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Abstract

In this paper we investigate the scalar mode of first-order metric perturbations over spatially

flat FRW spacetime when the holonomy correction is taken into account in the semi-classical

framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological

perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric

perturbation the holonomy effects influence both background and perturbations, and contribute a

non-trivial sector Sh in the cosmological perturbation equations.
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I. INTRODUCTION

In loop quantum cosmology two main quantum gravity effects lead to remarkable modifi-

cations to the standard description of the early universe(for a detailed review, see Ref. [1]).

One is due to the holonomy correction and the other is due to the inverse volume correction.

Such modifications can successfully avoid the Big Bang singularity [2–5], and replace it by

the Big Bounce even at the semi-classical level [6, 7]. In addition, it is very interesting to

notice that quantum gravity effects may lead to the occurrence of the super-inflationary

phase [8]. As shown in Ref. [9], such a super-inflationary phase can also resolve the horizon

problem with only a few number of e-foldings. Therefore, it is possible to construct a phase

of inflation or an alternative to inflation in the framework of loop quantum cosmology.

As we all known, the inflationary phase is crucial for understanding the structure forma-

tion and anisotropies of the CMB. In order to address these issues in the framework of loop

quantum cosmology, we must consider the cosmological perturbation theory with modifica-

tions due to quantum gravity effects. In the earlier work by Bojowald et al.[10, 11], by means

of the Hamiltonian derivation they have obtained the cosmological perturbation equation

with inverse volume corrections for scalar modes in longitudinal gauge. They show that

super-horizon curvature perturbations are not preserved. Recently, they have also derived

the gauge-invariant quantities and the corresponding gauge-invariant cosmological pertur-

bation equations with inverse volume corrections for scalar modes [12, 13]. In addition,

the vector modes and tensor modes with corrections from loop quantum gravity have been

investigated [14, 15].

At the same time, some pioneer work have already been devoted to understanding the

primordial power spectrum in the perturbation theory of LQC [9, 16–21]. First of all, in

Ref. [9, 18], it is shown that a scale invariant spectrum can be obtained. More importantly

these attempts imply that the quantum gravity effects may leave an imprints on the power

spectrum which can be potentially detected in the future experiments such as the Planck

satellite. However,above considerations are restricted to the scalar field perturbations with

fixed background. To provide a complete and more precise understanding on the perturba-

tion theory in loop cosmology, it is essential to take the metric perturbation into account.

Along this direction it is worthwhile to point out that another potential observables, pri-

mordial gravitational waves have already been investigated intensively in LQC [22].
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Although, in Ref. [10–13] the cosmological perturbation equations with inverse volume

corrections have been derived in longitudinal gauge and gauge-invariant manner respectively,

the metric perturbations with holonomy corrections is still absent. In the present paper, by

means of the Hamiltonian derivation, we will derive the cosmological perturbation equations

with holonomy corrections in longitudinal gauge.

The outline of our paper is the following. For comparison, we firstly present a brief

review on the perturbation equations in standard classical cosmology in section II. After

introducing the basic variables in loop cosmology in section III, we will demonstrate a

detailed derivation on the cosmological perturbation equation with holonomy corrections in

section IV. The discussion is given in section VI.

II. THE CLASSICAL COSMOLOGICAL PERTURBATION EQUATIONS

Before proceeding to the effective loop quantum cosmology with holonomy corrections,

we first briefly review the classical perturbation equations in standard cosmology. A detailed

derivation can be found in Ref. [23]. Let us now consider a spatially flat background metric

of FRW type

ds2 = a2(η)(−dη2 + δabdx
adxb) . (1)

where η is the conformal time. The spatial part of the metric describes isotropic and homo-

geneous 3-surfaces. Then one can perturb the background metric

ds2 = a2(η)
[

−(1 + 2Φ)dη2 + (1− 2Ψ)δabdx
adxb

]

. (2)

Here we only consider the scalar modes in longitudinal gauge, which is thus diagonal.

Through this paper, we will consider the scalar field ϕ as the matter source. Expanding the

Einstein’s equation linearly, one can obtain the cosmological perturbation equation

∇2Φ− 3HΦ̇− (Ḣ+ 2H2)Φ = 4πG( ˙̄ϕ ˙δϕ+ p̄V,ϕ̄(ϕ̄)δϕ) , (3)

Φ̈ + 3HΦ̇ + (Ḣ+ 2H2)Φ = 4πG( ˙̄ϕ ˙δϕ− p̄V,ϕ̄(ϕ̄)δϕ) , (4)
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∂a(Φ̇ +HΦ) = 4πG ˙̄ϕδϕ,a , (5)

where a dot denotes a derivative with respect to the conformal time η. H is the Hubble

expansion rate in the conformal time, and for later convenience, we have identified a2 with

p̄ which is introduced in (10). Note that in the case of vanishing anisotropic stresses, two

scalar functions Φ and Ψ coincide, Φ = Ψ. Therefore, in above equations we have set Φ = Ψ,

which simplifies the equations considerably1. Moreover, among these equations above only

two of them are independent. Combining these equations, one can obtain the following

second order differential equation for Φ

Φ̈−∇2Φ + (6H+ 2p̄
V,ϕ̄(ϕ̄)

˙̄ϕ
)Φ̇ + (2Ḣ+ 4H2 +

V,ϕ̄(ϕ̄)
˙̄ϕ

H)Φ = 0 . (6)

In addition, the background and the perturbed Klein-Gordon equation can respectively

expressed as

¨̄ϕ+ 2H ˙̄ϕ+ p̄V,ϕ(ϕ̄) = 0 , (7)

δ̈ϕ+ 2Hδϕ−▽2δϕ+ p̄V,ϕ̄ϕ̄(ϕ̄) + 2p̄V,ϕ̄(ϕ̄)Φ− 4 ˙̄ϕΦ̇ = 0 . (8)

III. THE BASIC VARIABLES

Now we intend to study the scalar mode of first-order metric perturbations around spa-

tially flat FRW spacetime when the holonomy corrections is taken into account in the semi-

classical framework of loop quantum cosmology. To derive the cosmological perturbation

equations we adopt the Hamiltonian approach which has been developed in the effective

loop quantum cosmology with inverse triad corrections [10, 12]. We summarize the basic

idea and steps as follows.

In loop quantum gravity, instead of the spatial metric qab, a densitized triad Ea
i is pri-

marily used, which satisfies Ea
i E

b
i = qabdetq. Moreover, in the canonical formulation the

space-time metric is given by

1 However we must point out that, as a matter of fact, Φ = Ψ is a consequence of equations of motion,

which can also be seen in this paper
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ds2 = −N2dη2 + qab(dx
a +Nadη)(dxb +N bdη) , (9)

where N and Na are lapse function and shift vector respectively.

By comparing the above equation with the FRW metric (1), the background variables,

N̄ , Na and Ēa
i , can be expressed as respectively

N̄ =
√
p̄; N̄a = 0; Ēa

i = p̄δai , (10)

where the background variables are denoted with a bar, which describe smoothed out, spatial

averaged quantities. Another background variable, the extrinsic curvature components K̄i
a,

can be derived from the following relation

K̄ab =
1

2N̄
( ˙̄qab − 2D(aN̄b)) = ȧδab . (11)

where D is the covariant spatial derivation. Thus, the extrinsic curvature can be expressed

as

K̄i
a =

Ēb
i

√

|det(Ēc
j )|

K̄ab =
˙̄p

2p̄
δia =: k̄δia . (12)

In equation (12), we have defined the background extrinsic curvature as k =:
˙̄p
2p̄

= ȧ
a
,

which can also be obtained from the background equations of motion [12]. Therefore, in

classical FRW background, the extrinsic curvature is nothing but the conformal Hubble

parameter H. However, in the effective loop quantum cosmology, the relation between the

extrinsic curvature and the conformal Hubble parameter will change due to quantum gravity

corrections, which we will see in the next section.

The canonical perturbed variables can be related to the perturbed metric variables by

comparing the perturbed metric (2) with the canonical one(9). It turns out that the per-

turbed triad is given by

δEa
i = −2p̄Ψδai , (13)

and the perturbed lapse function is

δN = N̄Φ. (14)
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We note that, due to only considering diagonal metric perturbation, the first-order shift

vector δNa(1) is vanishing as well as the background shift vector. Therefore, if one intends

to preserve the character of the non-vanishing diffeomorphism constraint, it is necessary to

expand the shift vector to the second-order δNa(2). As shown in the above, the extrinsic

curvature components can be diagonal, thus it can be expanded as

Ki
a = K̄i

a + δKi
a = k̄δia + δKi

a . (15)

The perturbed extrinsic curvature will be derived from the equation of motion in the

following. We can assume that δEa
i and δKi

a do not have homogeneous modes, namely

∫

Σ

δEa
i δ

i
ad

3x = 0,

∫

Σ

δKi
aδ

a
i d

3x = 0 . (16)

And the homogeneous mode is defined by

p̄ =
1

3V0

∫

Σ

Ea
i δ

i
ad

3x, k̄ =
1

3V0

∫

Σ

Ki
aδ

a
i d

3x , (17)

where we integrate over a bounded region of coordinate size V0 =
∫

Σ
d3x. Then we can

construct the Poisson brackets of the background and perturbed variables [13],

{k̄, p̄} =
8πG

3V0

, {δKi
a(x), δE

b
j (y)} = 8πGδijδ

b
aδ

3(x− y) . (18)

In addition, we point out that the similar conditions will be required in the perturbed

lapse δN , the scalar field δϕ and conjugate momentum δπ such that

∫

Σ

δNd3x = 0,

∫

Σ

δϕd3x = 0,

∫

Σ

δπd3x = 0 , (19)

which is used in expanding the Hamiltonian constraint. While the homogeneous mode of

the scalar field and its conjugate momentum is

ϕ̄ =
1

V0

∫

Σ

ϕd3x, π̄ =
1

V0

∫

Σ

πd3x . (20)

Therefore, the Poisson brackets of the background and perturbed variables of scalar field

is

{ϕ̄, π̄} =
1

3V0
, {δϕ(x), δπ(y)} = δ3(x− y) . (21)
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IV. THE COSMOLOGICAL PERTURBATION THEORY WITH HOLONOMY

CORRECTIONS

Now we turn to the derivation of the cosmological perturbation theory in the effective

loop quantum cosmology with holonomy corrections. For more details on the Hamilton

cosmological perturbation theory, we refer to Ref.[10, 12].

Thanks to the holonomy corrections, in the isotropic and homogeneous models, the exact

effective Hamiltonian can be obtained at the phenomenological level by simply replacing the

background Ashtekar connection γk̄ by sin µ̄γk̄
µ̄γ

, where γ is the Barbero-Immirzi parameter.

The parameter µ̄ depends on the quantization scheme and may be a function of p̄. In Ref.

[4], the so-called µ̄ scheme has been pushed forward and elaborated. Recently, it has also

been shown that, for the flat FRW universe, µ̄ scheme is the only consistent choice [24]. In

the µ̄ scheme,

µ̄ =

√

∆

p̄
, (22)

where ∆ = 2
√
3πγl2PL. However, when the inhomogeneities are taken into account, it is no

longer true. To study the effects of holonomy corrections on inhomogeneous perturbations,

we similarly substitute the appearance of k in the classical Hamiltonian by a general form

sinmµ̄γk̄
mµ̄γ

where m is an integer. In the context of vector modes [14] and tensor modes [15], due

to the requirement of the anomaly cancellation, we can fix the parameter m. Although in the

context of the scalar modes, the anomaly-free constraint algebra with holonomy corrections is

still absent, at the phenomenological level, we can fix the parameter m in a similar manner.

Therefore, one can write down the expressions for the gravitational Hamiltonian density

Hh
G = Hh(0)

G +Hh(1)
G +Hh(2)

G with

Hh(0)
G = −6(

sin µ̄γk̄

µ̄γ
)2
√
p̄ ,

Hh(1)
G = −4(

sin 2µ̄γk̄

2µ̄γ
)
√
p̄δcjδK

j
c −

1√
p̄
(
sin µ̄γk̄

µ̄γ
)2δjcδE

c
j +

2√
p̄
∂c∂

jδEc
j ,

Hh(2)
G =

√
p̄δKj

cδK
k
d δ

c
kδ

d
j −

√
p̄(δKj

cδ
c
j)

2 − 2√
p̄
(
sin 2µ̄γk̄

2µ̄γ
)δEc

jδK
j
c −

1

2p̄3/2
(
sin µ̄γk̄

µ̄γ
)2δEc

jδE
d
kδ

k
c δ

j
d

+
1

4p̄3/2
(
sin µ̄γk̄

µ̄γ
)2(δEc

jδ
j
c)

2 − δjk

2p̄3/2
(∂cδE

c
j )(∂dδE

d
k) , (23)
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where the superscript “h” represents the holonomy corrections and the corresponding clas-

sical expressions can be found in Ref.[12, 13]. We now only consider the scalar field as the

matter source. Its Hamiltonian density expands as HM = H(0)
M + H(1)

M + H(2)
M . Since the

matter is free from the holonomy corrections, the expressions of scalar field Hamiltonian

density, HM = Hπ +H∇ +Hϕ, expanding up to the second order, are as the classical cases

[12, 13],

H(0)
π =

π̄2
ϕ̄

2p̄3/2
,H(0)

∇ = 0,H(0)
ϕ = p̄3/2V (ϕ̄), (24)

H(1)
π =

π̄δπ

p̄3/2
− π̄2

2p̄3/2
δjcδE

c
j

2p̄
,H(1)

∇ = 0,H(1)
ϕ = p̄3/2(V,ϕ̄(ϕ̄)δϕ+ V (ϕ̄)

δjcδE
c
j

2p̄
), (25)

and

H(2)
π =

1

2

δπ2

p̄3/2
− π̄δπ

p̄3/2

δjcδE
c
j

2p̄
+

1

2

π̄2

p̄3/2
(
(δjcδE

c
j )

2

8p̄2
+

δkc δ
j
dδE

c
jδE

d
k

4p̄2
) ,

H(2)
∇ =

1

2

√
p̄δab∂aδϕ∂bδϕ ,

H(2)
ϕ =

1

2
p̄3/2V,ϕ̄ϕ̄(ϕ̄)δϕ

2 + p̄3/2V,ϕ̄(ϕ̄)δϕ
δjcδE

c
j

2p̄

p̄3/2V (ϕ̄)(
(δjcδE

c
j )

2

8p̄2
−

δkc δ
j
dδE

c
jδE

d
k

4p̄2
) . (26)

A. The background equations

In the isotropic and homogeneous FRW background, the diffeomorphism constraint van-

ishes. Therefore background equations are generated only by the background Hamiltonian

constraint, which can be expressed as

Hh(0)[N̄ ] =
1

16πG

∫

Σ

d3xN̄ [H(0)
G + 16πG(H(0)

π +H(0)
ϕ )] . (27)

Thus the explicit expression for the background Hamiltonian constraint is

− 3

8πG

√
p̄(
sin µ̄γk̄

µ̄γ
)2 +

π̄2

2p̄3/2
+ p̄3/2V (ϕ̄) = 0 . (28)

Then, by means of Poisson bracket, we can derive the equation of motion for the gravi-

tational variables k̄ and p̄.
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˙̄k = {k̄, Hh(0)[N̄ ]} = −[
1

2
(
sin µ̄γk̄

µ̄γ
)2 + p̄

∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2] + 4πG[− π̄2

2p̄2
+ p̄V (ϕ̄)] . (29)

˙̄p = {p̄, Hh(0)[N̄ ]} = 2p̄(
sin 2µ̄γk̄

2µ̄γ
) . (30)

Similarly, the equation of motion for scalar field ϕ̄ and its conjugate momentum field π̄

can also be derived as

˙̄ϕ = {ϕ̄, Hh(0)[N̄ ]} =
π̄

p̄
. (31)

˙̄π = {π̄, Hh(0)[N̄ ]} = −p̄2V,ϕ̄(ϕ̄) . (32)

Note that in above Poisson brackets, we have used the relation N̄ =
√
p̄. Substituting

the relation (31) into the constraint equation (28) gives rise to the corrected Friedmann

equation

(
sin µ̄γk̄

µ̄γ
)2 =

8πG

3
[
1

2
˙̄ϕ2 + p̄V (ϕ)] . (33)

At the same time, equation (29) is just the corrected Raychaudhuri equation

˙̄k + [
1

2
(
sin µ̄γk̄

µ̄γ
)2 + p̄

∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2] = 4πG[−

˙̄ϕ2

2
+ p̄V (ϕ̄)] . (34)

In the classical limit, µ̄ → 0, above two equations can be reduced to the Friedmann and

Raychaudhuri equation in the standard cosmology. Finally, the Klein-Gordon equation can

be derived from Eqs. (31), (32) and (30)

¨̄ϕ+ 2(
sin 2µ̄γk̄

2µ̄γ
) ˙̄ϕ+ p̄V,ϕ̄(ϕ̄) = 0 . (35)

In addition, from the equation of motion (30), one can find that the extrinsic curvature

k̄ is related to the conformal Hubble parameter H by

sin 2µ̄γk̄

2µ̄γ
=

˙̄p

2p̄
=: H . (36)

Therefore, due to the holonomy corrections, the conformal Hubble parameter H is not

simply equal to the extrinsic curvature k̄ but receives corrections. For consistency, in our
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next derivation we will continuously use the extrinsic curvature k̄ rather than the conformal

Hubble parameter. Only at the end, we will use the conformal Hubble parameter H instead

of sin 2µ̄γk̄
2µ̄γ

in the perturbation equations.

B. The perturbed equations

In this subsection, we will derive the cosmological perturbation equation with holonomy

corrections. Firstly we will derive the equations of motion of perturbed variables. In the

canonical formulation, the equation of motion of any phase space function f is determined

by Poisson bracket, ḟ = {f,H}. Here H is the total Hamiltonian, which is a sum of the

Hamiltonian constraint H [N ] and the diffeomorphism constraint D[Na], H = H [N ]+D[Na].

Since the zero-order and first-order shift vectors vanish, the diffeomorphism constraints is

identically satisfied up to the second-order. Thus, the equations of motion of the perturbed

variables are only generated by the Hamiltonian constraint. The perturbed Hamiltonian

constraint up to the second-order is written as H̃h[N ] = H̃h[N̄ ] + H̃h[δN ] with

H̃h[N̄ ] =
1

16πG

∫

Σ

d3xN̄ [H(2)
G + 16πG(H(2)

π +H(2)
∇ +H(2)

ϕ )] ,

H̃h[δN ] =
1

16πG

∫

Σ

d3xδN [H(1)
G + 16πG(H(1)

π +H(1)
ϕ )] . (37)

Note that we have used the conditions that the perturbed variables do not have homo-

geneous modes as described in Eq.(16) and (19). As well, we input the boundary condition

requiring that the integration over the boundary vanishes, namely

∫

Σ

N̄ [Hh1
G + 16πG(H1

π +H1
ϕ)] = 0,

∫

Σ

δN [Hh0
G + 16πG(H0

π +H0
ϕ)] = 0 . (38)

Therefore, the equations of motion of perturbed variables are generated only by the

second order part of Hamiltonian constraints. Thus, we can arrive at the equation of motion

of the perturbed variables by means of the Poisson bracket
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δK̇i
a ≡ {δKi

a, H̃
h[N̄ ] + H̃h[δN ]}

=
N̄

p̄3/2
[−p̄(

sin 2µ̄γk̄

2µ̄γ
)δKi

a −
1

2
(
sin µ̄γk̄

µ̄γ
)2δEd

kδ
k
aδ

i
d +

1

4
(
sin µ̄γk̄

µ̄γ
)2(δEd

kδ
k
d)δ

i
a +

1

2
δik∂a∂dδE

d
k ]

−1

2

δN√
p̄
(
sin µ̄γk̄

µ̄γ
)2δia +

1√
p̄
∂a∂

iδN

+4πG
N̄

p̄3/2
[− π̄δπ

p̄
δia +

1

2

π̄2

p̄2
(
1

2
δEd

kδ
k
dδ

i
a + δEd

kδ
k
aδ

i
d) + p̄2V,ϕ̄(ϕ̄)δϕδ

i
a

+p̄V (ϕ)(
1

2
δEd

kδ
k
dδ

i
a − δEd

kδ
k
aδ

i
d)] + 4πGδN [−1

2

π̄2

p̄5/2
+
√
p̄V (ϕ̄)]δia, (39)

˙δEa
i ≡ {δEa

i , H̃
h[N̄ ] + H̃h[δN ]}

=
N̄√
p̄
[−p̄δKj

c δ
c
i δ

a
j + p̄(δKj

c δ
c
j)δ

a
i + (

sin 2µ̄γk̄

2µ̄γ
)δEa

i ] + 2δN(
sin 2µ̄γk̄

2µ̄γ
)
√
p̄δai , (40)

δϕ̇ ≡ {δϕ, H̃h[N̄ ] + H̃h[δN ]} =
N̄

p̄3/2
(δπ − π̄

δEc
jδ

j
c

2p̄
) +

δN

p̄3/2
π̄ , (41)

δπ̇ ≡ {δπ, H̃h[N̄ ] + H̃h[δN ]} =
N̄

p̄3/2
[p̄2∇2δϕ− p̄3V,ϕ̄ϕ̄δϕ− 1

2
p̄2V,ϕ̄ϕ̄δE

c
jδ

j
c ] . (42)

Furthermore, using Eqs.(13) and (30), we can obtain the perturbed extrinsic curvature

δKi
a from equation (40),

δKi
a = −δia[Ψ̇ + (

sin 2µ̄γk̄

2µ̄γ
)(Ψ + Φ)] . (43)

Similarly, using Eq.(13), equations (41) and (42) can be respectively reexpressed as

δϕ̇ =
δπ

p̄
+

π̄

p̄
(3Ψ + Φ) . (44)

δπ̇ = p̄∇2δϕ− p̄2V,ϕ̄ϕ̄δϕ+ 3p̄2V,ϕ̄Ψ . (45)

Now, we derive the Hamiltonian’s equation using the equation of motion of δKi
a. Col-

lecting the expressions δEa
i (13), δKi

a (43) , δN(14), and equations (31), (44), one can

obtain
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{Ψ̈ + (
sin 2µ̄γk̄

2µ̄γ
)(2Ψ̇ + Φ̇) + [(cos 2µ̄γk̄ − 1

2
) ˙̄k + (

sin 2µ̄γk̄

2µ̄γ
)2 +

˙̄µ

µ̄
(k̄ cos 2µ̄γk̄ − sin 2µ̄γk̄

2µ̄γ
)

−1

2
p̄
∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2](Ψ + Φ) + p̄V (ϕ̄)(Φ−Ψ)}δia + ∂a∂

i(Φ−Ψ)

= 4πG( ˙̄ϕ ˙δϕ− p̄V,ϕ̄(ϕ̄)δϕ) . (46)

When deriving this equation, we have used the relation

4πG ˙̄ϕ2 = (
sin µ̄γk̄

µ̄γ
)2 − ˙̄k − p̄

∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2 , (47)

which can be obtained from the corrected Friedmann equation (33) and Raychaudhuri equa-

tion (34). From equation (46), we can read the off-diagonal equation

∂a∂
i[Φ−Ψ] = 0 , (48)

which implies Φ = Ψ. Therefore, in the following derivation, we will identify Φ with Ψ.

Then the diagonal equation gives

Φ̈ + 3(
sin 2µ̄γk̄

2µ̄γ
)Φ̇ + [(2 cos 2µ̄γk − 1) ˙̄k + 2(

sin 2µ̄γk̄

2µ̄γ
)2 + 2

˙̄µ

µ̄
(k̄ cos 2µ̄γk̄ − sin 2µ̄γk̄

2µ̄γ
)

−p̄
∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2]Φ = 4πG( ˙̄ϕ ˙δϕ− p̄V,ϕ̄(ϕ̄)δϕ) . (49)

Subsequently, we will consider the diffeomorphism constraint equation. In order to have

non-vanishing diffeomorphism constraint, we must expand the shift vector Na up to second-

order, δNa(2). Therefore, the perturbed diffeomophism constraint with holonomy corrections

is

D[N c] =
1

8πG

∫

Σ

d3xδN c(2)[p̄∂c(δ
d
kδK

k
d )− p̄(∂kδK

k
c )− (

sin 2µ̄γk̄

2µ̄γ
)δkc (∂dδE

d
k) + 8πGπ̄∂cδϕ] .

(50)

The diffeomorphism constraint equation can be obtained by varying the diffeomorphism

constraint with respect to the shift perturbation:

8πG
δD[δN c(2)]

δ(δN c(2))
= p̄∂c(δ

d
kδK

k
d )− p̄(∂kδK

k
c )− (

sin 2µ̄γk̄

2µ̄γ
)δkc (∂dδE

d
k) + 8πGπ̄∂cδϕ = 0 . (51)
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Using the expressions δEa
i (13), δKi

a (43) and equation (31), the above equation reduces

to

∂c[Φ̇ + (
sin 2µ̄γk̄

2µ̄γ
)Φ] = 4πG ˙̄ϕ∂cδϕ . (52)

Finally, we will derive the Hamiltonian constraint equation. We note that after the

variation with respect to the background lapse N̄ , the constraint equation will be second-

order and can be neglected. So one can obtain the Hamiltonian constraint equation by only

varying the perturbed lapse δN

δH̃h[N ]

δ(δN)
=

1

16πG
[−4

sin 2µ̄γk̄

2µ̄γk̄

√
p̄δKi

aδ
a
i − (

sin µ̄γk̄

µ̄γk̄
)2

1√
p̄
δEa

i δ
i
a +

2√
p̄
∂a∂

iδEa
i ]

+
π̄δπ

p̄3/2
− (

π̄2

2p̄3/2
− p̄3/2V (ϕ̄))

δEa
i δ

i
a

2p̄
+ p̄3/2V,ϕ̄(ϕ̄)δϕ

= 0 . (53)

Substituting the expressions δEa
i (13), δKi

a (43) and equation (31) into the above equation

yields the Hamilton constraint equation

∇2Φ−3(
sin 2µ̄γk̄

2µ̄γ
)Φ̇−[ ˙̄k+6(

sin 2µ̄γk̄

2µ̄γ
)2−4(

sin µ̄γk̄

µ̄γ
)2+p̄

∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2]Φ = 4πG[ ˙̄ϕ ˙δϕ+p̄V,ϕ̄(ϕ̄)δϕ] .

(54)

In addition, using Eqs.(44) and (45), with the help of the background equations (30),

(31) and (32), the perturbed Klein-Gordon equation can be expressed as

δϕ̈+ 2(
sin 2µ̄γk̄

2µ̄γ
)δϕ̇−∇2δϕ+ p̄V,ϕ̄ϕ̄δϕ+ 2p̄V,ϕ̄Φ− ˙̄ϕ(Φ̇ + 3Ψ̇) = 0 . (55)

Now, we replace sin 2µ̄γk̄
2µ̄γ

by Hubble parameter H in the perturbation equations (54), (49)

and (52) such that these equations can be reexpressed as

∇2Φ− 3HΦ̇− [ ˙̄k + 6H2 − 4(
sin µ̄γk̄

µ̄γ
)2 + p̄

∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2]Φ = 4πG( ˙̄ϕ ˙δϕ+ p̄V,ϕ̄(ϕ̄)δϕ) , (56)

Φ̈ + 3HΦ̇ + [2Ḣ− ˙̄k + 2H2 − p̄
∂

∂p̄
(
sin µ̄γk̄

µ̄γ
)2]Φ = 4πG( ˙̄ϕ ˙δϕ− p̄V,ϕ̄(ϕ̄)δϕ) , (57)
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∂a(Φ̇ +HΦ) = 4πG ˙̄ϕδϕ,a . (58)

Obviously, in the classical limit, µ̄ → 0, all the equations above reduce to the classical

cosmological perturbations (3), (4) and (5) respectively. Combing these equations, one can

obtain the following second order differential equation for Φ

Φ̈−∇2Φ + (6H+ 2p̄
V,ϕ̄(ϕ̄)

˙̄ϕ
)Φ̇ + [2Ḣ+ 8H2 − 4(

sin µ̄γk̄

µ̄γ
)2 +

V,ϕ̄(ϕ̄)
˙̄ϕ

H]Φ = 0 . (59)

In addition, using the relation between the extrinsic curvature k̄ and the conformal Hubble

parameter H (36), one can obtain

(
sin µ̄γk̄

µ̄γ
)2 =

1−
√

1− 4(µ̄γ)2H2

2(µ̄γ)2
. (60)

Therefore, the second order differential equation (59) becomes

Φ̈−∇2Φ+(6H+2p̄
V,ϕ̄(ϕ̄)

˙̄ϕ
)Φ̇+[2Ḣ+8H2−4(

1−
√

1− 4(µ̄γ)2H2

2(µ̄γ)2
)+

V,ϕ̄(ϕ̄)
˙̄ϕ

H]Φ = 0 . (61)

When using the Klein-Gordon equation (35), the above second order differential equation

can be further rewritten as

Φ̈−∇2Φ+ 2(H−
¨̄ϕ
˙̄ϕ
)Φ̇ + 2[Ḣ−H

¨̄ϕ
˙̄ϕ
+ 2H2 − 2(

1−
√

1− 4(µ̄γ)2H2

2(µ̄γ)2
)]Φ = 0 . (62)

Up to now, we have completed the derivation of the cosmological perturbation equations

in the effective loop quantum cosmology with holonomy corrections. Furthermore, we can

also introduce the Mukhanov-Sasaki variable υ = a
˙̄ϕ
Φ. Then the cosmological perturbation

equation (62) reduces to

ϋ −∇2υ + [(
¨̄ϕ
˙̄ϕ
). − (

¨̄ϕ
˙̄ϕ
)2 + Ḣ−H

2 + 4Sh]υ = 0 , (63)

where we have denoted Sh = H
2− 1−

√
1−4(µ̄γ)2H2

2(µ̄γ)2
, which results from the holonomy corrections

in the presence of the metric perturbation.
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V. DISCUSSION

The effects of quantum gravity on structure formation, generally called trans-Planckian

issues, have been investigated intensively (for example, we can refer to [25]). In loop quantum

cosmology, the analogous issues have also been investigated in Ref.[9, 16–19]. However, in

Ref.[19], they assume that after a super-inflation phase, the universe underwent a normal

inflation stage. Then they find that the loop quantum effects can hardly lead to any imprint

in the primordial power spectrum. Although in Ref.[9] the scale invariant spectrum was

obtained and the holonomy effects also leave their imprint on the power spectrum, only

the holonomy effects from a fixed background were taken into account. In this paper,

along the Hamiltonian approach we have derived the cosmological perturbation equation

for scalar modes in longitudinal gauge in the presence of holonomy corrections. In the

presence of metric perturbation, we find that holonomy effects influence both background

and perturbations, which contribute a non-trivial sector Sh. Therefore, the holonomy effects

will affect the power spectrum such that it is possible that the quantum gravity effects

will leave their imprint on the cosmic microwave background observed today. In the future

work, we will investigate analytically and numerically the characters of power spectrum in

the presence of holonomy corrections, which might open a window to test the loop quantum

gravity effects.

In addition, in momentum space, the cosmological perturbation equation (63) can be

written as

ϋ − [κ2 − 4(H2 − 1−
√

1− 4(µ̄γ)2H2

2(µ̄γ)2
)−m2

eff ]υ = 0 , (64)

where κ denotes the momentum andm2
eff = (

¨̄ϕ
˙̄ϕ
).−(

¨̄ϕ
˙̄ϕ
)2+Ḣ−H

2. Therefore, the cosmological

perturbation equation (64) can be effectively viewed as imposing such a modified dispersion

relation at quantum gravity phenomenological level. Obviously, in such a modified dispersion

relation, both the energy and momentum are bounded. Here, we point out that, in Ref.

[26], Y. Ling et. al have also proposed a bounded modified dispersion relation, motivated

by the isotropic homogenous effective loop quantum cosmology with holonomy corrections.

Although both are bounded, they are also very different, implying we can not simply use

the background corrections instead of perturbation corrections. In the future work, we will

furthermore discuss the implications of such two modified dispersion relations.
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Our present paper is the first step towards studying the holonomy corrected cosmological

perturbation equations in the presence of metric perturbation. Since constraints are modi-

fied, the form of gauge invariant variables should change as well. Therefore, it is necessary

to study the perturbations with different gauges or in a gauge invariant manner in this

formalism, which is under progress.
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