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Abstract

Several matrix variate hypergeometric type distributions are derived. The com-
pound distributions of left-spherical matrix variate elliptical distributions and in-
verted hypergeometric type distributions with matrix arguments are then proposed.
The scale mixture of left-spherical matrix variate elliptical distributions and uni-
variate inverted hypergeometric type distributions is also derived as a particular
case of the compound distribution approach.

1 Introduction

Four classes of matrix variate elliptical distributions have been defined and studied by
Fang and Zhang (1990). That m × n random matrix variate X is said to have a matrix
variate left-spherical distribution, the largest of the four classes class of matrix variate ellip-
tical distributions, if it density function is given by

c(m, n)

|Σ|n/2|Θ|m/2
h

(

Σ−1/2(X − µ)′Θ−1(X − µ)Σ−1/2
)

,

where h is a real function, c(m, n) denotes the normalization constant, Σ is an m × m
positive definite matrix, this fact being denoted as Σ > 0, Θ is an n × n matrix, Θ > 0,
and µ is an m × n matrix.
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When implementing frequentist or Bayesian methods, one may be interested in situa-
tions where X has a density function of the following form, see Fang and Zhang (1990) and
Fang and Li (1999),

c(m, n)

|Σ|n/2|Θ|m/2
h

(

Σ−1(X − µ)′Θ−1(X − µ)
)

. (1)

This fact is denoted as X ∼ ELSm×n(µ,Σ,Θ, h). This condition is equivalent to consid-
ering the function h as a symmetric function, i.e. g : g(AB) = g(BA) for any symmetric
matrices A and B. This condition is equivalent to that in which h(A) depends on A only
through its eigenvalues, in which case the function h(A) can be expressed as h(λ(A)), where
λ(A) = diag(λ1, . . . , λm) and λ1, . . . , λm are the eigenvalues of A. Two subclasses of matrix
variate elliptical distributions are of particular interest: the vector and spherical matrix
variate elliptical distributions. For these distributions, λ(A) ≡ tr(A) and λ(A) represents
any function of eigenvalues of A, respectively. Note that vector matrix variate elliptical
distributions are a subclass of matrix variate spherical elliptical distributions. Many well-
know distributions are examples of these subclasses; one such is the matrix variate normal
distribution. Other variants include vector matrix variate elliptical distributions e.g. Pear-
son type II, Pearson type VII, Kotz type , Bessel and Logistic, among many others, see
Gupta and Varga (1993). Yet other are matrix variate spherical elliptical distributions, e.g.
Pearson Type II, Pearson type VII and Kotz type among many others, see Fang and Li
(1999).

In the vectorial case, Muirhead (1982, p. 33) proposed a means of generating a family
of vector variate elliptical distributions from a normal distribution. In the general case, this
idea has been extended to the matrix variate elliptical distributions by Gupta and Varga
(1993, pp. 78-79 and Section 4.1). The situation in which the specific elliptical distribution
is a matrix variate normal is studied in Gupta and Varga (1993, Chapter 4). Generically,
distributions obtained by this procedure are termed scale mixture matrix variate normal or
elliptical distributions.

Arslan (2005) proposed the scale mixture of the vector variate Kotz type distribution, also
termed the t-type or generalised t distribution. Dı́az-Garćıa and Gutiérrez-Jáimez (2009)
extend this idea to matrix variate vector and spherical Kotz type distributions using two
approaches: scale mixture and compound matrix variate distributions.

These forms of obtaining vector or spherical matrix variate elliptical distributions are of
particular interest from a Bayesian point of view (Jammalamadaka et al., 1987; Fang and Li,
1999) and in the context of shape theory, see Caro-Lopera et al. (2008).

This paper introduces several families of matrix variate elliptical distributions. Section 2
gives some results on integration, using zonal polynomials. In terms of these results, various
matrix variate hypergeometric type distributions are proposed, as particular cases. These
include well-known distributions such as central and noncentral matrix variate inverted
gamma (inverted Wishart) distributions and matrix variate central and noncentral beta
type II distributions. In Section 3, assuming a hypergeometric type distribution for the
matrix parameter in matrix variate normal and matricvariate T distributions, several families
of matrix variate elliptical distributions are obtained using the compound matrix variate
approach. Section 6 introduces the scale mixture of a matrix variate elliptical distribution,
which is derived as a particular case of the compound matrix variate approach, from where,
all the results given in Section 3 can be particularised to this case.
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2 Preliminary results

Consider the following notation and definitions: the hypergeometric functions pFq with
matrix arguments are defined by

pFq(a1, . . . , ap; b1, . . . , bq;Y) =

∞
∑

k=0

∑

κ

(a1)κ · · · (ap)κ

(b1)κ · · · (bq)κ

Cκ(Y)

k!
,

where Y is a complex symmetric m × m matrix, Cκ(Y) is the zonal polynomial of Y of
degree k, κ = (k1, . . . km), k1 ≥ · · · ≥ km ≥ 0, k1 + · · · + km = k and a1, . . . , ap, b1, . . . , bq

are real or complex constants,

(a)κ =

m
∏

i=1

(a − (i − 1)/2)ki
,

with (x)n = x(x + 1) · · · (x + n − 1), (x)0 = 1.
The multivariate gamma function is defined as

Γm[a] = πm(m−1)/4
m
∏

i=1

Γ[a − (i − 1)/2],

and

Γm[a, κ] = πm(m−1)/4
m
∏

i=1

Γ[a + ki − (i − 1)/2],

where Γm[a, κ] = (a)κΓm[a] with Re(a) > (m−1)/2, see Khatri (1966) and Muirhead (1982).
Similarly,

Γm[a,−κ] = πm(m−1)/4
m
∏

i=1

Γ[a − ki − (m − i)/2]

= πm(m−1)/4
m
∏

i=1

Γ[a − km+1−i − (i − 1)/2],

where Re(a) > (m − 1)/2 + k1. From

(−x)q = (−1)q(x − q + 1)q =
(−1)qΓ[x + 1]

Γ[x − q + 1]
,

we obtain that

Γm[a,−κ] =
(−1)kΓm[a]

(−a + (m + 1)/2)κ
.

The multivariate beta function is defined as

βm[a, b] =

∫

0<Y<Im

|Y|a−(m+1)/2|Im − Y|b−(m+1)/2(dY) =
Γm[a]Γm[b]

Γm[a + b]
,

where Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2, see Herz (1955, p. 480).
Many distributions in multivariate analysis can be expressed in a form involving hyper-

geometric functions with matrix arguments, as considered by Roux (1975), see also Press
(1982, Section 6.6.3, pp. 170-171). These distributions contain as particular cases the cen-
tral and noncentral gamma (Wishart) and matrix variate beta type I and II distributions
and are termed matrix variate hypergeometric gamma (Wishart) type and matrix variate
hypergeometric beta type I and II distributions. In particular, for matrix variate hyperge-
ometric beta type II distributions, we obtain an alternative expression to the one given by
Roux (1975), based on the following lemma from Khatri (1966).
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Lemma 2.1. If R is any arbitrary complex symmetric m × m matrix, then

∫

Y>0

|Y|a−(m+1)/2|Im + Y|−(a+b)Cκ(YR) =
(a)κ βm[a, b]

(−b + (m + 1)/2)κ
Cκ(−R),

where Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2 + k1.

Proof. As given in Khatri (1966).
If Y > 0 has a matrix variate hypergeometric beta type II distribution, the argument

of the hypergeometric function involved, in Roux’s version, is (Im + Y)−1, whereas in the
version based on Khatri’s lemma, its argument is Y, as we see below. The importance of
this fact is made apparent in the next section.

The next result is obtained immediately from Lemma 2.1.

Corollary 2.1. Let R be any arbitrary complex symmetric m × m matrix, then

∫

Y>0

|Y|a−(m+1)/2|Im + Y|−(a+b)
pFq(a1, . . . , ap; b1, . . . , bq;RY)

= βm[a, b]p+1Fq+1(a1, . . . , ap, a; b1, . . . , bq,−b + (m + 1)/2;−R),

where Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2 + k1.

Proof. The final results are obtained using the fact that Cκ(bY) = bkCκ(Y), for a
constant b.

As a consequence of Corollary 2.1 we have the following alternative definition of the
matrix variate hypergeometric beta type II distributions.

Definition 2.1. Let Ξ be any arbitrary complex symmetric m × m matrix. Then Y has a
matrix variate hypergeometric beta type II distribution if its density function is

f
Y

(Y) ∝ |Y|a−(m+1)/2|Im + Y|−(a+b)
pFq(a1, . . . , ap; b1, . . . , bq;ΞY), Y > 0,

where the constant of proportionality is

1

βm[a, b]p+1Fq+1(a1, . . . , ap, a; b1, . . . , bq,−b + (m + 1)/2;−Ξ)
,

with Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2 + k1.

Let Y be a positive definite m × m matrix and let us define P = Y−1 then (dY) =
|P|−(m+1)(dP). From Roux (1975, eq. (4.1)), we have the following result.

Lemma 2.2. Let Υ and Ξ be complex symmetric m × m matrices with Re(Ξ) > 0. And

assume that Y has a hypergeometric matrix variate gamma type distribution. Then P = Y−1

has a matrix variate inverted hypergeometric gamma type distribution with the

following density function:

f
P
(P) ∝ etr{−ΞP−1}|P|−a−(m+1)/2

pFq(a1, . . . , ap; b1, . . . , bq;ΥP−1), P > 0,

where the constant of proportionality is

|Ξ|a

Γm[a]p+1Fq(a1, . . . , ap, a; b1, . . . , bq;Υ Ξ−1)
,

and Re(a) > (m − 1)/2.
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Observe that if in Lemma 2.2, Ψ = 0, then P has a matrix variate central inverted
gamma distribution. And if p = 0, q = 1 and a = b1, then P has a matrix variate noncentral
inverted Gamma distribution.

Similarly, from Definition 2.1, we have

Lemma 2.3. Let Ξ be any arbitrary complex symmetric m×m matrix. Then P = Y−1 has

a matrix variate inverted hypergeometric beta type II distribution and its density

function is

f
P
(P) ∝ |P|b−(m+1)/2|Im + P|−(a+b)

pFq(a1, . . . , ap; b1, . . . , bq;ΞP−1), P > 0,

where the constant of proportionality is

1

βm[a, b]p+1Fq+1(a1, . . . , ap, a; b1, . . . , bq,−b + (m + 1)/2;−Ξ)
,

and Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2 + k1.

The distribution in Lemma 2.3 contains as particular cases the matrix variate central
and noncentral inverted beta type II distributions.

Van der Morwe and Roux (1974) studied other families of matrix variate hypergeometric
distributions, based on the 2F1(a, b; c;−Y) hypergeometric function with a matrix argument.
From this, and taking the limits of parameters a, b or c, they obtain the central and non-
central matrix variate gamma distributions, the central matrix variate beta distribution and
the matrix variate normal distribution. As we see in Mathai and Saxena (1966) many other
well-knows distributions can be obtained as particular cases of this distribution. Next, we
introduce this distribution using the multivariate Mellin transform, Mathai (1997).

Let g(Y) be a function of the positive definite m × m matrix Y. The Mellin transform
of g(Y) is defined as

Mg(Y) =

∫

Y>0

|Y|α−(m+1)/2g(Y)(dY),

where Re(α) > (m − 1)/2.

Lemma 2.4. The Mellin transform of g(Y) = 2F1(a, b; c;−Y) is given by

∫

Y>0

|Y|α−(m+1)/2
2F1(a, b; c;−Y)(dY) =

βm[α, b − α]βm[a − α, c − α]

βm[a, c − a]
,

where Re(α) > (m−1)/2, Re(a−α) > (m−1)/2, Re(b−α) > (m−1)/2, Re(c−α) > (m−1)/2
and Re(c − a) > (m − 1)/2.

Proof. From the integral representation of 2F1, see Herz (1955, eq. (2.12)) and Muirhead
(1982, Theorem 7.4.2),

Mg(Y) =

∫

Y>0

|Y|α−(m+1)/2
2F1(a, b; c;−Y)(dY)

=
1

βm[a, c − a]

∫

Y>0

|Y|α−(m+1)/2

∫

0<R<Im

|R|a−(m+1)/2

×|Im − R|c−a−(m+1)/2|Im − YR|−b(dR)(dY)

=
1

βm[a, c − a]

∫

0<R<Im

|R|a−(m+1)/2|Im − R|c−a−(m+1)/2

×

∫

Y>0

|Y|α−(m+1)/2|Im − YR|−b(dY)(dR).
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Note that, |Im −YR| = |Im −R1/2YR1/2| = |Im −W|, where R1/2 is the positive definite

square root of R, such that R =
(

R1/2
)2

(Muirhead, 1982, Theorem A9.3, p. 588) and |Y| =

|R−1/2WR−1/2| = |W||R|−1, with W = R1/2YR1/2. Then, (dY) = |R|−(m+1)/2(dW),
from where

Mg(Y) =
1

βm[a, c − a]

∫

0<R<Im

|R|a−α−(m+1)/2|Im − R|c−a−(m+1)/2

×

∫

W>0

|Y|α−(m+1)/2|Im − W|−b(dW)(dY).

=
βm[α, b − α]

βm[a, c − a]

∫

0<R<Im

|R|a−α−(m+1)/2|Im − R|c−a−(m+1)/2(dY)

=
βm[α, b − α]βm[a − α, c − α]

βm[a, c − a]
.

This was proved by Van der Morwe and Roux (1974), who took the limit when a tends to
infinity in Lemma 2.4 and found the Mellin transform of the function g(Y) = 1F1(b; c;−Y).
Alternatively, the results can be obtained directly by integration, as we shown below.

Lemma 2.5. The Mellin transform of g(Y) = 1F1(b; c;−Y) is given by
∫

Y>0

|Y|α−(m+1)/2
1F1(b; c;−Y)(dY) =

Γm[α]Γm[c]Γm[b − α]

Γm[b]Γm[c − α]
,

where Re(α) > (m − 1)/2, Re(b − α) > (m − 1)/2 and Re(c − α) > (m − 1)/2.

Proof. Noting that from Muirhead (1982, Theorem 7.4.2, p. 264)

2F1(c − b, α; c; Im) =
1

βm[a, c − a]

∫

0<R<Im

|R|c−b−(m+1)/2|Im − R|b−α−(m+1)/2(dR)

=
βm[b − α, c − b]

βm[c − b, b]
.

And from the Kummer relation discussed in Muirhead (1982, Theorem 7.4.3, p. 265 and
Theorem 7.3.4), we have

Mg(Y) =

∫

Y>0

|Y|α−(m+1)/2
1F1(b; c;−Y)(dY)

=

∫

Y>0

|Y|α−(m+1)/2
1 etr(−Y)1F1(c − b; c;Y)(dY)

= Γm[α]2F1(c − b, α; c; Im)

=
Γm[α]Γm[c]Γm[b − α]

Γm[b]Γm[c − α]
.

Now, from Lemmas 2.4 and 2.5 taking Y = Ξ1/2YΞ1/2 with (dY) = |Ξ|(m+1)/2(dY),
we obtain the following.

Definition 2.2. Let Ξ be any arbitrary complex symmetric m × m matrix. Y is said to
have a matrix variate generalised hypergeometric distribution if,

1. Its density function is

f
Y

(Y) =
|Ξ|αβm[a, c − a]

βm[α, b − α]βm[a − α, c − α]
|Y|α−(m+1)/2

2F1(a, b; c;−ΞY), Y > 0,

with Re(α) > (m− 1)/2, Re(a− α) > (m− 1)/2, Re(b−α) > (m− 1)/2, Re(c−α) >
(m − 1)/2 and Re(c − a) > (m − 1)/2.
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2. Or

f
Y
(Y) =

|Ξ|αΓm[b]Γm[c − α]

Γm[α]Γm[c]Γm[b − α]
|Y|α−(m+1)/2

1F1(b; c;−ΞY), Y > 0,

with Re(α) > (m − 1)/2, Re(b − α) > (m − 1)/2 and Re(c − α) > (m − 1)/2.

Lemma 2.6. Let Ξ be any arbitrary complex symmetric m × m matrix. It is said that

P = Y−1 has a matrix variate inverted generalised hypergeometric distribution if,

1. Its density function is

f
P
(P) =

|Ξ|αβm[a, c − a]

βm[α, b − α]βm[a − α, c − α]
|P|−α−(m+1)/2

2F1(a, b; c;−ΞP−1), P > 0,

with Re(α) > (m− 1)/2, Re(a−α) > (m− 1)/2, Re(b−α) > (m− 1)/2, Re(c−α) >
(m − 1)/2 and Re(c − a) > (m − 1)/2.

2. Or

f
P
(P) =

|Ξ|αΓm[b]Γm[c − α]

Γm[α]Γm[c]Γm[b − α]
|P|−α−(m+1)/2

1F1(b; c;−ΞP−1), P > 0,

with Re(α) > (m − 1)/2, Re(b − α) > (m − 1)/2 and Re(c − α) > (m − 1)/2.

Proof. Follows from Definition 2.2, taking P = Y−1 with (dY) = |P|−(m+1)(dP).

3 Compound elliptical distribution of a random matrix

In this section we propose several families of elliptical distributions based on an extension
to the matrix variate case of the vector case idea, introduced by Muirhead (1982), the
approach Known as compound distribution. This approach was used by Roux (1971) and
Van der Morwe and Roux (1974) for the distribution of a positive definite random matrix.

In general, assume that the conditional distribution of

X|P ∼ ELSm×n(µ,Σ1/2Ψ(P)Σ1/2,Θ, h), (2)

with Ψ : ℜm(m+1)/2 → ℜm(m+1)/2, Ψ(P) > 0; where P > 0 has the distribution function
G(P). Then X has a left-spherical elliptical distribution (compound distribution) with a
density function given by

c(m, n)

|Σ|n/2|Θ|m/2

Z

P>0

h
“

Ψ(P)−1
Σ

−1/2(X − µ)′Θ−1(X − µ)Σ−1/2

”

dG(P)

|Ψ(P)|n/2
, (3)

where Ψ(P)−1 denotes the inverse of the matrix Ψ(P) (not the inverted function of Ψ(·)).
Let us now consider two particular matrix variate left-spherical elliptical distributions,

the matrix variate normal and the matricvariate T distributions, see Dickey (1967), Box and Tiao
(1972, pp. 441-448) and Press (1982, pp. 138-141).

4 Compound matrix variate normal distribution

Recall that if X ∼ Nm×n(µ,Σ,Θ), its density function is given by

1

(2π)mn/2|Σ|n/2|Θ|m/2
etr

{

− 1
2Σ

−1(X − µ)′Θ−1(X − µ)
}

.
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Theorem 4.1. Assume that X|P has a matrix variate normal distribution,

X|P ∼ Nm×n(µ,Σ1/2PΣ1/2,Θ),

where P has a matrix variate inverted hypergeometric gamma type distribution. By Lemma

2.2 its density function is

g
P
(P) ∝ etr{−ΞP−1}|P|−a−(m+1)/2

pFq(a1, . . . , ap; b1, . . . , bq;ΥP−1), P > 0,

where the constant of proportionality is

|Ξ|a

Γm[a]p+1Fq(a1, . . . , ap, a; b1, . . . , bq;Υ Ξ−1)
,

and Re(a) > (m − 1)/2. Then X has a matrix variate left-spherical elliptical distribution
with density function

∝
p+1Fq

„

a1, . . . , ap, a + n
2
; b1, . . . , bq;Υ

“

Ξ + 1

2
Σ

−1/2(X − µ)′Θ−1(X− µ)Σ−1/2

”

−1
«

˛

˛Ξ + 1

2
Σ−1/2(X − µ)′Θ−1(X − µ)Σ−1/2

˛

˛

a+n/2

with constant of proportionality

Γm[a + n/2] |Ξ|a

(2π)mn/2Γm[a]|Σ|n/2|Θ|m/2
p+1Fq(a1, . . . , ap, a; b1, . . . , bq;Υ Ξ

−1)
.

where Re(a) > (m − 1)/2.

Proof. Follows immediately form 3 and Lemma 2.2.
Observe that, by taking Υ = 0 in Theorem 4.1 we obtain that X has a matricvariate

T distribution, see Dickey (1967), Box and Tiao (1972, pp. 441-448) and Press (1982, pp.
138-141). Also, if we take p = 0, q = 1 and a = b1 we obtain that X has a noncentral
matricvariate T type 2 distribution. Then observing that

1F1(a; a;Υ Ξ−1) = etr{Υ Ξ−1}

and by the Kummer relation (Muirhead, 1982, eq. (6), p. 265)

1F1

(

a +
n

2
; a;Υ

(

Ξ + 1
2Σ

−1/2(X − µ)′Θ−1(X− µ)Σ−1/2
)

−1
)

= etr

{

Υ
(

Ξ + 1
2Σ

−1/2(X − µ)′Θ−1(X − µ)Σ−1/2
)

−1
}

×1F1

(

−
n

2
; a;−Υ

(

Ξ + 1
2Σ

−1/2(X − µ)′Θ−1(X − µ)Σ−1/2
)

−1
)

.

Observe that for n/2 an integer, 1F1 is a polynomial of degree mn/2. In this case the density
of X is evaluated easily, see Muirhead (1982, p. 258).

From (3) and Lemma 2.3 we have the following result.

Theorem 4.2. Assume that X|P ∼ Nm×n(µ,Σ1/2PΣ1/2,Θ), where P has a matrix variate

inverted hypergeometric beta type II distribution. From Lemma 2.3, its density function is

g
P
(P) ∝ |P|b−(m+1)/2|Im + P|−(a+b)

pFq(a1, . . . , ap; b1, . . . , bq;ΞP−1), P > 0,

8



where the constant of proportionality is

1

βm[a, b]p+1Fq+1(a1, . . . , ap, a; b1, . . . , bq,−b + (m + 1)/2;−Ξ)
,

and Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2 + k1. Then X has a matrix variate left-

spherical elliptical distribution with density function

∝ p+1Fq+1

(

a1, . . . , ap, a + n/2; b1, . . . , bq,−b +
(m + 1)

2
;

− Ξ + 1
2Σ

−1/2(X − µ)′Θ−1(X − µ)Σ−1/2

)

where the constant of proportionality is

(2π)−mn/2βm[a + n/2, b − n/2]|Σ|−n/2|Θ|−m/2

βm[a, b]p+1Fq+1(a1, . . . , ap, a + n/2; b1, . . . , bq,−b + (m + n + 1)/2;−Ξ)
,

where Re(a) > (m − 1)/2, Re(b) > (m + n − 1)/2 + k1.

A result of particular interest is obtained from Theorem 4.2 taking Ξ = 0. Similarly,
in the Bayesian context, Theorem 4.2 generalises a result given in Xu (1990), which can
be obtained by taking Ξ = 0 and p = q = 0. In this latter case, by applying the Kum-
mer relation (Muirhead, 1982, Theorem 7.4.3, p. 265) we obtain a matricvariate confluent
hypergeometric of the first kind distribution type.

Theorem 4.3. Assume that X|P ∼ Nm×n(µ,Σ1/2PΣ1/2,Θ), where P has a matrix variate

inverted generalised hypergeometric distribution. By Lemma 2.6,

1. its density function is,

g
P
(P) ∝ |P|−α−(m+1)/2

2F1(a, b; c;−ΞP−1), P > 0,

where the constant of proportionality is

|Ξ|αβm[a, c − a]

βm[α, b − α]βm[a − α, c − α]
,

with Re(α) > (m− 1)/2, Re(a−α) > (m− 1)/2, Re(b−α) > (m− 1)/2, Re(c−α) >
(m − 1)/2 and Re(c − a) > (m − 1)/2.

2. Or with density function

g
P
(P) ∝ |P|−α−(m+1)/2

1F1(b; c;−ΞP−1), P > 0,

where the constant of proportionality is

|Ξ|αΓm[b]Γm[c − α]

Γm[α]Γm[c]Γm[b − α]
,

with Re(α) > (m − 1)/2, Re(b − α) > (m − 1)/2 and Re(c − α) > (m − 1)/2.

Then X has a matrix variate left-spherical elliptical distribution and
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1. its density function is

∝ |Σ−1(X − µ)′Θ−1(X − µ)|−(α+n/2)

×3F1

(

a, b, α + n/2; c;−2Ξ
(

Σ−1/2(X− µ)′Θ−1(X − µ)Σ−1/2
)

−1
)

,

where the constant of proportionality is

2mα|Ξ|αΓm[α + n/2]βm[a, c − a]

πmn/2βm[α, b − α]βm[a − α, c − α]|Σ|n/2|Θ|m/2
,

with Re(α) > (m− 1)/2, Re(a−α) > (m− 1)/2, Re(b−α) > (m− 1)/2, Re(c−α) >
(m − 1)/2 and Re(c − a) > (m − 1)/2.

2. Or with density function given by

∝ |Σ−1(X − µ)′Θ−1(X − µ)|−(α+n/2)

×2F1

(

a, α + n/2; b;−2Ξ
(

Σ−1/2(X − µ)′Θ−1(X − µ)Σ−1/2
)

−1
)

,

where the constant of proportionality is

2mα|Ξ|αΓm[α + n/2]|Ξ|αΓm[b]Γm[c − α]

πmn/2Γm[α]Γm[c]Γm[b − α]|Σ|n/2|Θ|m/2
,

with Re(α) > (m − 1)/2, Re(b − α) > (m − 1)/2 and Re(c − α) > (m − 1)/2.

Proof. Follows from (3) and Lemma 2.6.

5 Compound matricvariate T distribution

From Dickey (1967), Box and Tiao (1972, pp. 441-448) and Press (1982, pp. 138-141) we
know that X has a matricvariate T distribution, denoting this fact as X ∼ MT m×n(ν, µ,Σ,Θ),
if its density function is

Γm[(n + ν)/2]

πmn/2Γm[ν/2]|Σ|n/2|Θ|m/2

∣

∣Im + Σ−1(X − µ)′Θ−1(X − µ)
∣

∣

−(n+ν)/2
.

where ν > m − 1.

Theorem 5.1. Assume that X|P ∼ MT m×n(ν, µ,Σ1/2PΣ1/2,Θ), where P has a matrix

variate inverted hypergeometric beta type II distribution with Ξ = 0. From Lemma 2.3, its

density function is

g
P
(P) ∝ |P|b−(m+1)/2|Im + P|−(a+b), P > 0,

where the constant of proportionality is

1

βm[a, b]
,

and Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2. Then X has a matrix variate left-spherical

elliptical distribution with density function

∝ 2F1

(

(n + ν)

2
, a +

n

2
;−b +

(m + n + 1)

2
;Σ−1(X − µ)′Θ−1(X − µ)

)

10



where the constant of proportionality is

Γm[(n + ν)/2]βm[a + n/2, b− n/2]

πmn/2Γm[ν/2]βm[a, b]|Σ|n/2|Θ|m/2
,

where Re(a) > (m − 1)/2 and Re(b) > (m + n − 1)/2 + k1.

Proof. Follows from Lemma 2.3, noting that

∣

∣

∣
Im + Σ−1/2(X − µ)′Θ−1(X − µ)Σ−1/2P−1

∣

∣

∣

−(n+ν)/2

= 1F0

(

(n + ν)

2
;−Σ−1/2(X − µ)′Θ−1(X − µ)Σ−1/2P−1

)

.

By applying the Euler relation (Muirhead, 1982, eq. (7), p. 265) to results in Theorem 5.1,
the density function of X is then

∝
∣

∣Σ−1(X − µ)′Θ−1(X − µ)
∣

∣

−(a+b+(n+ν)/2−(m+1)/2)
2F1

(

−b −
ν

2
+

m + 1

2
,

− a − b +
m + 1

2
;−b +

(m + n + 1)

2
;Σ−1(X − µ)′Θ−1(X− µ)

)

.

where, if a and b are integers, 2(a + b) > m + 1 and m is odd, 2F1 is a polynomial of degree
m(a + b− (m + 1)/2). Similarly, if b and ν/2 are integers, 2(a + ν/2) > m + 1 and m is odd,

2F1 is a polynomial of degree m(a + ν/2 − (m + 1)/2), see Muirhead (1982, p. 258).

6 Scale mixture of elliptical distribution of a random matrix

The approach known as the scale mixture of normal distributions, proposed by Muirhead
(1982, p. 33) for the vector case and extended by Gupta and Varga (1993, Chapter 4) to the
matrix variate case, is obtained as a particular case of the approach described in the Section
3. To do so, we take m = 1 in the distribution G(P), from where we obtain the following
approach, termed the scale mixture of an elliptical distribution, cited by Gupta and Varga
(1993, pp. 78–79).

Assume that the conditional distribution

X|s ∼ ELSm×n(µ, φ(s)Σ,Θ, h), (4)

where φ : (0,∞) → (0,∞), with s > 0 has the distribution function G(s). Then X has a
left-spherical elliptical distribution (scale mixture of elliptical distribution) with a density
function given by

c(m, n)

|Σ|n/2|Θ|m/2

∫

s>0

(φ(s))−mn/2h

(

1

φ(s)
Σ−1(X − µ)′Θ−1(X − µ)

)

dG(s). (5)

As an example, consider the following version of Theorem 2.6 for m = 1.

Theorem 6.1. Assume that X|s has a matrix variate normal distribution,

X|s ∼ Nm×n(µ, sΣ,Θ),

where s has an inverted hypergeometric gamma type distribution. By Lemma 2.2 its density

function is

g
S
(s) ∝ exp

{

−
ξ

s

}

s−a−1
pFq

(

a1, . . . , ap; b1, . . . , bq;
υ

s

)

, s > 0,
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where υ > 0, ξ > 0 and the constant of proportionality is

ξa

Γ[a]p+1Fq

(

a1, . . . , ap, a; b1, . . . , bq;
υ

ξ

) ,

and Re(a) > 0. Then X has a matrix variate left-spherical elliptical distribution with density
function

∝
p+1Fq

“

a1, . . . , ap, a +
mn

2
; b1, . . . , bq; υ

`

ξ + 1

2
trΣ−1(X− µ)′Θ−1(X − µ)

´−1
”

`

ξ + 1

2
trΣ−1(X− µ)′Θ−1(X − µ)

´a+mn/2

with constant of proportionality

Γ[a + mn/2] ξa

(2π)mn/2Γ[a]|Σ|n/2|Θ|m/2
p+1Fq

„

a1, . . . , ap, a; b1, . . . , bq ;
υ

ξ

« .

where Re(a) > 0.

Similarly, from Theorem 6.1 particular cases are obtained, taking, for example, υ = 0,
but in this case we obtaining the matrix variate T distribution (not the matricvariate T
distribution). Similar consequences are obtained as particular cases, taking m = 1 from the
Theorems 4.2-5.1.

Conclusions

This paper introduces several hypergeometric type distributions, which include many that
are well-known in the statistical literature, such as central and noncentral matrix variate
inverted Gamma (Wishart) and matrix variate beta type II distributions, among many
others.

Assuming that P has one of these hypergeometric distributions in

X|P ∼ ELSm×n(µ,Σ1/2Ψ(P)Σ1/2,Θ, h),

several left-spherical matrix variate elliptical families are found. These enable us to study
examples in which the tails of the distributions are heavier or lighter than in the normal
case. These approaches to obtaining elliptical distributions are of particular interest from the
Bayesian standpoint and for shape theory distributions, see Jammalamadaka et al. (1987)
and Caro-Lopera et al. (2008), respectively.
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2008-05785, and CONACYT-México, research grant no. 81512. This paper was written
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