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ABSTRACT

We discuss the thermal evolution and Bose condensation of ultra-light scalar particles with Compton
wavelength of galactic scales. We find an upper bound of 1.5 K for the dark matter temperature from
the WMAP constraints on the amount of hot dark matter for a ΛCDM model. Agglomerations
of these particles can form stable halos and naturally prohibit small scale structure, which may be
favored by observations of dark matter distributions near the centers of galaxies. We present numerical
as well as approximate analytical solutions of the Friedmann-Klein-Gordon equations and study the
cosmological evolution of this scalar field dark matter from the early universe to the era of matter
domination. Today, the particles in the ground state mimic presureless matter, while the excited state
particles are radiation like.

1. INTRODUCTION

Most matter in the universe is non-luminous. The
observed flatness of the galactic rotation curves indi-
cates the presence of dark matter halos around galax-
ies. Observations of the cosmic microwave background
anisotropies (Spergel et al. 2007) combined with large-
scale structure and type Ia supernova luminosity data
(Reiss et al. 1998, 2004, 2005; Perlmutter et al. 1999)
constrain cosmological parameters finding that visible
matter contributes only about 4% of the energy density
of the universe, as opposed to 22% being dark matter
and 74% dark energy. More recently, a clear separation
between the center of baryonic matter and the total cen-
ter of mass was observed in the Bullet cluster (Clowe
et al. 2006) and later in other galaxy cluster collisions
(Bradac et al. 2008). These observations reinforced the
claim that dark matter is indeed composed of weakly in-
teractive massive particles and is not a modification of
gravity.
In the past few decades numerous dark matter candi-

dates have been suggested including WIMPs, axions, su-
persymmetric particles, Kaluza-Klein particles, and vari-
ous spin zero bosons (See Kamionkowski (2007); Bertone
et al. (2005) for some reviews on the subject.) Funda-
mental spin zero particles are the simplest class of dark
matter candidates and have been extensively studied.
They are represented by scalar fields and play an im-
portant role in particle physics models (Peccei & Quinn
1977; Torres et al. 2000). These particles could form
gravitationally stable structures such as boson stars, soli-
ton stars, and galactic halos. Compact objects like boson
stars and soliton stars could have formed from scalar par-
ticles through some type of Jeans instability mechanism
(Seidel & Suen 1991; Urena-Lopez 2002; Alcubierre et
al. 2003). Their stability and gravitational wave sig-
natures have been studied numerically by many authors
(Seidel & Suen 1990; Balakrishna et al. 2006, 2008).
Bosonic halos in which scalar particles Bose-condense

and form gravitationally stable structures are supported
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against collapse by Heisenberg’s uncertainty principle
like boson stars. A Bose-Einstein condensate is described
by the simple Klein-Gordon wave equation. Structure
formation on scales smaller than the spreading of an indi-
vidual boson (the Compton wavelength of one particle) is
forbidden by quantum mechanics (Hu et al. 2000). Halos
formed from ultralight scalars with Compton wavelength
of galactic scales thus do not lead to over-abundance of
dwarf galaxies unlike cold dark matter simulations with
heavier bosons (Navarro et al. 1996; Salucci et al. 2003).
Scalar field galactic halos that explain the flatness of

the rotation curves have been widely studied (Schunck
& Liddle 1997; Guzman & Urena-Lopez 2003; Arbey et
al. 2001). A non-thermal analysis of the cosmological
behavior of ultralight bosonic halos was performed by
Arbey et al. (2002).
Urena-Lopez (2009) pointed out that scalars field par-

ticles can Bose-condense at finite temperatures resurrect-
ing previous work on relativistic Bose-Einstein conden-
sation by Parker & Zhang (1991, 1993). A condensate
is considered relativistic when the temperature of the
condensate is significantly larger than the mass of one
boson. Parker & Zhang (1993) discuss inflationary ex-
pansion driven by a relativistic Bose-Einstein condensate
that then evolves into a radiation dominated universe.
In this paper we perform a thermal analysis of the post-

inflationary cosmological behavior of scalar field dark
matter formed from ultra-light bosons. We use the quan-
tum field theory formalism of Parker & Fulling (1974)
and extend the analysis that Hu (1982) used for a de-
scription of finite temperature effects in the early uni-
verse. The bosons are described by a complex scalar
field to provide a conserved charge.
We assume the scalar particles decouple after infla-

tion in the early universe. For ultralight particles (m ∼
10−22 − 10−23 eV), the condensate is very pure with a
high critical temperature. The particles in the ground
state are Bose-condensed behaving as cold dark matter
today, while the bosons in excited states behave like ra-
diation. We constrain the radiation density of these par-
ticle to contribute less than 10% to the current observed
radiation density leading to a luke-warm dark matter
temperature today of TDM . 1.5 K.
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In §2 we provide a brief review of relativistic Bose-
condensation at high temperatures followed by a discus-
sion of the temperature at which the scalars could de-
couple. In §3 we follow the cosmological evolution of
the scalar field and describe possible solutions to the
Friedmann-Klein-Gordon equation. We use units where
~ = c = 1.

2. BOSE-EINSTEIN CONDENSATION AT FINITE
TEMPERATURE

We consider a system of ultralight (m ∼ 10−23 eV)
relativistic bosons represented by complex scalar fields.
The condition for a relativistic condensate is that the
temperature of the condensate T ≫ m, which is certainly
true up to the present day (Urena-Lopez 2009).
In the case of a complex field, there is a conserved

charge, which is required for traditional Bose-Einstein
condensation (BEC)1. The charge density is defined as
the excess of particles n over anti-particles n̄:

q = n− n̄. (1)

For the excited states, this charge density is
(Mukhanov 2005)

qex = g
µT 2

3
, (2)

where g is the number of degrees of freedom of the system
(g = 1 for scalar particles) and the chemical potential
µ ≤ m. The maximum qex = mT 2/3 occurs for µ = m.
For ultra-light bosons, the excess of bosons over anti-
bosons in the excited states is small compared to the
number density. Any new particles added to the system
when µ = m will then have to condense to the ground
state.
The critical temperature below which condensation oc-

curs is found in terms of the charge density of the dark
matter particles (Urena-Lopez 2009; Mukhanov 2005)

T < Tc =

√
3q

m
. (3)

When T < Tc the majority of the bosons will condense to
the ground state. In the ground state the particles will
behave like non-relativistic matter, while the particles in
excited states will remain highly relativistic.
Assuming that BEC occurs and that most particles are

in the ground state, a first approximation to the total
dark matter density is

ρDM ≈ nm. (4)

The density of dark matter today ρ0DM is

ρ0DM ≈ 23%ρc, (5)

where ρc ≈ 4.19× 10−11eV 4. So,

n ≈ ρDM

m
≈ 1012eV 3, (6)

which leads to a very high critical temperature of

Tc ≈ 1.7× 1017eV ∼ 1021 K. (7)

1 Recently, Sikivie and Yang showed that dark matter axions
can form a BEC as well.

The high critical temperature suggests that the conden-
sate is very pure today with most bosons in the ground
state. Note that the required charge density is very high
implying the necessity of a mechanism that would pro-
duce such a large asymmetry of scalar particles over anti-
particles.
The matter in the excited states is relativistic and con-

tributes to the energy density of radiation (it can be con-
sidered hot dark matter). It is therefore constrained by
WMAP observations (Spergel et al. 2007). A reason-
able estimate for the amount of radiation from unknown
sources is . 10% of the Cosmic Microwave Background
(CMB) energy density

ρexDM ≈ 0.1ρCMB ≈ 4.8× 10−6ρc, (8)

where we assumed a simple ΛCDM model2.
Both ρexDM and ρCMB have the same temperature de-

pendence ∝ T 4 and so

TDM . 0.11/4 × TCMB ≈ 1.5K. (9)

To raise the temperature of the neutrinos and photons
relative to the scalar field, we can postulate the presence
of beyond the Standard Model particles to add extra de-
grees of freedom in the thermal bath. In the beginning all
particles are in thermal equilibrium and have the same
temperature: Tφ = Tν = Tγ = T±

e . The scalar particles
decouple and their entropy is separately conserved. The
total entropy of the other components, which includes
photons, electron-positron plasma, and neutrinos is also
conserved. The beyond Standard Model particles ζ anni-
hilate, dumping energy into and raising the temperature
of the other components but not our already-decoupled
scalar bosons. Similarly, neutrinos decouple then the
electrons and positrons annihilate when the temperature
drops below (∼ 1 MeV) (Mukhanov 2005), raising the
photon temperature above neutrinos and scalar bosons.
From conservation of entropy

(
sγ + se± + sν + sζ

sν

)(
sν
sφ

)
= C, (10)

where C is a constant. After the bosons decouple, but
before ζs annihilate Tν = Tφ. The constant can deter-
mined from the number of degrees of freedom of each
species (Mukhanov 2005)

C = 1 +
7

8
× 1

2
(2× 2 + 6) + gζ = 10.75 + gζ , (11)

where gζ is the number of degrees of freedom associated
with the new particles ζ. After ζs annihilate

10.75× sν
sφ

= 10.75 + gζ . (12)

The entropy density sγ ∝ T 3
γ and sν ∝ T 3

ν . So,

Tφ =

(
10.75

10.75 + gζ

)1/3

Tν . (13)

Assuming the temperatures of neutrinos and bosons to-
day are Tν = 1.95 K and Tφ ≈ 1.5 K respectively gives

2 We are using the cosmological parameters that fit
the 5 year WMAP data to the ΛCDM model from
http://lambda.gsfc.nasa.gov
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gζ = 12.85. The extra particles need about ∼ 13 addi-
tional degrees of freedom.

3. COSMOLOGICAL EVOLUTION

The density evolution of the universe must closely fol-
low the standard ΛCDM model at times later than nu-
cleosynthesis, at a ≈ 10−10. During radiation domina-
tion, our scalar field must be a subdominant contribution
to the density of the universe, and during matter dom-
ination it must be a replacement for dark matter. As
shown below, the excited states are a subdominant con-
tribution to the density. The macroscopically-occupied
ground state has ρ ∝ a−6 at early times and must be con-
strained to be less dense than the density of radiation for
at least all times after nucleosynthesis.
In the sections below, we first derive equations in a gen-

eral background, as well as expressions for density and
pressure, then specialize to the epochs of radiation and
matter domination. We also present numerical solutions
to the equations which confirm our approximations in
earlier sections and show that the initial conditions can
be adjusted to satisfy the cosmological constraints and
plot the resulting evolution numerically.

3.1. Evolution Equations

The line element in an expanding universe can be writ-
ten as the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
. (14)

The Klein-Gordon equation

2Φ−m2Φ = 0

is derived from a Lagrangian density of the form

L =
1

2

√−g(gµν∂µΦ∂νΦ−m2Φ). (15)

The density and pressure can be defined in the usual
way

ρ=
1

2

(
∂tΦ

†∂tΦ+ ∂jΦ
†∂jΦ+m2ΦΦ†

)
, (16)

p=
1

2

(
∂tΦ

†∂tΦ+ ∂jΦ
†∂jΦ−m2ΦΦ†

)
,

where Greek indices vary between 1 and 4 and the index
j varies between 1 and 3.
Following Hu (1982), we perform a series of variable

transformations to expose the conformal properties of
the scalar field equation. We introduce a conformal time
coordinate defined by dt = adτ . We also make the sub-
stitution Ψ = aΦ. The metric is conformally static

ds2 = a(τ)2
(
−dτ2 + dx2 + dy2 + dz2

)
. (17)

We can now rewrite the Klein-Gordon equation using the
flat space operator 2̃ ≡ −∂2τ+∂2x+∂2y+∂2z and remember-

ing that the d’Alembertian 2 = (
√−g)−1∂µ(

√−ggµν∂ν)

1

a3
2̃Ψ+

a′′

a4
Ψ− m2

a
Ψ = 0 , (18)

where ′ denotes the derivative with respect to τ . The last
two terms in Eq. (18) break conformal invariance. The
invariance could be restored, as in Hu (1982), by setting

the mass to zero and adding a term proportional to the
four-dimensional Ricci scalar. However, in this case the
field would no longer be minimally coupled. We choose
to treat the terms that break conformal invariance as a
perturbation.
The solution to the scalar field equation can be decom-

posed into modes (Parker & Fulling 1974)

Ψ(x, τ) =

∫
d3~kA~kψk(τ)e

i~k·~x +H.c., (19)

where H.c. denotes the Hermitian conjugate and ψk sat-
isfies

d2ψk

dτ2
+

[
k2 − a′′

a
+ a2m2

]
ψk = 0 . (20)

The conserved current in mode k can be written as

J0k =
1

i
(ψk∂τψ

⋆
k − ψ⋆

k∂τψk) . (21)

The canonical commutation relation of the field Φ and its
conjugate momentum Π leads to the usual commutation
relations

[A~k, A~k′ ] = 0, [A~k, A
†
~k′
] = δ(~k,~k′), (22)

when the conserved current is chosen to be J0k = 1 for
particles and J0k = −1 for anti-particles. The operator
A~k corresponds to physical particles and the number den-

sity of particles is defined to be n =< A†
~k
A~k > (Parker

& Fulling 1974).
The commutation relations are automatically satisfied

if we take ψk of the form

ψ~k(τ) =
1√
2ωk

e−i
∫

τ ωkdτ
′

. (23)

Each mode is now characterized by its eigenfunction ωk

given by

−1

2
(a2H)2ωk

d2ωk

da2
+

3

4
(a2H)2

(
dωk

da

)2

(24)

−ω2
kaH

d(a2H)

da
+
ωk

2
(a2H)

d(a2H)

da

dωk

da
− ω4

k

+(k2 + a2m2)ω2
k = 0.

To concomitantly solve the Friedmann equation

H2 =
8πG

3
ρ (25)

we approximate the Hubble parameter in different epochs
power laws of the form H = a′/a2 = H0a

−n. Here ρ =
ρrad + ρΛ + ρm, the radiation energy density ρrad ∝ a−4,
the matter density ρm ≈ ρΦ ∝ a−3 is dominated by dark
matter and the dark energy term ρΛ = constant in a
ΛCDM model. Thus, the exponent is n = 2 during the
radiation domination era and n = 3/2 during the matter
domination era.

3.2. Radiation domination

In the radiation domination regime (n = 2), the scalar
field Eq. (20) reduces to the flat space wave equation
with an effective mass that varies with the scale factor
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Fig. 1.— The dark matter density ρDM (along with ρrad) and
w = pDM/ρDM are displayed as a function of scale factor a.

d2ψk

dτ2
+
(
k2 + a2m2

)
ψk = 0 . (26)

The mass term is the only perturbation from conformal
invariance (Since a′′ = 0.) We extend the analysis of
Hu (1982) to determine the average density in excited
states. Modes with k ≫ am are effectively massless, and
for these modes ωk ≈

√
k2 + a2m2. We use Eq. (16) to

write the density in state k

ρk =
1

2

[
H2

2ωka2
+

(ω′
k)

2

8a4ω3
k

+
Hω′

k

2a3ω2
k

+
ωk

a4

]
. (27)

The total density in the excited states is approximately

ρex=
1

2π2

∫ ∞

0

k2dk
ρk

exp[ωk/(Ta)]− 1
(28)

≈ 1

2π2

∫ ∞

0

k2dk

(
H2

2a2ωk
+
ωk

a4

)
1

exp[ωk/(Ta)]− 1

=
T 4π2

30
+
T 2H2

24
− m2

24

T 2

a2
+ ...

When T ≫ H, the T 4 term dominates the density and
the excited states behave like radiation.
For the ground state (k = 0), Eq. (24) can be rewritten

as

−y
2

d2y

dx2
+

3

4

(
dy

dx

)2

− y4 + x2y2 = 0, (29)

where y and x are dimensionless variables defined by

ω0 =
√
H0rmy, a =

√
H0r

m
x, (30)

where H = H0ra
−2 with H0r ≈ 1.4 × 10−35 eV. Note

that x = 1 (a ≈ 10−6), which corresponds to H = m, is
the transition to matter-like behavior for these particles.
When x≪ 1 (or H ≫ m), we can neglect the x2y2 term.
Now Eq. (29) has an exact solution of

y(x) =
C0

1 + C2
0 (x− x0)2

, (31)

where C0 and x0 are constants. When x0 > 1, y is ap-
proximately constant. When x0 . 1, the typical behavior
is that y for small x, peaks at x = x0 with a height C0,
and then falls off as C−1

0 x−2 (the higher C0, the narrower
the peak and hence the transition between the constant
and x−2 behaviors is more abrupt). Initially, y = con-
stant and the density ρ0 and pressure p0 for the ground
state are ∝ a−6. When x ≫ x0 and if x ≫ 1/|C0| then
y = C−1

0 x−2. The pressure and the density then have
two terms

ρ0=
H

3/2
0r

4a6m1/2C0
+
m5/2C0

2H
3/2
0r

(32)

p0=
H

3/2
0r

4a6m1/2C0
− m5/2C0

2H
3/2
0r

,

where the a−6 term dominates at early times. The den-
sity transitions to a cosmological constant with p0 = −ρ0
when a ≈ H

1/2
0r C

−1/3
0 2−1/6m−1/2.

3.3. Matter Domination

In the matter domination regime (n = 3/2), Eq. (20)
becomes

d2ψk

dτ2
+

(
k2 − H2

0m

2a
+ a2m2

)
ψk = 0, (33)

where H = H0ma
−3/2 with H0m ≈ 7.8× 10−34eV .

Using Eq. (23) we obtain an equation for ωk:

−ωka

2

d2ωk

da2
− ωk

4

dωk

da
+

3a

4

(
dωk

da

)2

− ω4
k

H2
0m

(34)

+ω2
k

[(
k

H0m

)2

− 1

2a
+

(
am

H0m

)2
]
= 0.

For the ground state (k = 0), this equation has an exact
solution

ω0 =
am

C1 sin[4ma3/2/(3H0m) + α] + C2
, (35)

where C1, C2 and the phase α are constants with the
constraint C2

2 − C2
1 = 1. This solution is in agreement

with Arbey et al. (2002). When C1 = 0 the solution
reduces to ω0 = am. Solutions with non-zero C1 oscil-
late around the ω0 = am solution. Eq. (35) can also be
written in terms of t as

ω0 =
am

C1 sin(2mt+ α) + C2
. (36)
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The oscillations have a period of π/m (∼ a few years
for m = 10−23 eV). The pressure averages to zero on
cosmological timescales causing the ground state scalar
field particles to behave like pressureless matter.

3.4. Numerical Solution

We also solve Eq. (24) numerically including the effect
of both radiation and matter in the Hubble parameter,

H =
√
H2

0ra
−4 +H2

0ma
−3 . (37)

The numerical solutions are fully specified by the value
of the field and its first derivative at a given a, as well
as an overall scaling of the density. In both cases, the
overall scaling of the density was chosen to match the
observed cosmological density of cold dark matter.
Two representative solutions are shown in Fig. 1. The

initial conditions in terms of the x and y variables intro-
duced above are y(10−8) ≈ 0.48 and y′(10−8) = 0.49 for
solution 1, and y(10−8) ≈ 5×103 and y′(10−8) ≈ 5.×107

for solution 2. Fig. 1(a) shows the ground state density
as a function of scale factor, along with the radiation
density ρrad. Fig. 1b displays w = pDM/ρDM . The den-
sity at early times decays like a−6 and is determined by
the mass of the scalar particle and the required density in
the ground state at late times. Solution 1 requires a large
density at early times which is not compatible with the
standard ΛCDM model. Solution 2 has a phase where
the ground state density is constant. This allows the
initial density to be much lower and therefore compati-
ble with the standard model up to the the approximate
time of nucleosynthesis (a ≈ 10−10). The final density
is the same, but w oscillates at late times around the
pressureless w = 0 solution.

4. CONCLUSION

In this paper we propose a complex scalar field dark
matter cosmological model with particles of temperature

≈ 1.5 K today. This temperature is close to the temper-
atures of photons and neutrinos. Our particles decouple
before neutrinos to avoid affecting nucleosynthesis.
We assume dark matter is formed from ultralight parti-

cles with a Compton wavelength of galactic scales, which
naturally do not exhibit small scale structure avoiding
the over-abundance of dwarf galaxies (Hu et al. 2000).
Urena-Lopez (2009) has shown that for m < 10−14 eV
condensation always occurs. Most of our ultralight par-
ticles are condensed to the ground state. We find that
the particles left in the excited states are radiation-like
today, while those in the ground state behave like pres-
sureless matter. The temperature of the dark matter is
independent of the particle mass and is constrained by
cosmological observations that limit the density of radia-
tion from unknown sources in the universe (we take this
be be . 10 % of ρCMB).
We have solved the Klein-Gordon equation in radiation

and matter domination regimes and studied the behav-
ior of ground state and excited state particles. When
the Compton wavelength of the particle is larger than
the cosmological horizon (H > m) the dark matter den-
sity starts with a dependence on the scale factor of the
form ρDM ∝ a−6 and then switches to a cosmological-
constant behavior. This is consistent with Arbey et
al. (2002). The density of the excited states remains
radiation-like ρDM ex ∝ a−4 until T ∼ H (a ∼ 10−32)
and is sub-dominant to the density of the known radia-
tion. When H < m the scalars in the ground state act
as non-relativistic matter ρDM ∝ a−3 and the excited
states behave like radiation.
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