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Abstract

We introduce a new method of Bayesian wavelet shrinkage for recon-
structing a signal when we observe a noisy version. Rather than making
the usual assumption that the wavelet coefficients of the signal are inde-
pendent, we allow for the possibility that they are locally correlated in
both location (time) and scale (frequency). This leads us to a prior struc-
ture which is, unfortunately, analytically intractable. Nevertheless, it is
possible to draw independent samples from a close approximation to the
posterior distribution by an approach based on Coupling From The Past,
making it possible to use a simulation-based approach to fit the model.

1 Introduction

Consider the the standard nonparametric regression problem

yi = g(ti) + εi. (1)

where we observe a noisy version of an unknown function g at regularly spaced
intervals ti. The noise, εi is assumed to be independent and Normally dis-
tributed with zero mean and variance σ2.

The standard wavelet-based approach to this problem is based on two prop-
erties of the wavelet transform:

1. A large class of “well-behaved” functions can be sparsely represented in
wavelet-space.

2. The wavelet transform transforms independent, identically distributed
noise to independent, identically distributed wavelet coefficients.

These two properties combine to suggest that a good way to remove noise
from a signal is to transform the signal into wavelet space, discard all of the
small coefficients (i.e. threshold), and perform the inverse transform. Since the
true (noiseless) signal had a sparse representation in wavelet space, the signal
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will essentially be concentrated in a small number of large coefficients. The
noise, on the other hand, will still be spread evenly among the coefficients, so
by discarding the small coefficients we must have discarded mostly noise and
will thus have found a better estimate of the true signal.

The problem then arises of what to choose as a threshold value. Gen-
eral methods that have been applied in the wavelet context are SureShrink
(Donoho and Johnstone, 1995), cross-validation (see Nason, 1996) and False
discovery rates (see Abramovich and Benjamini, 1996). The BayesThresh ap-
proach (Abramovich et al., 1998) proposes a Bayesian hierarchical model for
the wavelet coefficients, using a mixture of a point mass at 0 and a N(0, τ2)
density as their prior. The marginal posterior median of the population wavelet
coefficient is then used as the estimate. This gives a thresholding rule, since
the point mass at 0 in the prior gives non-zero probability that the population
wavelet coefficient will be zero.

Most Bayesian approaches to wavelet thresholding model the coefficients in-
dependently. In order to capture the notion that nonzero wavelet coefficients
may be in some way clustered, we allow prior dependency between the coef-
ficients by modelling them using an extension of the area-interaction process
of Baddeley and van Lieshout (1995). The basic idea is that if a coefficient is
nonzero then it is more likely that its neighbours (in a suitable sense) are also
non-zero.

The disadvantage of this prior is that it is no longer possible to compute the
estimates explicitly, and a method like Markov chain Monte Carlo (MCMC) has
to be used. A key problem with the use of MCMC is that one can rarely be
absolutely sure that the Markov chain which is used for a given simulation has
converged to its stationary distribution. Propp and Wilson (1996) introduced
coupling from the past (CFTP) as an approach to solve this problem and pro-
duce exact realisations from the stationary distribution of a Markov chain. We
use an extension of this method to sample from the posterior distribution of our
model.

An outline of the paper is as follows. In Section 2 we briefly survey the
area-interaction process and introduce our model for the wavelet coefficients. In
Section 3 we discuss coupling from the past, and an extension which allows us
to sample from the posterior distribution of our model. In Section 4 we present
a simulation study to compare our method with the others introduced in this
section. Section 5 presents some conclusions and discusses possible avenues for
future work.

2 A Bayesian model for wavelet thresholding

2.1 The Area-interaction point process

The area-interaction point process (Baddeley and van Lieshout, 1995) is a spatial
point process capable of producing both moderately clustered and moderately
ordered patterns dependent on the value of its clustering parameter. It was
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introduced primarily to fill a gap left by the Strauss point process (Strauss,
1975), which can only produce ordered point patterns (Kelly and Ripley, 1976).

The definition of the area-interaction process depends on a specification of
the neighbourhood of any point in the space χ on which the process is defined.
Given any x ∈ χ we denote by B(x) the neighbourhood of the point x. Given a
set X ⊆ χ, the neighbourhood U(X) of X is defined as

⋃
x∈X B(x). The general

area-interaction process is defined by Baddeley and van Lieshout as follows.
Let χ be some locally compact complete metric space and Rf be the space

of all possible configurations of points in χ. Suppose that m be a finite Borel
regular measure on χ and B : χ → K be a myopically continuous function
(Matheron, 1975), where K is the class of all compact subsets of χ. Then the
probability density of the general area-interaction process is given by

p(X) = αλN(X)γ−m{U(X)} (2)

with respect to the unit rate Poisson process, where N(X) is the number of
points in configuration X = {x1, . . . , xN(X)} ∈ Rf , α is a normalising constant
and U(X) =

⋃N(X)
i=1 B(xi) as above.

In the following section we define the particular special case of this point
process that we use as our prior. In the context of the rest of the paper, χ is a
discrete space, so the technical conditions required of m(·) and B(·) are trivially
satisfied.

2.2 Model specification

Abramovich et al. (1998) consider the problem where the true wavelet coeffi-
cients are observed subject to Gaussian noise with zero mean and some variance
σ2,

d̂jk|djk ∼ N(djk, σ2),

where d̂jk is the value of the noisy wavelet coefficient (the data) and djk is the
value of the true coefficient.

Their prior distribution on the true wavelet coefficients is a mixture of a
Normal distribution with zero mean and variance dependent on the level of the
coefficient, and a point mass at zero as follows:

djk ∼ πjN(0, τ2
j ) + (1− πj)δ(0), (3)

where djk is the value of the kth coefficient at level j of the discrete wavelet
transform, and the mixture weights {πj} are constant within each level. An
alternative formulation of this can be obtained by introducing auxiliary variables
Z = {ζjk} with ζjk ∈ {0, 1} and independent hyperpriors

ζjk ∼ Bernoulli(πj). (4)

The prior given in equation (3) is then expressed as

djk|Z ∼ N(0, ζjkτ2
j ). (5)
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The starting point for our extension of this approach is to note that Z can be
considered as being a point process on the discrete space, or lattice, χ of indices
(j, k) of the wavelet coefficients. The points of Z give the locations at which
the prior variance of the wavelet coefficient, conditional on Z, is nonzero. From
this point of view, the hyperprior structure given in equation (4) is equivalent
to specifying Z to be a Binomial process with rate function p(j, k) = πj .

Our general approach will be to replace Z by a more general lattice process
ξ on χ. We allow ξ to have multiple points at particular locations (j, k), so that
the number ξjk of points at (j, k) will be a non-negative integer, not necessarily
confined to {0, 1}. We will assume that the prior variance is proportional to the
number of points of ξ falling at the corresponding lattice location. So if there
are no points, the prior will be concentrated at zero and the corresponding
observed wavelet will be treated as pure noise; on the other hand, the larger the
number of points, the larger the prior variance and the less shrinkage applied to
the observed coefficient. To allow for this generalisation, we extend (5) in the
natural way to

djk|ξ ∼ N(0, τ2ξjk), (6)

where τ2 is a constant.
We now consider the specification of the process ξ. While it is natural to

expect that the wavelet transform will produce a sparse representation, the
time-frequency localisation properties of the transform also make it natural to
expect that the representation will be clustered in some sense. The existence of
this clustered structure can be seen clearly in Figure 1, which shows the discrete
wavelet transform of several common test functions represented in the natural
binary tree configuration. With this clustering in mind, we model ξ as an area-
interaction process on the space χ. The choice of the neighbourhoods B(x) for
x in χ will be discussed below. Given the choice of neighbourhoods, the process
will be defined by

p(ξ) = αλN(ξ)γ−m{U(ξ)} (7)

where p(ξ) is the intensity relative to the unit rate independent auto-Poisson
process (Cressie, 1993). If we take γ > 1 this gives a clustered configuration.
Thus we would expect to see clusters of large values of djk if this were a rea-
sonable model — which is exactly what we do see in Figure 1.

A simple application of Bayes theorem tells us that the posterior for our
model is

p(ξ,d|d̂) = p(ξ)
∏
j,k

p(djk|ξjk)
∏
j,k

p(d̂jk|djk, ξjk)

= αλN(ξ)γ−m{U(ξ)}
∏
j,k

exp(−d2
jk/2τ

2ξjk)√
2πτ2ξjk

∏
j,k

exp
{
−(d̂jk − djk)2/2σ2

}
√

2πσ2
.(8)

Clearly (8) is not a standard density, and in Section 3 we will discuss an
extension of coupling from the past which will help us to sample from it.
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Figure 1: Examples of the discrete wavelet transform of some test functions.
There is clear evidence of clustering in most of the graphs. The original functions
are shown above their discrete wavelet transform each time.
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Figure 2: The four plots give examples of what we used as B(·) for four different
example locations showing how we dealt with boundaries. Grey boxes are B(x)\
{x} for each example location x, while x itself is shown as black.

2.3 Specifying the neighbourhood structure

In order to complete the specification of our area-interaction prior for ξ, we need
a suitable interpretation of the neighbourhood of a location x = (j, k) on the
lattice χ of indices (j, k) of wavelet coefficients. This lattice is a binary tree, and
there are many possibilities. We decided to use the parent, the coefficient on
the parent’s level of the transform which is next-nearest to x, the two adjacent
coefficients on the level of x, the two children and the coefficients adjacent to
them, making a total of nine coefficients (including x itself). Figure 2 illustrates
this scheme, which captures the localisation of both time and frequency effects.
Figure 2 also shows how we dealt with boundaries: we assume that the signal
we are examining is periodic, making it natural to have periodic boundary
conditions in time. If B(x) overlaps with a frequency boundary we simply
discard those parts which have no locations associated with them. The simple
counting measure used has m{B(x)} = 9 unless x is in the bottom row or one
of the top two rows.

Other possible neighbourhood functions include using only the parent, chil-
dren and immediate sibling and cousin of a coefficient as B(x), or a variation
on this taking into account the length of support of the wavelet used. Though
we have chosen to use periodic boundary conditions, our method is equally
applicable without this assumption.

3 Simulation

In this section, we develop a practical approach to simulation from a close
approximation to the posterior density (8). We begin by reviewing the general
approach of coupling from the past, and then explore the way in which this
concept can be applied to our particular application.
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3.1 Coupling from the past

The motivation behind coupling from the past (CFTP) is the following. Suppose
that it is desirable to sample from the stationary distribution of an ergodic
Markov chain {Zt} on some (finite) state space X with states 1, . . . , n. It is
clear that if it were possible to go back an infinite amount in time, start the
chain running (in state Z−∞) and then return to the present, the chain would
(with probability 1) be in its stationary distribution when one returned to the
present (i.e. Z0 ∼ π, where π is the stationary distribution of the chain). This
is clearly not feasible in practice! Propp and Wilson (1996) showed that in fact
we can achieve the same goal by going back a finite (random) amount of time
only.

Consider a finite state space with n states, and that we set not one, but
n chains {Z(1)

t }, . . . , {Z
(n)
t } running at a fixed time −M in the past, where

Z
(i)
−M = i for each chain {Z(i)

t }. Now let all the chains be coupled (see Lindvall,
1992) so that if Z(i)

s = Z
(j)
s at any time s then Z

(i)
t = Z

(j)
t ∀t ≥ s. Then if all

the chains ended up in the same state j at time zero (i.e. Z(i)
0 = j ∀i ∈ X),

we would know that whichever state a chain passing from time minus infinity
to zero was in at time −M , the chain would end up in state j at time zero.
Thus j must be a sample from the stationary distribution of the Markov chain
in question.

Kendall (1998) extended CFTP to cover simulation of the area-interaction
process discussed in Section 2.1, which has an infinite state space. The method
makes use of a monotone coupling and stochastic domination. A coupling is
monotone if whenever Z(i)

t ≥ Z
(j)
t then Z(i)

t+k ≥ Z
(j)
t+k ∀k > 0. Given a monotone

coupling and unique minimum and maximum elements we need only simulate
Markov chains starting in the maximum and minimum states and check that
these two have coalesced at time 0, since chains starting in all other states
would be sandwiched between these two. As there is no natural maximum
element for the area-interaction process, Kendall used a Poisson process which
stochastically dominates the area interaction process of interest to generate a
maximum process. More recently, Kendall and Møller (2000) extended these
techniques to more general classes of point processes.

Ambler and Silverman (2004) explain why the method of Kendall and Møller
(2000) is not practically feasible for some classes of point process models, and
provide an alternative method which makes it possible to simulate from densities
such as equation (8). We describe their method in the following section.

3.2 Perfect simulation of spatial point processes

We now move to spatial point processes defined on a set like the unit square
[0, 1] × [0, 1] ⊆ R2. Suppose that we wish to sample from such a spatial point
process with density

p(X) = α

m∏
i=1

fi(X),
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with respect to the unit rate Poisson process, where α ∈ (0,∞) and fi : Rf → R
are positive valued functions which are (a) monotonic with respect to the partial
ordering induced by the subset relation, i.e. for any X and Y related by X ⊆ Y ,
fi(X) ≤ fi(Y ) ∀i, and (b) whose conditional intensity

λf (u;X) =
f(X ∪ {u})

f(X)

is uniformly bounded. Ambler and Silverman (2004) show that this is possible
using the following algorithm.

Let D be a two-dimensional Poisson process with rate equal to

λ =
m∏
i=1

max
X,{x}

λfi
(x;X), (9)

evolving over time according to a birth-death process with birth rate equal to (9)
and unit death rate. LetD(T ) be the configuration of points in processD at time
T . For simplicity of notation, constrain this function to be right-continuous, so
that if there is a birth in D at time T then D(T ) is the configuration which
existed in D immediately prior to the birth.

Now let U be a birth-death process which is started from an initial config-
uration equal to that of D at some time in the past, and L be a birth-death
process which is started from an initial configuration equal to a thinned version
of D, where points are accepted with probability

1
λ

m∏
i=1

min
X,{x}

λfi
(x;X)

The processes U and L evolve through time as follows. If a point {u} is born
in D at time T then {u} is also born in U at time T with probability

1
λ

m∏
i=1

max {λfi [u;U(T )], λfi [u;L(T )]} . (10)

The point {u} is born in L at time time T with probability

1
λ

m∏
i=1

min {λfi [u;U(T )], λfi [u;L(T )]} . (11)

If a point dies in D then if it existed in U or L then it dies there also.
Finally, generate D backwards in time from zero to some time −T and start

U and L there. Now run them forward to time zero. If U(0) = L(0) then the
configuration U(0) (or equivalently L(0)) is a sample from the required spatial
point process. If not, we must generate D further back in time and try again,
keeping the probabilities used for acceptance/rejection in the first round.

In our case, we are simulating from a process on a lattice rather than the unit
square, and in the next section, we set out a modified version more appropriate
to that context.
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3.3 Exact posterior sampling for lattice processes

One of the advantages of the Normal model we propose in Section 2.2 is that
it is possible to integrate out djk and work only with the lattice process ξ.
Performing this calculation, we see that equation (8) can be rewritten as

p(ξ|d̂) = p(ξ)
∏
j,k

∫ exp(−d2
jk/2τ

2ξjk)√
2πτ2ξjk

exp
{
−(d̂jk − djk)2/2σ2

}
√

2πσ2
ddjk

= p(ξ)
∏
j,k

∫ exp
[
−
{
d2
jk(σ2 + τ2ξjk)− 2djkd̂jkτ2ξjk + d̂jkτ

2ξjk

}
/2τ2ξjkσ

2
]

√
4π2τ2ξjkσ2

ddjk

= p(ξ)
∏
j,k

exp
{

−ddjk
2

2(σ2+τ2ξjk)

}
√

4π2τ2ξjkσ2

∫
exp

−
(
σ2 + τ2ξjk
2τ2ξjkσ2

)(
djk −

d̂jkτ
2ξjk

σ2 + τ2ξjk

)2
 ddjk

= p(ξ)
∏
j,k

exp
{

−ddjk
2

2(σ2+τ2ξjk)

}
√

4π2τ2ξjkσ2

(
2πσ2τ2ξjk
σ2 + τ2ξjk

)1/2

= p(ξ)
∏
j,k

exp
{
−d̂jk

2
/2(σ2 + τ2ξjk)

}
√

2π(σ2 + τ2ξjk)
.

We now see that it is possible to sample from the posterior by simulating only
the process ξ and ignoring the marks d. This lattice process is amenable to
perfect simulation using the method of Ambler and Silverman (2004). Let

f1(ξ) = λN(ξ),

f2(ξ) = γ−m{U(ξ)},

f3(ξ) =
∏
j,k

exp
{
−d̂jk

2
/ 2(σ2 + τ2ξjk)

}
and

f4(ξ) =
∏
j,k

{
2π(σ2 + τ2ξjk)

}−1/2
.

Then

λf1(u; ξ) = λ,

λf2(u; ξ) = γ−m{B(u)\U(ξ)} ≤ 1,

λf3(u; ξ) = exp

[
d̂u

2
τ2

2(σ2 + τ2ξu) {σ2 + τ2(ξu + 1)}

]
≤ exp

{
d̂2
uτ

2

2σ2(τ2 + σ2)

}
and

λf4(u; ξ) =
{

τ2ξu + σ2

τ2(ξu + 1) + σ2

}1/2

≤ 1.
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By a slight abuse of notation, in the second and third equations above we use
u to refer both to the point {u} and the location (j, k) at which it is found.
The functions f1, . . . , f4 are also monotone with respect to the subset relation,
so all of the conditions for exact simulation using the method of Ambler and
Silverman (2004) are satisfied.

In the spatial processes considered in detail in Ambler and Silverman (2004),
the dominating process had constant intensity across the space χ. In the present
context, however, it is necessary in practice to use a dominating process which
has a different rate at each lattice location, and then use location-specific max-
ima and minima rather than global maxima and minima. Because we can now
use location-specific, rather than global, maxima and minima, we can initialise
upper and lower processes that are much closer together than would have been
possible with a constant-rate dominating process, and consequently reducing
coalescence times to feasible levels. A constant rate dominating process would
not have been feasible due to the size of the global maxima, so this modification
to the method of Ambler and Silverman (2004) is essential; see Section 3.5 for
details. Ambler (2002, Chapter 5) gives some other examples of dominating
processes with location-specific intensities.

The location-specific rate of the dominating process D is

λdomjk = λe
bd2jkτ

2/2σ2(τ2+σ2) (12)

for each location (j, k) on the lattice. The lower process is then started as a
thinned version of D. Points are accepted with probability

P (x) = γ−M(χ)

(
σ2

τ2 + σ2

)1/2

× exp

{
− d̂2

xτ
2

2σ2(τ2 + σ2)

}
,

whereM(χ) = maxχ[m{B(x)}]. The upper and lower processes are then evolved
through time, accepting points as described in Section 3.2 with probability

1
λdomjk

λf1(u; ξup)λf2(u; ξup)λf3(u; ξlow)λf4(u; ξup)

for the upper process and

1
λdomjk

λf1(u; ξlow)λf2(u; ξlow)λf3(u; ξup)λf4(u; ξlow)

for the lower process. The remainder of the algorithm carries over in the obvious
way. There are still some issues to be addressed due to very high birth rates in
the dominating process, and this will be done in Section 3.5.

3.4 Using the generated samples

Although d was integrated out for simulation reasons in Section 2.2 it is, nat-
urally, the quantity of interest. Having simulated realisations of ξ|d̂ we then
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generate d|ξ, d̂ for each realisation ξ generated in the first step. The sample
median of d|ξ, d̂ gives an estimate for d. The median is used instead of the
mean as this gives a thresholding rule (defined by Abramovich et al., 1998, as a
rule giving p(djk = 0|d̂) > 0).

We calculate p(d|ξ, d̂) using logarithms for ease of notation. Assuming that
ξjk 6= 0 we find

log p(djk|d̂jk, ξjk 6= 0) = log p(djk|ξjk 6= 0) + log p(d̂jk|djk, ξjk 6= 0) + C

=
−d2

jk

2τ2ξjk
+
−(d̂jk − djk)2

2σ2
+ C1

= −
(σ2 + τ2ξjk)

(
djk − τ2ξjk

bdjk

σ2+τ2ξjk

)2

2σ2τ2ξjk
+ C2

where C, C1 and C2 are constants. Thus

djk|d̂jk, ξjk 6= 0 ∼ N

(
τ2ξjkd̂jk
σ2 + τ2ξjk

,
σ2τ2ξjk
σ2 + τ2ξjk

)
.

When ξjk = 0 we clearly have p(djk|ξjk, d̂jk) = 0.

3.5 Dealing with large and small rates

We now deal with some approximations which are necessary to allow our al-
gorithm to be feasible computationally. Recall from equation (12) that if the
maximum data value djk is twenty times larger in magnitude than the standard
deviation of the noise (a not uncommon event for reasonable noise levels) then
we have

λdom = λe400σ
2τ2/2σ2(τ2+σ2)

= λe200τ
2/(τ2+σ2).

Now unless τ is significantly smaller than σ, this will result in enormous birth
rates, which make it necessary to modify the algorithm appropriately. To ad-
dress this issue, we noted that the chances of there being no live points at a
location whose data value is large (resulting in a value of λdom larger than
e4) is sufficiently small that for the purposes of calculating λf2(u; ξ) for nearby
locations it can be assumed that the number of points alive was strictly positive.

This means that we do not know the true value of ξjk for the locations with
the largest values of djk. This leads to problems since we need to generate djk
from the distribution

djk|ξjk, d̂jk ∼ N

(
τ2ξjkd̂jk
σ2 + τ2ξjk

,
σ2τ2ξjk
σ2 + τ2ξjk

)
,
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which requires values of ξjk for each location (j, k) in the configuration. To deal
with this issue, we first note that

τ2ξjkd̂jk
σ2 + τ2ξjk

−−→
ξjk→∞

d̂jk

monotonically from below, and that

τ2ξjkσ
2

σ2 + τ2ξjk
−−→
ξjk→∞

σ2,

also monotonically from below. Since σ is typically small, convergence is very
fast indeed. Taking τ = σ as an example we see that even when ξjk = 5 we
have

τ2ξjkd̂jk
σ2 + τ2ξjk

=
5
6
d̂jk

and
τ2ξjkσ

2

σ2 + τ2ξjk
=

5
6
σ2.

We see that we are already within 1
6 of the limit. Convergence is even faster for

larger values of τ .
We also recall that the dominating process gives an upper bound for the

value of ξjk at every location. Thus a good estimate for djk would be gained by
taking the value of ξjk in the dominating process for those points where we do
not know the exact value. This is a good solution but is unnecessary in some
cases, as sometimes the value of λdom is so large that there is little advantage
in using this value. Thus for exceptionally large values of λdom we simply use
N(d̂jk, σ2) numbers as our estimate of djk.

4 Simulation Study

We now present a simulation study of the performance of our estimator rela-
tive to several established Wavelet-based estimators. Similar to the study of
Abramovich et al. (1998), we investigate the performance of our method on the
four standard test functions of Donoho and Johnstone (1994, 1995), namely
“Blocks”, “Bumps”, “Doppler” and “Heavisine”. These test functions are used
because they exhibit different kinds behaviour typical of signals arising in a
variety of applications.

The test functions were simulated at 256 points equally spaced on the unit
interval. The test signals were centred and scaled so as to have mean value 0
and standard deviation 1. We then added independent N(0, σ2) noise to each
of the functions, where σ was taken as 1/10, 1/7 and 1/3. The noise levels then
correspond to root signal-to-noise ratios (RSNR) of 10, 7 and 3 respectively. We
performed 25 replications. For our method, we simulated 25 independent draws
from the posterior distribution of the djk’s and used the sample median as our
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estimate, as this gives a thresholding rule. For each of the runs, σ was set to
the standard deviation of the noise we added, τ was set to 1.0, λ was set to 0.05
and γ was set to 3.0.

The values of parameters σ and τ were set to the true values of the standard
deviation of the noise and the signal, respectively. In practice it will be neces-
sary to develop some method for estimating these values. The value of λ was
chosen to be 0.05 because it was felt that not many of the coefficients would be
significant. The value of γ was chosen based on small trials for the heavisine
and jumpsine datasets.

We compare our method with several established wavelet-based estimators
for reconstructing noisy signals: SureShrink (Donoho and Johnstone, 1994),
two-fold cross-validation as applied by Nason (1996), ordinary BayesThresh
(Abramovich et al., 1998), and the false discovery rate as applied by Abramovich
and Benjamini (1996).

For test signals “Bumps”, “Doppler” and “Heavisine” we used Daubechies
least asymmetric wavelet of order 10 (Daubechies, 1992). For “Blocks” we used
the Haar wavelet, as the original signal was piecewise constant. The analysis was
carried out using the freely available R statistical package. The WaveThresh
package (Nason, 1993) was used to perform the discrete wavelet transform and
also to compute the SureShrink, cross-validation, BayesThresh and false discov-
ery rate estimators.

The goodness of fit of each estimator was measured by its average mean-
square error (AMSE) over the 25 replications. Table 1 presents the results. It
is clear that our estimator performs extremely well with respect to the other
estimators when the signal-to-noise ratio is moderate or large, but less well,
though still competitively, when there is a small signal-to-noise ratio.

5 Conclusions and future work

We have introduced a procedure for Bayesian wavelet thresholding which uses
the naturally clustered nature of the wavelet transform when deciding how much
weight to give coefficient values. In comparisons with other methods, our ap-
proach performed very well for moderate and low noise levels, and reasonably
competitively for higher noise levels.

One possible area for future work would be to replace equation (6) with

djk|ξ ∼ N(0, τ2(ξjk)z),

where z would be a further parameter. This would modify the number of points
which are likely to be alive at any given location and thus also modify the tail
behaviour of the prior. The idea behind this suggestion is that when we know
that the behaviour of the data is either heavy or light tailed, we could adjust z
to compensate. This could possibly also help speed up convergence by reducing
the number of points at locations with large values of djk. As inclusion of
this extra parameter requires only minor modifications, the software discussed
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Table 1: Average mean-square errors (×104) for the area-interaction
BayesThresh (AIBT), SureShrink (SS), cross-validation (CV), ordinary
BayesThresh (BT) and false discovery rate (FDR) estimators for four test func-
tions for three values of the root signal-to-noise ratio. Averages are based on 25
replicates. Standard errors are given in parentheses.

RSNR Method Test functions
Blocks Bumps Doppler Heavisine

AIBT 25 (1) 84 (2) 49 (1) 32 (1)
SS 49 (2) 131 (6) 54 (2) 66 (2)

10 CV 55 (2) 392 (21) 112 (5) 31 (1)
BT 344 (10) 1651 (17) 167 (5) 35 (2)

FDR 159 (14) 449 (17) 145 (5) 64 (3)

AIBT 56 (3) 185 (5) 87 (3) 52 (2)
SS 98 (3) 253 (10) 99 (4) 94 (4)

7 CV 96 (3) 441 (25) 135 (6) 54 (3)
BT 414 (11) 1716 (21) 225 (6) 57 (2)

FDR 294 (18) 758 (27) 253 (9) 93 (4)

AIBT 535 (21) 1023 (15) 448 (18) 153 (6)
SS 482 (13) 973 (45) 399 (14) 147 (3)

3 CV 452 (11) 914 (34) 375 (13) 148 (6)
BT 860 (24) 2015 (37) 448 (12) 140 (4)

FDR 1230 (52) 2324 (88) 862 (31) 148 (3)
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actually includes this option. The results presented in Section 4 were generated
by simply setting z = 1.

A second possible area for future work would be to develop some automatic
methods for choosing the parameter values, perhaps using the method of max-
imum pseudo-likelihood (Besag, 1974, 1975, 1977).

Software implementing the work described in this paper is available on re-
quest from the first author.
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