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ABSTRACT

The measured properties of stellar oscillations can provide powerful constraints on
the internal structure and composition of stars. To begin this process, oscillation fre-
quencies must be extracted from the observational data, typically time series of the
star’s brightness or radial velocity. In this paper, a probabilistic model is introduced
for inferring the frequencies and amplitudes of stellar oscillation modes from data,
assuming that there is some periodic character to the oscillations, but that they may
not be exactly sinusoidal. Effectively we fit damped oscillations to the time series,
and hence the mode lifetime is also recovered. While this approach is computationally
demanding for large time series (> 1500 points), it should at least allow improved
analysis of observations of solar-like oscillations in subgiant and red giant stars, as
well as sparse observations of semiregular stars, where the number of points in the
time series is often low. The method is demonstrated on simulated data and then
applied to radial velocity measurements of the red giant star ξ Hydrae, yielding a
mode lifetime between 0.41 and 2.65 days with 95% posterior probability. The large
frequency separation between modes is ambiguous, however we argue that the most
plausible value is 6.3 µHz, based on the radial velocity data and the star’s position in
the HR diagram.
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1 INTRODUCTION

The study of stellar oscillations provides a powerful probe
of the physical properties of stars. In particular, knowledge
of the frequencies of many eigenmodes of a star can sig-
nificantly constrain its internal structure and composition
(e.g. Houdek 2007). In practice, these frequencies are in-
ferred from time series data of the star’s radial velocity or
intensity, which is analysed in order to determine the fre-
quencies of the oscillation modes that contributed to the
signal (Bedding & Kjeldsen 2007). The amount and quality
of data has increased spectacularly over the past few years,
mostly due to advances in instrumentation that were primar-
ily intended for extrasolar planet searches (Marcy & Butler
1992). Despite these advances, oscillation data on stars other
than the Sun is still much more sparse and noisy, for ob-
vious reasons. Most of this data is analysed with Fourier
power spectrum methods inherited from helioseismology
(e.g. Toutain & Froehlich 1992; Jiménez-Reyes et al. 2008).
Recently, there has been growing interest in examining the
fundamentals of data analysis techniques, and attempts to
improve on these classical techniques have yielded modest,
but non-negligible improvements to our ability to make use
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of time series data (e.g. Fletcher et al. 2006; Brewer et al.
2007; Régulo & Roca Cortés 2007; Stahn & Gizon 2008;
Gruberbauer, Kallinger, & Weiss 2008). Separately, there
has been a steady growth in interest in Bayesian Inference
(Sivia and Skilling 2006) as the most consistent and natural
way to model uncertainties. Thus, the approach described
in this paper is Bayesian.

The idea behind Bayesian methods is to describe our
knowledge by a probability distribution over the space of
possible solutions we are considering. This probability dis-
tribution then gets updated to take into account the infor-
mation contained in the data, in this case the time series
data {yi}

N
i=1. In asteroseismology, the possible solutions we

consider are all possible values for the parameters of in-
terest: the frequencies {ν} of the oscillation modes, their
amplitudes {A} and phases {φ}, and the total number of
modes, m. For brevity, we drop the braces hereafter; A,
ν and φ now stand for arrays of amplitudes, frequencies
and phases respectively. Any additional parameters (mode
lifetime, for example) are denoted collectively by θ. Before
taking into account the data, we assign a prior distribu-

tion p(θ,m, ν, A,φ). We also probabilistically model the pre-
dictions for what data y we expect to observe as a func-
tion of the parameters: p(y|θ, m, ν, A, φ), called the sam-

pling distribution. Sometimes it is possible to marginalise
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out the amplitude and phase parameters, by integrating over
them. This helps the computational search, because the al-
gorithms only need to find good values for the frequencies,
not the amplitudes and phases. This was done in a previ-
ous paper (Brewer et al. 2007, hereafter B07) by replacing
the amplitudes and phases with sine-amplitudes and cosine-
amplitudes; however, it is not possible for the model we in-
troduce in this paper. Throughout this paper, we will be
fitting both the frequencies and the amplitudes. It turns out
(Section 2.1) that we do not need phases in our model, so
we will drop the phases hereafter.

Once the prior distribution and the sampling distribu-
tion have been specified, we have defined a joint probability
distribution for the parameters and the data:

p(θ, m, ν, A, y) = p(θ, m, ν,A)p(y|θ,m, ν, A) (1)

This probability distribution describes what we know about
the parameters and the data before we observe the actual
data. Once we learn the actual values of the data yobs, we
update our probability distribution by deleting all hypothe-
ses in the (θ, m, ν, A, y) space that are now known to be false;
i.e. we restrict our attention to the slice y = yobs. This gives
the posterior distribution for the parameters given the data,
describing our knowledge after updating to include the effect
of the data. This is expressed by Bayes’s theorem:

p(θ, m, ν, A|y = yobs) ∝ p(θ, m, ν,A)p(y|θ,m, ν,A)|yobs
(2)

The second factor in Equation 2 is the sampling distribu-
tion (probability distribution for the data as a function of
the parameters) with the data fixed at the observed values;
thus it is a function of the parameters only. Once the data
have been fixed, it is commonly referred to as the likelihood

function.
Many existing methods, including the Bayesian Analy-

sis of B07, rely on the assumption that the observed time se-
ries is composed of a sum of sinusoidal signals, plus Gaussian
noise - basically, this was our choice for the sampling distri-
bution p(y|θ, m, ν,A). Interestingly, the periodogram1 can
be proven to be a sufficient statistic from this same assump-
tion, plus the assumption that the time series has complete
phase coverage. What this means is that if we intend to infer
the frequencies of the modes, no information is lost by re-
ducing the time series to the periodogram (Bretthorst 1988;
Gregory 2001), as long as the signal is purely sinusoidal and
the time series has no significant gaps. Successful methods
have been developed to infer frequencies and mode lifetimes
by fitting to the power spectrum (e.g. Appourchaux et al.
2008). However, the presence of stochastically excited modes
and gaps in the data both break the assumptions required
for the periodogram to be a sufficient statistic. Hence, ide-

ally, when either of these conditions do not hold, we should
work with the raw time series data.

Of course, it may be the case that using the power spec-
trum discards an insignificant amount of information, and
the gain in convenience of the power spectrum far outweights
such theoretical concerns. This is certainly the case with so-
lar data, and stellar data with good coverage and a long

1 Throughout this paper, the terms “periodogram” and “power
spectrum” will be used interchangeably. It is also common to plot
the square root of the periodogram, which is sometimes called the
“amplitude spectrum”.

mode lifetime. It may be more generally true; however, this
question is beyond the scope of this paper. In this paper
we describe a new method to analyse time series data, tak-
ing into account the fact that the predicted signal from an
oscillation mode is quasi-sinusoidal, and that the data may
contain gaps, removing any concerns about information loss
due to pre-processing via taking the power spectrum. This
is done by making the choice for p(y|θ, m, ν,A) as realistic
as possible.

2 SOLAR-LIKE OSCILLATIONS

In the following, we will consider a single stochastically ex-
cited mode, and obtain a model for the sampling distribution
p(y|θ,m, ν, A) when m = 1. Subsequently, we will expand
this to include multiple oscillation modes and observational
errors, in Section 2.2. Solar-like oscillations are oscillations
in main sequence or red giant stars that are continually
damped and re-excited by turbulent convection, and there-
fore do not produce purely sinusoidal signals. For solar-like
oscillations, the signal due to a single mode is modelled as
a damped and stochastically excited oscillator with a driving
force f(t):

d2y

dt2
+ (2πν)2y +

2

τ

dy

dt
= βf(t) (3)

where τ is a damping timescale (the factor of two is intro-
duced such that solutions to Equation 3 without the driving
force decay with an e-folding time of τ ), and β is an ampli-
tude constant for the driving force f(t). If f(t) is specified
and the initial conditions y(0) and ẏ(0) are known, then
Equation 3 has a unique solution. However, as the term
stochastic excitation suggests, f(t) is only specified proba-
bilistically. Throughout this paper, we will assume that f(t)
is unit variance white noise, so f(t) at any time t comes
from a standard Gaussian distribution with mean 0 and
standard deviation 1. f(t1) and f(t2) are independent for
all distinct times t1 6= t2. The white noise probability distri-
bution that we assigned to f(t) is an example of a Gaus-

sian Process distribution. In general, a Gaussian Process
is a probability distribution over a space of possible func-
tions (Rasmussen & Williams 2006; MacKay 2003); however
a more general Gaussian Process may differ from white noise
because the function value at different times may be corre-
lated.

Since Equation 3 is a linear ordinary differential equa-
tion, and f(t) is assigned a Gaussian process distribution,
we have implicitly also assigned a Gaussian process distribu-
tion for the value of the oscillating signal y(t) at all times t.
Whereas f(t1) and f(t2) are independent (for t1 6= t2), the
value of the oscillation signal at any two times, y(t1) and
y(t2), are correlated, with the covariance function defined
as

C(ti, tj) = 〈y(ti)y(tj)〉 − 〈y(ti)〉 〈y(tj)〉

= 〈y(ti)y(tj)〉 (4)

where the expectatation value (mean) of y, 〈y(t)〉, has been
set to zero for all time. A typical signal obtained by solving
Equation 3 is shown in Figure 1. Clearly, the signal value at
any given time is strongly correlated with the signal value
at a time one period later, and anticorrelated with the value
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half a period later. However, the correlation is weaker than
would be the case if the signal was purely sinusoidal. The
entire signal displayed in Figure 1 can be regarded as a single
point sampled from a Gaussian Process distribution with
mean function zero and a particular covariance function.
Equation 3 is capable of producing solutions with any initial
phase, which is why we do not need phases in our model.

A useful property of Gaussian Processes is that the
joint distribution for the function evaluated at a finite set
of points (i.e. the signal y(t) evaluated at the observation
times) is a multivariate Gaussian, with covariance matrix
given by the covariance function evaluated at the relevant
points. Hence, the joint distribution for the value of the os-
cillation signal at a discrete set of N times {t1, t2, ..., tN}
is:

p (y|A, ν, τ ) =
1

√

(2π)N detC
exp

(

−
1

2
y

T
C

−1
y

)

(5)

where y = {y(t1), y(t2), ..., y(tN)}, the expectation values
(means) of all of the y’s are zero, and C is a covariance ma-
trix that implicitly depends on A, ν and τ . Equation 5 is the
first step in the construction of a realistic p(y|θ, m, ν, A): it
would suit perfectly if we had noise-free data containing one
mode, and if we knew how C depended on A, ν and τ . The
dependence of C on A, ν and τ is addressed in Section 2.1,
while the generalisation to noisy data with multiple modes
occurs in Section 2.2.

Throughout this paper, no results depend on the choice
of the origin for t, only relative times matter. In this case,
the covariance function is said to be stationary. This im-
plies that the covariance of y(t1) and y(t2) depends only on
the difference between t1 and t2, and not on their absolute
values:

C (t1, t2) = C(t1, t2) = C(|t2 − t1|) = C(∆t) (6)

where the symbol C has been used to denote the covariance
function, whether it takes one argument or two. This result
is used to evaluate the elements of the covariance matrix C.

2.1 Use of Simulations to Determine the

Covariance Function

In this section, we aim to find exactly how the covariance
function for the signal depends on A, ν and τ , for a single
mode. The dependence on A is trivial: if y(t) comes from
a Gaussian Process distribution with mean function zero
and covariance function C(∆t), then A × y(t) comes from
a Gaussian Process distribution with mean zero and covari-
ance function A2C(∆t). Note that these quasi-sinusoidal sig-
nals do not have a strict amplitude like sinusoidal signals do,
the amplitude A is really just the expected standard devia-
tion of the oscillation signal.

To investigate how the covariance function of a stochas-
tically excited oscillation signal depends on frequency and
mode lifetime, Equation 3 was solved numerically using a
fourth order Runge-Kutta algorithm with a timestep much
smaller than the natural period of the oscillations. From a
very long simulation, the covariance function for solutions of
Equation 3 was estimated by taking random pairs of times
t1 and t2, and plotting the average value of y(t1)y(t2) as
a function of ∆t = |t2 − t1|. A short section of the simu-
lated time series is plotted in Figure 1, which clearly shows

that while there is some periodic nature to the oscillations,
the varying amplitude and phase changes would frustrate
any simple modelling of the signal as sinusoidal waves - too
many frequencies will be required in order to fit the data
(B07).

The estimated covariance function of the signal due to
a single mode is shown in Figure 2. It can be accurately
modelled by a cosine curve multiplied by an exponential
decay:

C(∆t) = A2 × exp
(

−|∆t|/τ ′
)

cos (2πν∆t) (7)

where the decay timescale in the covariance function is em-
pirically found to agree with τ to within 5 per cent (Fig-
ure 2), and in practice we will take it as being equal. In
the absence of stochastic excitation and damping, the co-
variance function would be just a cosine function, with fre-
quency equal to the oscillation frequency. Hence, the effect
of stochastic excitations and damping can be parameterised
by the single parameter τ and its effect is to put an exponen-
tial decay factor into the covariance function for the signal.
In the next subsection, this result is generalised to include
multiple modes and observational errors.

2.2 Addition of Independent Gaussian Processes

Suppose there are two functions of time (for instance, the
signal from two modes), x(t) and y(t) and our knowledge
of these functions is described by independent stationary
Gaussian Processes for each: with mean zero and covariance
functions Cx(∆t) and Cy(∆t) respectively. If we are inter-
ested in the sum

z(t) = x(t) + y(t) (8)

then the sum is also a Gaussian process with mean zero and
covariance

Cz(∆t) = 〈z(t)z(t + ∆t)〉

= 〈(x(t) + y(t)) (x(t + ∆t) + y(t + ∆t))〉

= 〈x(t)x(t + ∆t)〉 + 〈y(t)y(t + ∆t)〉

+ 〈y(t)x(t + ∆t)〉 + 〈x(t)y(t + ∆t)〉 (9)

Since x and y are independent, the expectations of the last
two terms are zero. Hence

Cz(∆t) = 〈x(t)x(t + ∆t)〉 + 〈y(t)y(t + ∆t)〉

= Cx(∆t) + Cy(∆t) (10)

Therefore, the covariance function for the sum of two inde-
pendent Gaussian Processes is the sum of their individual co-
variance functions. This result can easily be extended to any
number of Gaussian processes. Thus, if we are testing the
hypothesis that there are many modes with various frequen-
cies and amplitudes, and that there is also Gaussian noise in
the data, the relevant covariance matrix (Equations 4 and 5)
is the sum of the covariance matrix for each mode (obtained
from Equation 7) and a diagonal covariance matrix for the
noise, with the given measurement uncertainties used as the
values for the noise standard deviation. In addition to these
components, we included an “extra noise” signal to account
for unmodelled errors, misquoted error bars, or correlated
noise due to stellar effects that are not the oscillations of in-
terest. The extra noise signal has an unknown standard de-
viation parameter σextra and a correlation timescale τσ for



4 B. J. Brewer and D. Stello

-0.01

-0.005

0

0.005

0.01

0 10 20 30 40 50

y

time

Figure 1. Simulated signal from a single damped, stochastically excited oscillation mode: a solution to Equation 3. The frequency is 1
time unit, and the damping timescale (mode lifetime) τ is 10 time units.
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Figure 2. The correlation function for solutions to the damped, stochastically driven oscillator problem, estimated from numerical
simulations. The correlation is the same as the covariance function but with the variance scaled out. The top panel shows the result
from simulations with an input frequency of 1 time unit and damping timescale (mode lifetime) of 10 time units. When parameterising
the covariance function by C(∆t) = A2 × exp (−|∆t|/τ ′) cos (2πν∆t), the best fit value of τ ′ is empirically found to be very close to the
value of τ that was used to produce the data, so τ ′ ≈ τ . The bottom panel shows the residuals after subtracting the fitted exponentially
decaying cosine curve.

its exponentially decaying covariance function. Thus, σextra
and τσ are additional parameters to be estimated from the
data.

3 BAYESIAN INFERENCE

We measure the signal at a discrete set of times
{t1, t2, ..., tn} with additive Gaussian noise of standard de-
viation {

√

σ2

1
+ σ2

extra,
√

σ2

2
+ σ2

extra, ...,
√

σ2
n + σ2

extra},

where σ1, σ2... are the reported error bars on the obser-
vations. The probability distribution for the total data set
given all of the parameters (number of modes, their fre-
quencies and amplitudes, the extra noise and its timescale)
is Gaussian with covariance matrix formed by the sum of
the covariance functions for each component (Section 2.2).
Thus, we have now constructed the sampling distribution
- the probability distribution for the observed data given
the parameters of interest. The sampling distribution is the
same as Equation 5, but where the covariance matrix C is
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the sum of the covariance matrices for each mode, the diag-
onal covariance matrix of the measurement errors, and the
covariance matrix for the extra noise term. The posterior
probability distribution for the parameters of interest given
the data is then given by Bayes’s theorem (Equation 2),
where θ = {τ, σextra, τσ}: i.e. the mode lifetime, extra noise
standard deviation, and the correlation timescale for the ex-
tra noise term.

The previous sections described the sampling distribu-
tion, and thus the likelihood function, the second term in
Equation 2, in terms of Gaussian Processes. Now we must
assign prior distributions for all of the parameters, i.e. the
first term in Equation 2. For simplicity, we chose the priors
for all of the parameters to be independent of each other. In
principle, this could be improved; for example, the expected
amplitude of a mode is not the same at all frequencies.

The prior for the number of modes, m, was a uniform
probability distribution ranging from 1 to a user-specified
maximum number, which we took to be 200. The prior for
the frequencies ν was a uniform distribution between a user-
specified lower and upper limit: for the data sets discussed
in this paper, these limits were 0 and 200 µHz. The prior for
the amplitudes A was chosen to be an exponential distribu-
tion with unknown mean µ, which effectively becomes yet
another parameter to be inferred from the data. The priors
for µ, and the remaining parameters τ , σextra and τσ, all
positive parameters, were chosen to be scale-invariant pri-
ors of the form p(x) ∝ 1/x between generous upper and
lower limits. These priors correspond to uniform priors for
the logarithm of the quantities, and is appropriate for pos-
itive parameters with unknown order of magnitude. Since
the specification of the priors introduced an extra parame-
ter µ to be inferred, the additional parameter vector is now
extended to include µ. Thus, θ = {τ, σextra, τσ, µ}.

4 MARKOV CHAIN MONTE CARLO

The posterior distribution can be effectively sampled using
Markov Chain Monte Carlo (MCMC). In our implementa-
tion, we used the Metropolis algorithm (Neal 1993). Start-
ing from a model with a single mode of arbitrary frequency
and amplitude, and typical values for the additional param-
eters θ = {τ, σextra, τσ, µ}, we propose to either add a mode
(with its frequency and amplitude chosen from the prior),
remove a mode, move a mode’s frequency or amplitude, or
shift the value of one of the additional parameters such as
mode lifetime τ . Then, the proposed change is accepted with
a probability that depends on the relative likelihoods and
prior probabilities of the current and the proposed model.
Steps to models with higher posterior probability are always
accepted, steps to models with a lower posterior probabil-
ity are accepted with a probability given by the ratio of the
posterior probability of the proposed model to the proba-
bility of the current one. If a proposed change to the model
is rejected, the next model in the sequence is the same as
the previous one. When this algorithm runs, the output of
the code is a random sequence of models (sets of frequen-
cies and amplitudes), each possibly slightly different from
the last, where the diversity amongst the models is indica-
tive of the uncertainty of any inference. To save memory, a
subset of effectively independent models from this sequence

may be used for any subsequent calculations. This is called
“thinning the chain”. For an introduction to MCMC see
Neal (1993), for a description within a context similar to
this one, see B07. Unfortunately, the presence of the matrix
inverse and determinant in the likelihood function (Equa-
tion 5) limits this algorithm to time series with less than ∼
1500 points: even if the Cholesky decomposition is used to
calculate det(C) and C−1y this still involves a calculation
that takes time proportional to N3, where N is the num-
ber of points in the time series. For longer time series, other
approaches are necessary; alternatively, approximations to
Equation 5 may be possible, but are beyond the scope of
this paper. Additional efficiency can be obtained by using
slice sampling (Neal 2003) rather than Metropolis for the
moving of frequencies and amplitudes.

5 SIMULATED DATA

In this section, we demonstrate the use of our model on
simulated data. To illustrate the method we show its out-
put alongside output from other methods. We start with a
simple case of a time series containing one mode and subse-
quently expand to several modes. We generated a long time
series by numerically solving the ordinary differential equa-
tion 3 for a single mode of frequency 100 µHz and damp-
ing timescale (mode lifetime) 105 s = 1.1574 days or 10
oscillation periods. The amplitude of the signal was scaled
to a standard deviation of 2 ms−1 and then evaluated at
433 points in time, simulating 8 hours of nightly observa-
tions over an observing period of a month. In fact, the time
stamps were the same as those from the ξ Hydrae data ob-
served by Frandsen et al. (2002)). Thus, the simulated data
has the same window function as the actual ξ Hydrae data.
Measurement error was simulated by adding noise from a
Gaussian distribution with a standard deviation of 2.5 m
s−1.

The results obtained from analysing this data are dis-
played in Figure 3. The top panel shows the standard peri-
odogram. In the 2nd panel, the results from Bayesian sine-
wave fitting (B07) are shown. The B07 method is closely
related to the iterative sine-wave fitting algorithm CLEAN,
except that all frequencies are fitted simultaneously, and
quantitative uncertainties are easily obtained. The MCMC
approach of the B07 method actually returns a sample of
fitted models, not a single one, however the results can be
conveniently summarised by accumulating all detected fre-
quencies into a single container, and then plotting a his-
togram of the frequencies. This histogram is what appears
in the 2nd panel of Figure 3. In the 3rd panel, a similar his-
togram is plotted of the output from running MCMC with
the Gaussian Process likelihood introduced in this paper.
Finally, the “amplitude-weighted” lower panel is a similar
histogram, however in this case, before binning, each de-
tected frequency is given a weight proportional to its am-
plitude. Thus, the 3rd panel indicates our confidence in the
existence of a peak, while the 4th panel illustrates the esti-
mated amplitude of each peak, and can be considered our
version of an amplitude spectrum.

The MCMC run with the Gaussian Process likelihood
took about one hour to complete (although an MCMC run
never really finishes, just becomes more and more useful the
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longer it runs) on a modern PC with a 2 GHz dual core pro-
cessor, compared to 15 minutes for the Bayesian sine-wave
fitting and seconds for computing the periodogram. Note
that the periodogram would need further processing, such as
Lorentzian profile fitting (Gruberbauer, Kallinger, & Weiss
2008), to obtain a posterior distribution for the frequency
of the mode. Doing this would result in a posterior simi-
lar to the 3rd panel of Figure 3, but with a slightly larger
uncertainty due to the fact that the periodogram is not a
sufficient statistic.

The approach outlined in this paper clearly identifies
the presence of a mode with frequency 100.38 ± 0.48 µHz.
This is possible because the Gaussian process model takes
into account at the outset the fact that the predicted signal
due to a mode is not a pure sinusoid. Lacking this informa-
tion, the sine-wave fitting approach is forced to introduce
many peaks in order to explain the data (Figure 3). Note
that the alias peaks at 90 and 110 µHz are automatically
removed by the Gaussian process model. They are only par-
tially removed by the sinewave fitting, but would have been
completely removed had the signal been truly sinusoidal.

A further test of this method was done by testing it
on simulated data containing many modes. Specifically, we
generated simulated data from a star with 11 modes with
frequencies ranging from 50-150 µHz in steps of 10 µHz.
The time series contained 433 data points at the ξ Hydrae
times, as above. The results from analysing this simulated
data set are shown in Figure 4. While this result is less im-
pressive than the single mode case, the algorithm has still
successfully identified most of the input frequencies. There
are some anomalies, such as the merging of the peaks at
50 and 60 µHz, and the upward shift of the 80 µHz mode.
Note that the uncertainty about each frequency can be read
off the width of the peaks in the bottom panel of Figure 4.
Whilst our method provides cleaner results than the raw
periodogram, it is clearly not perfect. When interpreting re-
sults from this method, the summary plots like those shown
in Figure 4 may be used as a guide, but the full output of
the MCMC sample should be considered when the results
are critical.

The mode lifetime τ can be measured using our anal-
ysis, as it is just another parameter that gets estimated by
the MCMC. The posterior distribution for the mode life-
time is simply a histogram of the τ values encountered by
the MCMC chain. For the multiple-mode simulated data,
this distribution is shown in Figure 5. The true input value
of 105 s = 1.1574 days is recovered, albeit with a large un-
certainty, which is unsurprising given the time series is only
433 points in size. The distribution is asymmetric, largely
due to our choice of a 1/τ prior. Thus, conventional error
bars are inappropriate. An alternative statement of uncer-
tainty is the symmetric 95% credible interval for the mode
lifetime, which is [0.58, 2.10] days.

6 THE LARGE SEPARATION AND MODE

LIFETIME OF ξ HYDRAE

We now turn to the real observations of ξ Hydrae. The first
preliminary analysis of the data presented by Frandsen et al.
(2002) showed strong evidence for solar-like oscillations
based on the amplitude, the frequency range, and the fre-
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Figure 3. Results from analysing the single mode simulated data
with various methods. Bayesian sine-wave fitting (2nd panel) can
only explain the time series data by introducing many peaks,
whereas the actual simulation contained only a single input fre-
quency. Using the more realistic Gaussian Process likelihood, we
find that a single frequency can explain the data (lower two pan-
els).

quency separation of the extracted modes, which all agreed
with theoretical predictions. They assumed that the mode
lifetime was relatively long, in accord with the theoretical
calculations by Houdek & Gough (2002) (τ ≃ 17 days), and
hence their analysis relied on the conventional power spec-
trum and iterative sine-wave fitting (CLEAN). The value
they found for the dominant frequency separation was 7.1
µHz found between the strongest modes and 6.8 µHz found
from an autocorrelation of the power spectrum in the re-
gion of excess power. Subsequent studies of the same data
including extensive simulations by Stello et al. (2004) indi-
cated that the mode lifetime was significantly shorter than
the theoretical value (τ ≃ 2 days). This result was further
confirmed by Stello et al. (2006) using an independent ap-
proach which also confirmed the frequency separation found
by Frandsen et al. (2002), but they showed that the preci-
sion by which the frequency separation could be established
from the data was low due to the short mode lifetime. In
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Figure 4. Results from analysing simulated data with input fre-
quencies from 50-150 µHz in steps of 10 µHz. Most of the modes
are successfully identified, although some are spuriously shifted.
The dashed lines indicate the true input frequencies.
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Figure 5. The posterior distribution for mode lifetime τ , given
the simulated data set with 11 modes. The uncertainty is quite
large, but comfortably contains the true input value 105 s =
1.1574 days.

this section we will apply our new Gaussian Process method
to the ξ Hydrae observations and compare our results with
those found by the previous studies.

The results from running our code on the ξ Hydrae data
are displayed in Figures 6 and 7. The diversity of the mod-
els in Figure 6 indicates that the uncertainties are quite
large, and only a few modes are securely detected; this re-
sult agrees with the analysis of Stello et al. (2006). The large
uncertainty about the frequencies is confirmed by the lower

panel of Figure 7 - the area under the curve over any fre-
quency range is proportional to the probability that a mode
exists within that range, yet even the peaks in this plot are
only a factor of ∼ 2-3 higher than the background. There
is some suggestion of a regular pattern to the peaks. To
measure the large frequency separation, we took the power
spectrum of the lower panel of Figure 7 (a full Bayesian es-
timate of the large frequency separation, as done in B07, is
prohibitive in this case) in order to search for periodicities.
This power spectrum is displayed in Figure 8 and shows at
least three possible periodicities in the frequency pattern:
one at 6.3 µHz, another at 9.6 µHz and a third peak at
19.2 µHz (although this is simply a doubling of the 9.6 µHz
peak). Usually, if l = 0 and l = 1 modes are detected, the
dominant separation of modes is half of the large frequency
separation. This would imply that the large separation of
ξ Hydrae is 12.6, 19.2 or 38.4 µHz.

However, from the classical stellar parameters (luminos-
ity, mass, and effective temperature), the estimated large
separation is 7.0 µHz with about 10% uncertainty, using the
solar scaling presented in Kjeldsen & Bedding (1995). Also,
a stellar pulsation model that goes through the star’s po-
sition in the H-R diagram gives an average large spacing
of 7.2 µHz (Frandsen et al. 2002). Hence, the most plausi-
ble solution consistent with stellar astrophysics is that 6.3
µHz is the large separation, not half of the large separa-
tion. Thus, we conclude that radial modes contributed most
of the signal, non-radial modes may be excited with am-
plitudes below the detection threshold (Stello et al. 2006).
Although we have not formally modelled the uncertainty in
the large separation, inspection of Figure 6 shows that the
uncertainty must be large. This uncertainty may be reduced
with further observations, or perhaps by taking theoretical
models of the star into account as prior information (B07).
Our analysis used a uniform prior distribution for the fre-
quencies, but if a large ensemble of plausible stellar models is
produced, this would significantly reduce the range of possi-
ble frequency patterns and significantly improve the quality
of the data analysis. Performing such an analysis is beyond
the scope of this paper.

The posterior distribution for the mode lifetime of
ξ Hydrae is shown in Figure 9. The mode lifetime is found to
be very short, of order 1 day, albeit with a fairly large uncer-
tainty. An estimate with 1-σ error bars is log

10
(τ/1 day) =

0.03±0.21, and we find that τ lies between 0.41 and 2.65 days
with 95% posterior probability. This compares well with the
result of Stello et al. (2006) who estimated τ to be 2 days,
but also with a large uncertainty. This mode lifetime remains
much shorter than the theoretical predictions of 15-20 days
(Houdek & Gough 2002).

7 CONCLUSIONS

In this paper, we have described a new Bayesian method for
inferring the frequencies and amplitudes (with uncertain-
ties on everything, including the number of modes present)
of stellar oscillation modes from time series observations of
the radial velocity or the intensity of the star. The method
includes a Gaussian Process likelihood, which allows us to
take into account the fact that the predicted signature of
an oscillation mode is not exactly sinusoidal. Exactly how
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Figure 6. A sample of models from the posterior distribution for
the oscillation frequencies and amplitudes of ξ Hydrae. Clearly,
the data and prior information do not uniquely determine the cor-
rect model. However, any question about the frequencies present
can be answered probabilistically by calculating the fraction of
the output models that have the property that is being tested
for. The full sample is much larger than the nine models shown
here.
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Figure 7. Summarised results for the frequency spectrum of
ξ Hydrae.
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Figure 8. Power spectrum of the estimated frequency spectrum
(lower panel of Figure 7) of ξ Hydrae. A regular pattern to the
frequencies of the modes should show up as a peak in this plot.
There are high peaks at 6.3 µHz, 9.6 µHz and 19.1 µHz.
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Figure 9. The posterior distribution for mode lifetime τ for
ξ Hydrae. The probability distribution for τ is asymmetric, but
for log(τ) it is approximately Gaussian. Hence, we estimate
log10(τ/1 day) = 0.03± 0.21 (1-sigma error bars). τ lies between
0.41 and 2.65 days with 95% posterior probability.

non-sinusoidal the oscillation signals are, is described by the
mode lifetime, which is also estimated from the data, along
with a measurement of the uncertainty in this value.

The method was implemented using a Markov Chain
Monte Carlo algorithm and applied to two simulated data
sets. As expected, the method removed the extra peaks
caused by aliasing and the finite mode lifetime. We spec-
ulate that this method is, at the very least, comparable to
the results obtained by fitting the power spectrum, but is
more straightforward to interpret. Our method also avoids
any concerns about information loss due to the fact that the
power spectrum is not a sufficient statistic; whether this is
of significant practical importance depends on the sampling
of the time series, and the mode lifetime. For well-sampled
time series and long mode lifetimes, information loss is not
an issue.

Unfortunately, the method presented in this paper is
computationally intensive due to the presence of a matrix
inverse and determinant in the likelihood function. This lim-
its its practical use to small time series with less than about
1500 points. For time series with 1500-15000 points, the
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Bayesian sine wave fitting approach (B07) is recommended,
and for those with more than 15000 points, neither is com-
putationally feasible; periodogram-based analysis is clearly
the best choice here.

Applying the method to radial velocity data of the red
giant ξ Hydrae, we found that the mode lifetime lies be-
tween 0.41 and 2.65 days with 95% posterior probability.
The large frequency separation was estimated to be either
6.3 µHz or 9.6 µHz, with the former being the most plausible
given the star’s position in the Hertzsprung-Russell diagram.
C++ programs implementing the methods described in this
paper (both the Gaussian Process and the sinewave fitting
versions) are available upon request from B. J. Brewer.
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