZ50(U, X)), j = 0,1, (27)
and )\ > 0 a threshold properly selected to satisfy the correspondimigstraint with equality.

Proof: Let A > 0 be a Lagrange multiplier and consider the unconstraint migation of the

combinationé? (D) + A6, (D). Using (6) we can write
%1(D) + X%(D)

_ / {0() / 40(80|X)[Z1 (B, X) + Ao (60, X)) b o9
161 (X) / 0 (011X)[ 2 (61, X) + 2100, X))y baX

> / {60() nf (201 (U, X) + AZoo(U, X)] + 61(X) inf [201(U, X) + AZo(U, X)] baX  (29)

> / min { inf{Z1 (U, X) + AZoo (U, X, if (01 (U, X) + AZno(U, X)) }X. (30)

The inequality in (29) is true because

/ 0 (0:1X) (D (65, X) + ATro (85, X)]d6; > inf[ D (U, X) + AZro (U, X)] / 0:(0:1X ) dé;
v (31)
= H[}f[‘@zl(U7 X) + )“@iO(U7 X)]
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with equality iff ¢;(A;|X) puts all its probability mass on the choiée= arginfy;[Z;1 (U, X)+\Zio (U, X)],
which is thereby optimum. Similarly we have that (30) is thexause,(X)+ 01(X) = 1, and we have
equality iff

1 if infy[Z01(U, X) + A200(U, X)] > infy[211 (U, X) + A%10(U, X))

01(X) = § v if infy[Zo1(U, X) + A0 (U, X)] = infy[Z11 (U, X) + A%10(U, X)) (32)

0 if infy[Zo1(U, X) + Ao (U, X)] < infy[211(U, X) + A\%10(U, X)],
with 0 < v < 1 anddo(X) = 1 — §;(X). This is the randomized version of (26). This completes the
proof. |

Remark 4:For the levela we havea,i, < a < amax. It is possible to come up with an expression

for amin. Indeed, from (6) it is easy to see that
(D) 2 [ {318 S0 ) + 813 9t 7000, )} ax (33)

> /min {ll[}f QOQ(U,X),iII}f @10(U,X)} dX = Qmin - (34)

This lower bound is in fact attainable by tlo@timum schemdefined with (26), (27), if we lef — 0.
Unfortunately a similar expression for the upper boung,, was not possible to obtain.

Remark 5:As we can see from (26), (27) the optimal solutions for theeck@n and estimation
subproblems are interrelated. If we are interested in theeseharacteristic we encountered in the GLR
test, where the two estimation problems are independent #ach other and from the detection part,

then the following special form of the cost functions canuasghe validity of this property
Col(U, 91) = 001 (91) and Clo(U, 90) = 010(90). (35)

Indeed we can see that if (35) is true thép, (U, X) = Zp1(X) and Z10(U, X) = Z10(X), which

implies that the optimum estimators in (27) simplify to
0y = arg iI[}f[@m (X) +A%00(U, X)] = arg ir[}f P00(U, X) (36)
6, = arg igf[@ll(U, X) + AZ10(X)] = arg ir[}f 911 (U, X), (37)

that is, they coincide with the classical Bayesian estimsai¢hich we obtain by treating each estimation

problem separately. The optimum detector in (26), understirae assumptions takes the form
Hiy
Jo1(X) — inf 711 (U, X) = M 20(X) - inf Zo0(U, X) | | (38)

which of course relies on the optimum cost values.
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Remark 6:0bserving (26) and (27) it seems as if the order of the twossteur two-step procedure
has been reversed. This impression however is not exactheato We note that the minimum of a
function is unique and it is the two minimal values that aredum (26). The actual estimates that realize
the two minima, and are depicted in (27), are not necessanigue and therefore we might require
randomization which is performed in the second step. Buh déivihe two estimators are deterministic, it
is the first step that will dictate which of the two values Wik used as our actual parameter estimate.
And this selection is performedofter the detection step. Therefore, strictly speaking, the rorslaot

reversed.

A. Special Case

We would like now to pay attention to a particular case thatdsnmon in applications. Consider
underH; thatX ~ f;(X|0) wheref a parameter vector with known priat(¢) and undeH, we assume
that ¥ ~ fo(X). In other words the pdf undet, is completely known. In fact it is very common to
have fo(X) = f1(X]6 = 0). Our goal is to tesH, againstH;, and whenever we decide in favor of
H, to provide an estimaté for the corresponding parameter vectorWe should mention that the two
application problems discussed in the Introduction, faller this particular class.

Since parameter estimation is needed only utitletthis suggests that a combined detection/estimation
structure will be comprised of the following functiofis= {3y (X), 81 (X), ¢1(A|X)} that satisfyd; (X) >
0, §=0,1, ¢(|X) >0, 8(X) + 0:(X) = [ q1(6]X)df = 1. The two probabilitiesio(X), 5, (X) will
be used in the first step to decide between the two main hyse&;hwhileql(é]X) will be employed in
the second step to provide the necessary estimat, fevery time a decision in favor df; is reached.

Regarding the estimation costs we have the following fmﬁCl1(é, 0), Cm(é), Co1(0) andCyp. As
we can se€y is simply a constant, whereé§,(-) andCy; (-) are functions of a single quantity. Consider
now the following selectioryy = 0 andCyo(f) = 1, then it is easy to verify thai (D) = P(d = 1|Hy),
i.e. the probability of false alarm. For this particularesgion we have the following interesting corollary

of Theorem 2.

Corollary 1. Consider the average cosf (D) underH; defined using the two cost functiof, (6, )
and Cp; (#). The optimum detection/estimation structure that mirésiiz (D) under the constraint that

the false alarm probabilityP(d = 1|Hy) is no larger thana € (0, 1), is given by

H
gol(X)—infU@H(U,X) ;1/\ (39)
fo(X) T
0
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for the optimum detector and

él = argirl}f .@11((], X) (40)
for the corresponding optimum estimator. The two functighs(U, X), %y (X ) are defined as follows

(U, X) = / Cui(U,0) F1(X|0)m(0)d6; Ty (X) = / Cor(0)1(X|O)n(0)d0.  (41)

B. Discussion

In finite-sample-size optimum detection and estimation tieed for the prior pdfs constitutes a
very severe weakness. As we mentioned eatrlier, if this in&tion is not available the corresponding
optimization problems must be treated in some min-max conténfortunately min-max formulations
tend to be very difficult to solve even asymptotically, andsystematic solution exists for the problems
of detection and estimation. It is of course clear that theesimitation applies in the case of the more
general combined detection/estimation problem.

A simple (ad-hoc) method to bypass the need for resorting itemax approaches, is to apply the
same idea used to demonstrate optimality for the GLR teshehaassume that the priors aneiform
Of course this selection is arbitrary and does not guarasiémality of the corresponding scheme under
any possible min-max sense. On the other hand, it is the ogiigdl choice that reflects our complete
lack of knowledge about the priors. The corresponding testamples of which will be seen in the next
section, it is expected to have the same weakness as the GLRvtth one major difference: they will

be tailored to the specific cost function adopted in the edton subproblem.

IV. EXAMPLES

In this section we present a number of interesting exampjeselecting various well known forms
of cost functions. We basically concentrate on the poputestsencountered in the classical Bayesian
estimation theory. We start with the MAP estimate which desti@ates optimality of the GLR test in the

continuous case.

A. MAP Detection/Estimation

Consider the following combination of cost functions

0 | U-9|<Ax1
Co1(U,0) = C1o(U,0) =1; Coo(U,0) = C11(U,0) = _ (42)
1 otherwise
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We recall from the classical Bayesian estimation theorg (8¢ Page 145]) that, a8 — 0 and assuming
sufficient smoothness of the pdf functions, the specificctiele of costs leads to the MAP parameter

estimation under each main hypothesis. Indeed we observe
2;;(U, X) ~ /fj(X|9)7rj(9)d9 — (X)) (U)V;(A) (43)

whereV;(A) is the volume of a hypersphere of radis(which can be different for each hypothesis if

the two parameter vectors are not of the same length). Sutirsgi in (38) yields

supy (X V) (U) 2
supy fo(U[X)mo(U) 0 Vi(A)

=X, (44)

and the optimum estimator under each hypothesis is the MAR&®r

éj = arg Sl[}p fi(X|U)m;(U). (45)
Similarly for the special case of Corollary 1 if we define
0 IU-9|<Ax1
C1(U,0) = _ (46)
1 otherwise

andCy1(9) = 1, then21 (U, X) ~ [ f1(X|0)7(0)dd — f1(X|U)x(U)Vi(A) and the optimum test in
(39) takes the form

Hy
swpy AXO(@) S A
RO D@ 0

with the optimum estimator beingy= arg sup;; f(X|U)x(U). In both tests (44) and (47), the threshold
A\ and the corresponding randomization probabititare selected to satisfy the false alarm constraint
with equality. If the prior probabilitiesr;(6;), 7(¢) are unknown and are replaced with the uniform over

some prior set®); we obtain the classical form of the GLR test depicted in (3).

B. MMSE Detection/Estimation

Let us now develop the first test that can be used as an alterrtatthe GLR test. Consider the

following costs

Co1(U,01) = Cor(61); Cro(U,8) = Cro(6p);  Coo(U,0) = C11(U,0) = |U — 6], (48)

3The approximate equality becomes exactas- 0.
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whereCy, (61), C10(61) are functions to be specified in the sequel. Due to the spédaific of the costs,
the two estimators are independent from each other and redepéndent from the detection part. Under
each main hypothesis the optimum estimator is obtained IoymmiEing the corresponding mean square
error. Consequently the optimum estimator is the condifiomean of the parameter vector given the data
vector X (see [9, Page 143]). Specifically we have

N 0, £5(X10)7;(6;) db;

6. — E[f;| X, H,] = . 49
1= B0 =T (X107, 0,) )
The corresponding optimum test after substituting in (3&es the form
Hy
A(X) Z Mo(X) (50)
Ho
where
A0(X) = Bol£0) + [ [Cr0(B0) 160l fo X 60)mo80)
A0 = I8 EAC0) + [ Con(61) ~ 1611711 (X160)ms (01)do (51)
fi(X) Z/fj(X\Hj)Wj(Qj)de-
SelectingCo; (1) = ||61]|*> and C10(Ao) = /60| simplifies the test considerably yielding
. . H,
10111 f1(X) _ [I61]1? [ F1(X01)m1(61) 1 > N (52)

160112 fo(X) — |16o)12 J fo(X|00)m1(00) dbo =

We recognize in the second ratio the likelihood that is useddcide optimally between the two main
hypotheses. By including the first ratio of the two norm squestimates, the test performs simultaneously
optimum detection and estimation.

For the special case of Corollary 1 it is easy to verify tha dorresponding test takes the form

16112 £, + [1Cor (6) = 0IP1 A1 (XI0)m(6) do 2 s
Fo(X) <> 3
Ho
which, if we selectCy; (9) = |62, simplifies to
Hiq
- X

BPRE Z (54)

Ho

wheref = E[0|X,H,] = [0f(X|0)m(0)d8/ [ f(X|0)n(8)dd and f1(X) = [ f(X|0)7(6)db.
In both tests in (50) and (53), if the priors are not known arel replaced by uniforms, we obtain

tests that are the equivalent of the GLR test for the MMSEeddh.

November 25, 2009 DRAFT



16 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , 2009 (RV/ISED)

C. Median Detection/Estimation

As our final example we present the case of the median estimathered;, 6;, 0, U are scalars and

we select the cost functions as follows
Co1(U,0) = Co1(0); Cio(U,0) = C10(0); Coo(U,0) = C11(U,0) = |U — 0. (55)

The estimators are again independent from each other and dedection part. Under each hypothesis
we perform optimum Bayes estimation and for this specifid dosction we know that the optimum

estimator is the conditional median [9, Page 143]

) JY o £i(X105)m;(05) do; 1
0;: =argy:PO; <ylX,H) =" =— 5. (56)
’ { s <uHHy) J £i(X105)m;(6;) dO; 2
The optimum test, as before, becomes
Hiq
A1(X) 2 AMo(X) (57)
Ho
where
/ ClO 90 + Hosgn(e() — 90)} fo(@o‘X)ﬂ'o(Qo)on
(58)

/ 001 01) + Orsgn(f;, — )} F1(01| X1 (61) 6.

If additionally we selectCy;(01) = |01| and C1o(6p) = |6o| then the optimum test takes the more

convenient form

X H,
fog1 01/1(X]61)m1(61)db0r > \ (59)
2 00 fo(X100)mo(60)dbo 1y,
For the special case of Corollary 1 and 10§, (¢) =
& (X|0

@ 2
X <
me =

while the optimum estimator i = arg{y : P(6 < y|X,H;) = 0.5}. Finally when the priors are selected
to be uniform, we obtain a test that is the alternative to thé&k @st but tuned to the specific Bayesian

criterion we employ in the estimation part.
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V. APPLICATION TORETROSPECTIVECHANGEPOINT DETECTION

Perhaps the most appropriate application where one woaldilyeneed to replace the GLR test with
an alternative scheme, is the problem of target detectiahl@ralization. Clearly for this problem the
most suitable cost function is the mean square error betweetocation estimate and the true position.
This choice will inevitably lead to the use of tests that dmilar to (53), proposing a completely novel
approach for this intriguing problem. Unfortunately theresponding derivations are lengthy and thus
impossible to detail here. In the limiting space we have to digposal it is feasible to treat, with our
preceding methodology, the second application we mendianthe Introduction, namely the retrospective
changepoint detection problem. We would like to mentiort #ven though in this problem the estimation
costs are MAP-like, suggesting use of the GLR test, as we se#, there is sufficient simplicity and
originality in our results that make our analysis intemggtand worth including in this article.

In its simplestform, retrospective changepoint detection is about anrebtien vectort € RV and
two pdfs f..(X) and fo(X) which are completely known. If¥ = [x1,...,xn~]' then we assume that
there is an unknown point such that the samplegy;, ..., x-} follow the nominal measurg..(X)
while the {x-+1,...,xn} switch to the alternativefy(X). Consequently, the changepoints the last
point where the samples follow the nominal regfme

We are interested in deciding whether the change took plaiténwor before the given collection of
samples, that is < N, or the change will take place at some future point (possablinfinity), that is
7 > N. In the former case we would also like to obtain an estinmiadéthe changepoint. The combined
detection/estimation version of the retrospective chpoge detection problem, as we mentioned in the
Introduction, is suitable for formulating segmentatioolgems.

Let us first define the joint pdf,(X) of the samplest given . We distinguish three sets of values
for 7, namelyr < 0,7 € {1,...,N—1} andr > N. The first corresponds to a change occurring before
taking any samples, the second to a change within the alaitsmple set and the third to the change

occurring after we acquired the samples. The most commorehfiodthe induced joint pdf is [10], [11]

fo(X) forr <0
fr(X) =19 fool XT) fo(XN,|X}) foro<7<N -1 (61)
foo(X) for N <,

“Notation seems to be somewhat awkward compared to the usealsed in hypothesis testing. We simply follow the standard

practice of sequential changepoint detection theory.
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where X = [z1,...,2x]" and fora < b we defineX? = [z,,...,x])'. We can see that if the change
takes place before the samples are acquired, all samplasdes the alternative regime. If the change
takes place within the available set, then the initial portof the samples follows the pdf of the nominal
regime while the final portion theonditional pdf of the alternative regime. Finally if the change does
not occur before or inside the available data set, all sasngle under the nominal regime.

Regarding the changepointthere are different models. Detailed discussion of theowarpossibilities
can be found in [10], [11]. Here we limit ourselves to Shinagopular Bayesian model. Specifically
we assume that is a random variable with a pridfw,, } defined aswy = P(7 < 0), @, = P(1 =n)
for 0 <n < N -1, wy = P(r > N) and such thap>" @, = 1.

As we mentioned, the goal is to tegt < N — 1} against{r > N}, and in the former case provide
and estimater for 7. Formulating the problem according to our previous theworg, have that under
Ho the samples follow the nominal pdf,(X) while underH; we haveN different possibilities with
corresponding pdf.(X) and priorr, = @, /(30 " @) = @, /(1 — wy), where0 < 7 < N.

Let us now consider the combined detection/estimation Iprokin the sense of Corollary 1, namely
minimize the average cost undef subject to a false alarm probability constraint undgr We propose
the following cost functiong’; (7, 7) = 1;,}, wherel4 denotes the indicator function of the séf
and Cp;(7) = 1. In other words we penalize with 1 the incorrect detectiorHefbut also the correct
detection ofH; followed by an incorrect estimation of The average cost is simply the probability of
detection/estimation-error introduced in Subsectidd.llApplying the results of Corollary 1 and using

the Bayes rule and (61), the optimum detection/estimatinrcsire is given by

Hi
max {ﬂ'n fn(X)}z max { —fO(X +1‘X1)} Z A (62)

0N | T (X) S T 0gnen | (XN 1XT)

for the optimum detector and

A fO( n+1|Xn)
"= argoglna%XN { fOO(X -‘rl‘Xl ) } (63)

for the corresponding optimum estimator. If the priats n» = 0,..., N —1, are unknown and we select

them to be equal, then we obtain the GLR test version of thbleno

Hiq
B Jo(Xp [ XT) | >
SN 0<"<N{foo( n+1’Xn)} If /\ (64)

whereSy is known as theCUSUM statisticfor point V.
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The previous result was of course expected since we folldlvedame formulation as the one used in
SubsectionI1.C to prove optimality of the GLR test. Intengly, our theory allows for the development
of alternative detection/estimation structures in a semghd straightforward manner. For example one
might argue that the costyy(7,7) = L;., is overly stringent and propose as alternative the function
C11(7,7) = Lyj4—|>m) Where0 < m < N is a nonnegative integer. In other words we tolerate errors
in the estimate of- that do not exceed points. If m = 0 the problem is reduced to the case already
discussed. Clearly most practical segmentation problemddnallow m > 0.

Again we adopt the setup proposed in Corollary 1. It is they ¢a verify that we obtain the following

optimum structure

Hi
(X m X XptF
max { Z 7Tn+kfn+k )} max { Z fO( n+k+1‘ n+k)} % A (65)
m<n<N—-m e ) m<n<N-m i foo(X +k+1’X1 ) o
for the detector and i
m X Xn+
7=arg max { Z fO( "+k+1| n+k’) } (66)
m<n<N-—m o foo(X +k+1’X )
for the estimator. Finally assuming uniform priors for theese where the probabilitiegr, ..., 7n-1}

are unknown, leads to the test

m n+k Hi
Sy = max {Z ol n+k+1‘X )} = A, (67)

%
m<n<N-m | = foo (XN ot [ XTT)

which is completely novel and replaces the GLR test in (64 &y being clearly different than the
CUSUM statistic.

VI. CONCLUSION

By introducing a joint detection/estimation formulatiomat properly combines the Neyman-Pearson
methodology (for detection) and the Bayesian methodolémyestimation), we derived optimum schemes
for problems that require simultaneous detection and esim. Important side-product of our analysis is
the demonstration that the well known GLR test is finite-skegize optimum under this joint-problem
sense. Furthermore we were able to provide completely nGu#-type tests, that were derived by
replacing the MAP estimation cost function with other wetiokvn choices as the mean square or
mean absolute estimation error. Finally, we used our pmgasethodology to analyze the problem of
retrospective changepoint detection. This led to the agweént of a novel detection/estimation structure

that can replace the CUSUM approach which is obtained wheappéy the GLR test.
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