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Gravitational field of twisted Baby Skyrmion

strings and loops

E. Šimánek ∗

Department of Physics, University of California, Riverside, California 92521

Abstract

We consider the gravitational field of infinite straight and stationary
twisted Baby Skyrmion cosmic string. Using the approximate solution of
Einstein equations, it is shown that the internal phase rotation (twist)
along the string axis is responsible for a long-range gravitational accel-
eration resembling that of massive cylindrical shell. We also study the
stability and gravitational field of circular loops. When the loop radius
becomes comparable with the string width, the rigidity energy tends to
stabilize small loops against radial collapse. The nucleon scale-toroidal
knot with Hopf charge Q = 1 is found to decay very rapidly on the scale
of the age of the universe due to low energy cost to flux lines crossings.
Such knot is therefore excluded from the dark matter scenario of Spergel
and Steinhardt. However, the Q = 0 loop, stabilized by rigidity, could
be a candidate for this scenario. In contrast, the electroweak strings are
prevented from intercommuting due to much larger energy cost to inter-
section. This makes them a possible candidate for the solid dark matter
scenario of Bucher and Spergel.

PACS number(s): 11.27.+d, 12.39.Dc, 98.80.Cq, 3.75.Lm

1 Introduction

A closed twisted Baby Skyrmion is a topological soliton in a O(3) sigma model
including the fourth order derivative Skyrme term. That a stable soliton of this
kind may exist was suggested some time ago by Faddeev [1]. This model is
widely known as a Skyrme-Faddeev model. More recently, it has been proposed
that this model arises as a dual description of strongly coupled SU(2) Yang-
Mills theory [2], in which the knotted strings may represent glueballs. The
gravitational field of such glueballs may be of interest in view of the possibility
that they can be a source of dark matter [3]. This is also suggested by previous
investigations of cosmological implications of vortons [4]. These are loops of
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superconducting cosmic strings [5] stabilized against collapse by angular mo-
mentum of its charge carriers. We note that cosmic vortons in electroweak scale
were suggested as a source cold dark matter in Ref. [6].

In the present paper we focus on the long-range gravitational force which a
twisted Baby Skyrmion string exerts on surrounding matter. We first calculate
the active gravitational mass of a straight string (Secs. 1-6). The circular
loop formed by bending the straight string is studied in Secs. 7 and 8. The
gravitational field of the loops is studied in Sec. 9 and Sec. 10 discusses possible
role of these loops in the cold dark matter problem.

Recently [7], we have studied the effect of internal time-dependent phase
rotation on the gravitational properties of a nonlinear sigma-model with the
single-axis anisotropic potential. The precession induced by this potential pre-
vents the lump from collapsing to a point. This method of stabilizing the lump
has been proposed by Leese [8] in a work yielding analytical solution for the
fields in the CP 1 formulation. Evaluating the energy-momentum tensor with
the use of this solution, and solving the Einstein equations in the weak field
approximation, we find that the time-dependent internal space rotation is re-
sponsible for a long-range gravitational acceleration similar to that of a rotating
cylindrical shell. Verbin and Larsen [9] studied previously this problem numer-
ically beyond the weak coupling approximation and found that, owing to the
finite frequency of spinning, the metric g00 is not asymptotically flat consistent
with the long-range gravitational potential found analytically in our paper [7].
For a string, situated parallel to the x3-axis, this result is expected by recalling
the breakdown of Lorentz-boost invariance in the x3− direction caused by the
time-dependence of spinning-string fields [7,10].

Obviously, this invariance can be also lost if the string fields acquire, while re-
maining time-independent, an x3−dependent phase factor. The resulting metric
g00 is then expected to yield a long-range gravitational potential. The numerical
results of Verbin and Larsen [9] are consistent with this expectation.

Our string model is obtained by trivially extending the 2+1 dimensional
Baby Skyrme model [11] to 3+1 dimensions. The static version of this string
model has been thoroughly studied in connection with the two-component Bose-
Einstein condensates by Cho et al [12]. In the time-independent version of
the two-dimensional Baby Skyrmion model, the size instability of the lump is
prevented by the presence in the Lagrangian of the Skyrme term which is fourth
order in the field variables. For the role, this term plays in Derrick’s scaling
argument for stability, we refer to the book by Manton and Sutcliffe [13].

2 Lagrangian and Stress-Energy Tensor

We write the Lagrangian density in the form [12] h̄ = c = 1

£ = η2
[1

4
gµν∂µ~φ.∂ν ~φ− κ2

8
(∂µ~φ× ∂ν ~φ).(∂

µ~φ× ∂ν ~φ)
]

(1)

where µ, ν = 0, 1, 2, 3. The basic field is a triplet ~φ ≡ (φ1, φ2, φ3) of real
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scalar fields satisfying the constraint ~φ.~φ = 1. The first term in Eq. (1) is
the Lagrangian density of the pure sigma-model string. The second term is the
planar analog of the three dimensional Skyrme term. We note that, in contrast
with the original Baby Skyrmion model [11,13], the anisotropic mass term is
not included in Eq. (1). As shown below, in the present model a mass term is
generated by the twist of the field. For a straight string along the x3− axis, we
make the following Ansatz [12] for the field

~φ =





sin f(r) cos(nϕ+mkx3)
sin f(r) sin(nϕ+mkx3)

cos f(r)



 (2)

where m and n are integers, 2π/k is the period in the x3-direction and

r = [(x1)2 + (x2)2]
1

2 .
The stress-energy tensor is obtained from the formula [7]

Tµν =
2

√

|g|
∂

∂gµν
(
√

|g|£) = 2
∂£

∂gµν
− gµν£ (3)

Using the Lagrangian density (1), the (right hand side) rhs of Eq. (3) yields

Tµν =
1

2
η2
[

∂µ~φ.∂ν ~φ− κ2(∂µ~φ× ∂β~φ).(∂ν ~φ× ∂δ~φ)g
βδ
]

− gµν£ (4)

The metric respecting the cylindrical symmetry of the string, and the twist
along the x3-axis is written as

ds2 = g00(r)(dx
0)2 − Ω2(r)

[

(dx1)2 + (dx2)2
]

+2
[

g31(~x)dx
3dx1 + g32(~x)dx

3dx2)
]

+ g33(r)(dx
3)2 (5)

The components of the metric tensor are obtained by solving the Einstein
equation [14]

Rµν = −8πG
(

Tµν − 1

2
gµνT

)

(6)

where Rµν is the Ricci tensor, Tµν is the stress-energy tensor and T = T µ
µ .

In the weak field approximation, the stress-energy tensor is obtained from
Eq. (4) by using the flat space metric ηµν = diag (1,−1,−1,−1). Defining the
quantity

Sij = (∂i~φ× ∂j ~φ)
2 (7)

we have

T00 = −£ (8)

T11 =
1

2
η2[(∂1~φ)

2 + κ2(S12 + S13)] +£ (9)
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T22 =
1

2
η2[(∂2~φ)

2 + κ2(S21 + S23)] +£ (10)

T33 =
1

2
η2[(∂3~φ)

2 + κ2(S31 + S32)] +£ (11)

3 Active Gravitational Mass

We first consider the 00-component of Eq. (6). We write gµν = ηµν + hµν .
In the weak field limit, hµν << gµν , we have

R00 = −1

2
(∂2

1 + ∂2
2)h00 = −1

2
▽2 h00 (12)

On the rhs of Eq. (6), we need an expression for τ = T00 − 1
2T . Using Eqs.

(1) and (8-11), we obtain

τ =
η2κ2

4

(

S12 + S13 + S23

)

(13)

With the Ansatz (2), we obtain from Eqs. (7) and (13)

τ(r) =
1

4
η2κ2(

n2

r2
+m2k2)(f ′ sin f)2 (14)

where f ′ = df/dr. We note that this result is correct only in the presence
of the twist. If mk = 0, the model described by Eq. (1) is unstable unless it is
augmented by an anisotropic mass term (see Ref. [13]).

Using Eqs. (6), (8) and (14), the Einstein equation for h00 becomes

▽2 h00 = 16πGτ(r) (15)

This equation can be cast in the form of a Newton-Poisson equation for the
gravitational acceleration ~g = −~▽φg , where the gravitational potential φg is
given φg = 1

2h00 [7]. Thus, we get from Eq. (15)

~▽.~g(r) = −4πGρa(r) (16)

where ρa(r) = 2τ(r) is the active gravitational mass density. Equation (16)
can be solved for the radial component g(r) of ~g(r) using the Gauss’ law yielding

g(r) = −8πG

r

∫ r

0

τ(r)rdr (17)

The profile function f(r) satisfies a nonlinear differential equation which is
obtained by minimizing the static energy

ǫ = 2π

∫

∞

0

T00(r)rdr (18)

Using Eqs. (1), (2) and (8), we have
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T00(r) =
1

4
η2
[

f ′2 +
(n2

r2
+m2k2

)(

sin2 f
)(

1 + κ2f ′2
)]

(19)

This leads to the following variational equation for the profile function

f ′′ +
1

r
f ′ −

(n2

r2
+m2k2

)[1

2
sin 2f − κ2

(1

2
f ′2 sin 2f + f ′′ sin2 f

)]

−κ2
(n2

r2
−m2k2

)f ′ sin2 f

r
= 0 (20)

In what follows, we are interested in the asymptotic behaviour of the function
(17) for large r. If the function τ(r) exhibits an exponential decay, then for
r >> lD where lD is the decay length, the upper limit of the integral on the rhs
of Eq. (17) can be replaced by infinity. In this case, the acceleration g(r) ∼ 1/r
which corresponds to the long-range gravitational field of a massive rod. Owing
to the boundary condition f(∞) = 0, the values of f(r) for large r are small
and satisfy the linearized form of Eq. (20) given by

r2f ′′ + rf ′ − (n2 +m2k2r2)f = 0 (21)

The solution of this equation is the modified Bessel function of order n

f(r) ∼ Kn(mkr) (22)

The leading term of the asymptotic expansion of this function for large r is

f(r) ∼ A√
r
exp(−mkr) (23)

Hence, the decay length lD ∼ 1/mk and the asymptotic form of Eq. (17),
valid for r >> 1/mk, is

g(r) =
2Gma

r
(24)

where

ma ≃ 4π

∫

∞

0

τ(r)rdr = πη2κ2

∫

∞

0

(n2

r2
+m2k2

)(

f ′ sin f
)2

rdr (25)

This expression for the active gravitational mass can be rewritten in a form
showing that ma is proportional to m2k2. In the next section, we establish the
following condition for the size stability of the string

κ2

∫

∞

0

(n2

r2
f ′2 sin2 f

)

rdr = m2k2
∫

∞

0

(

sin2 f
)

rdr (26)

Using this relation in Eq. (25), we obtain

ma ≃ πη2m2k2
∫

∞

0

(

1 + κ2f ′2
)

r sin2 fdr (27)
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4 Spatial Rescaling and Stability Condition

Starting from Eqs. (1) and (8), we write the energy (per unit length in the x3

direction)

ǫ =

∫

T00d
2x

=
η2

4

∫

[

(∂1~φ)
2 + (∂2~φ)

2 + (∂3~φ)
2 + κ2(S12 + S13 + S23)

]

d2x (28)

We now consider the transformation of this expression under a spatial rescal-
ing in the x1, x2-space [13]

x1 → y1 = µx1, x2 → y2 = µx2, x3 → y3 = x3, d2x =
1

µ2
d2y (29)

This implies a following transformation for the fields

∂1~φ(~x) → µ
∂~φ(~y)

∂y1
, ∂2~φ → µ

∂~φ(~y)

∂y2
, ∂3~φ → ∂~φ(~y)

∂y3
(30)

For the Skyrme terms, we obtain

S12 =
(

∂1~φ× ∂2~φ
)2

→ µ4
(∂~φ(~y)

∂y1
× ∂~φ(~y)

∂y2

)2

= µ4S12(~y) (31)

and

{

S13 → µ2S13(~y)

S23 → µ2S23(~y)

}

(32)

Applying the maps (29)-(32) in Eq. (28), we obtain the rescaled energy

ǫ(µ) =
η2

4

∫

[( ∂~φ

∂y1

)2

+
( ∂~φ

∂y2

)2

+
1

µ2

( ∂~φ

∂y3

)2

+ κ2µ2S12(~y)

+κ2S13(~y) + κ2S23(~y)
]

d2y (33)

From the condition that energy is stationary under spatial rescaling, we
obtain

dǫ(µ)

dµ
= − 2

µ3

∫

(∂3~φ)
2d2y + 2µκ2

∫

S12(~y)d
2y = 0 (34)

which implies

∫

(

∂3~φ
)2

d2y = κ2

∫

(

∂1~φ× ∂2~φ
)2

d2y (35)

Using Ansatz (2) for the fields, the stability condition (35) takes the form
given in Eq. (26).
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5 Relation of String Width to Twist Rate

A qualitative understanding of the profile funcion f(r) can be obtained by con-
sidering Eq. (20) for r → 0. Introducing the Ansatz

f(r) = π − Crp (36)

into Eq. (20) and keeping only the leading terms for r ≃ 0, we have

C
(

n2 − p2
)

rp−2 + Cm2k2rp − 2κ2C3n2
(

p2 − p
)

r3p−4 = 0 (37)

For n = 1, we obtain p = n = 1. In what follows, we confine ourselves to
the case n = 2, since it allows us to make further progress without resorting to
numerical work. In this case, the first term in Eq. (37) implies p = n = 2. The
vanishing of the sum of the second and third terms yields for p = 2

C2 =
m2k2

16κ2
(38)

Hence, the profile function for n = 2 goes as

f(r) = π − mk

4κ
r2 (39)

This suggests that the width λ is related to the twist rate mk as follows

λ2 ∼ κ

mk
(40)

To substantiate this prediction, we make a variational Ansatz for f(r) of the
form

f(r) = cos−1 r4 − λ4

r4 + λ4
(41)

where λ is the variational parameter to be determined from the stability
condition (26). We note that Eq. (41) describes the n = 2 lump solution of
radius λ in the sigma model. Expanding the function (41) into Taylor series
about r = 0, we have

f(r) ≃ π − 2r2

λ2
(42)

Comparing this result with the Eq. (39), we obtain λ2 = 8κ/mk.
We now turn to the variational estimate of λ. According to the stability

condition (26), the soliton has a preferred size at which the contribution of the
Skyrme term is equal to the effective anisotropy energy induced by the twist.
Introducing the Ansatz (41) into Eq. (26), and performing the r− integrations,
we obtain the following results

κ2n2

∫

∞

0

f
′2 sin2 f

r2
rdr =

πκ2n2

λ2
(43)
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and

m2k2
∫

∞

0

r sin2 fdr =
m2k2πλ2

2
(44)

We see that the Skyrme contribution (43) goes as λ−2. Thus it favors large
values of λ. On the other hand, the anisotropy term (44) favors small λ. Eq.
(26) describes the balance between these tendencies yielding a relation (valid
for n = 2)

λ2 =

√
8κ

mk
(45)

For n = 1, the profile function is

f(r) = cos−1 r2 − λ2

r2 + λ2
(46)

For this function, the effective anisotropy energy diverges owing to the power
law decay for large λ.

Let us estimate the expression (27) for n = 2. Using the profile function
(41), we obtain

ma = πη2m2k2
(πλ2

2
+

8κ2

3

)

(47)

Now, λ is not a free parameter, rather it is fixed to the preferred value given
by Eq. (45). Using this value in Eq. (47), the final expression for the active
gravitational mass per unit strength of the string becomes

ma = πη2
(

π
√
2|u|+ 8

3
u2

)

(48)

where we introduced the dimensionless parameter

u = κmk (49)

6 Limit of Pressureless String

From the expressions (48) and (49) it is apparent that a nonzero value of ma is
obtained only if the twist rate mk and the magnitude of the Skyrme term κ are
both nonzero. We now show that the magnitude of string pressure decreases
on increasing the parameter u. For a certain critical value of u, the pressure
vanishes and the string turns into a pressureless gas in analogy with the vortons
[15].

For a string situated parallel to the x3-axis, the pressure in the x3-direction
is given by

p =

∫

T33d
2x (50)
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Using Eqs. (1) and (11), we have

T33 =
η2

4

[

− (∂1~φ)
2 − (∂2~φ)

2 + κ2(S13 + S23)− κ2S12 + (∂3~φ)
2
]

(51)

Performing the transverse integral of this equation, and using the size sta-
bility condition (35), we obtain

p =
−η2

4

∫

[

(∂1~φ)
2 + (∂2~φ)

2 − κ2(S13 + S23)
]

d2x (52)

Since the expression κ2(S13 + S23) is proportional to u2, we see from Eq.
(52) that |p| decreases as u increases.

Using the Ansatz (2), we have

∫

[(

∂1~φ
)2

+
(

∂2~φ
)2]

d2x = 2π

∫

∞

0

(

f ′2 +
n2

r2
sin2 f

)

rdr (53)

and

κ2

∫

(

S13 + S23

)

d2x = 2πu2

∫

∞

0

(

f ′2 sin2 f
)

rdr (54)

Introducing Eqs. (53) and (54) into (52), we obtain the condition for van-
ishing pressure in a general form

∫

∞

0

(

f
′2 +

n2 sin2 f

r2

)

rdr = u2

∫

∞

0

(

f
′2 sin2 f

)

rdr (55)

Confining ourselves to the n = 2 case, we use in Eq. (55) the expression (41)
and obtain the critical value of u for which the pressure vanishes

ucrit =
√
3 (56)

Introducing this quantity into Eq. (48), we obtain the upper bound for the
active gravitational mass

ma(u = ucrit) = 49η2 (57)

It is interesting to compare the expression (48) and (57) with the u-dependence
of the energy, per unit length of the string, ǫ, given by Eq. (18). Using the size-
stability condition (26), we obtain from Eqs. (18) and (19)

ǫ =
πη2

2

∫

∞

0

(

f ′2 +
n2

r2
sin2 f + 2m2k2 sin2 f + κ2m2k2f ′2 sin2 f

)

rdr (58)

Performing the transverse integrations with the n = 2 profile function f(r)
(given in Eq. (41)), we obtain
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ǫ = η2
(

4π +
√
2π2u+

4π

3
u2

)

(59)

For u = ucrit =
√
3, this equation yields the critical energy ǫcrit correspond-

ing to the case of vanishing string pressure. It is interesting that for this value
of u, the critical active gravitational mass ma is, according to Eq. (57), exactly
equal to ǫcrit. This conclusion follows more directly by considering the sum

ǫ+ p =
η2κ2

2

∫

(S12 + S13 + S23)d
2x = ma (60)

where the first equality is the sum of expressions (28) and (52), and the
second is the consequence of Eqs. (13) and (25).

7 Stability and Radius of a Circular Loop

Consider a circular loop of radius R much larger than the thickness of the string
λ. The loop is created by bending the straight string and connecting smoothly
the periodic ends. A large loop is stabilized by the Skyrme energy and the
twist along the x3-axis. This leads to a repulsive centrifugal stress opposing the
centripetal force due to the tension. For small loops (R/λ ≃ 1), the ridigity due
to elastic bending energy provides an additional loop stabilization mechanism.
Discussion of this effect is postponed to Sec. 8.

To study the classical stability of the loop, we confine ourselves to the n = 2
case and use Eq. (59) to write the energy of the loop in the form

ǫloop = 2πRǫ = 2πRη2
[

4π + π2
√
2mkκ+

4π

3

(

mkκ
)2]

(61)

where the definition u = mkκ is invoked. To proceed, we need to relate the
linear momentum mk to the radius R of the loop. From Eq. (2), we see that the
transverse fields pick up a phase factor mk per unit length along the coordinate
x3. Thus, if we denote by ϑ the phase factor for length x3, we have mk = ∂3ϑ.
Next, we relate the winding number density ∂3ϑ to the topological number N
defined as [5]

N =
1

2π

∮

dl∂lϑ (62)

For a circular loop of radius R, we obtain from Eq. (62) N = R∂3ϑ yielding

mk =
N

R
(63)

Introducing this relation into the Eq. (61), we obtain the loop energy as a
function of the loop radius

ǫloop = 8π2η2
(

R +
κ2N2

3R

)

+K (64)
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where K is the R-independent contribution given K = 2
3

2 π3η2Nκ. The
expression (67) has a minimum at the preferred radius Re given by

R2
e =

κ2N2

3
(65)

Using Eqs. (63) and (65), the equilibrium value of the parameter u becomes

ue =
Nκ

Re

=
√
3 (66)

Recalling Eq. (56), we see that ue = ucrit. Thus, the equilibrium value of
u that ensures the stability of the ring is equal to the critical value u for which
the pressure p vanishes.

We now consider stability of a loop of small radius Re. In this case, there is
a problem that is revealed by considering the ratio Re/λ. Using Eqs. (45) and
(65), we obtain Re/λ ≃ 0.45N . This indicates that, for N = 1, the loop tends
to collapse under the centripetal force due to string tension.

8 Rigidity of Small Loops

In what follows, we show that an enhancement of Re/λ is obtained from a
model in which the string energy is augmented by a contribution due to rigidity.
To estimate this contribution, we follow the analogy with elasticity theory of
bending rods [16]. Thus, we picture the rigid finite width-string as a bundle of
filamentary lines each representing a flexible zero width-string.

Due to bending, lines on the convex side of the string are extended, whereas
those on the concave are compressed. These deformations are described by the
relative extension (dx3′ − dx3)/dx3 = u33 where u33 is the strain tensor. For a
simple extension, we can use Hooke’s law to find the stress tensor[16]

σ33(r, φ) = T00(r)u33(r, φ) (67)

where, r, φ are the polar coordinates in the cross section of the string. The
elastic energy per unit volume of the string is

V (r, φ) =
1

2
σ33u33 =

1

2
T00(r)u

2
33(r, φ) (68)

Integrating this expression over the cross section, we obtain the bending
energy per unit length of the string

ǫb =
1

2

∫

∞

0

rdr

∫ 2π

0

dφT00(r)u
2
33(r, φ) (69)

Evaluating the angular integral of u2
33 with use of the complete elliptic in-

tegral of second kind and limiting ourselves to the lowest power in r/R, we
obtain
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I(r) =

∫ 2π

0

dφu2
33(r, φ) ≃

πr2

R2
(70)

Introducing this result into Eq. (69), the bending energy becomes

ǫb ≃
1

2

∫

rI(r)T00(r)dr =
π

2R2

∫

∞

0

T00(r)r
3dr (71)

The bending energy leads to a modification of the transverse stability con-
dition (35). As a consequence, the equation (45) is also modified leading to a
smaller value for the string width. Applying the spatial rescaling (29) to the
energy ǫ+ ǫb, we obtain

∫

∞

0

(∂3~φ)
2rdr = κ2

∫

∞

0

(∂1~φ× ∂2~φ)
2rdr

− 1

4R2

∫

∞

0

[

(∂1~φ)
2 + (∂2~φ)

2 + κ2(S13 + S23)
]

r3dr (72)

where the second integral on the rhs represents the modification of the con-
dition (35) caused by bending. We have neglected the contribution to this

integral due to the term (∂3~φ)
2. This contribution is logarithmically divergent

and a cutoff radius of order R must be imposed. Then it turns out that its
magnitude is less than 1/10 of that due to the second integral on the rhs of Eq.
(72). Evaluating the integrals in Eq. (72) for the n = 2 Ansatz (41), and using
the condition (63) for N = 1, we obtain the string width in the presence of a
bend as a function of the loop radius

λ2
b(R) =

2κR2

(32R
2 + 1

4κ
2)

1

2

(73)

If we compare this result with Eq. (45), we see that λb < λ. This is expected
as the bending energy is decreased on decreasing the width of the string.

Now, we consider the effect of the bending energy on the stability of the
loop. Substituting into the rhs of Eq. (71) the quantity T00, and using the
transverse stability condition (72), we obtain the total energy per unit length

ǫtot = ǫ+ ǫb =
πη2

2

∫

∞

0

[

(∂1~φ)
2

+(∂2~φ)
2 + 2(∂3~φ)

2 + κ2(S13 + S23)
]

rdr

+
πη2

8R2

∫

∞

0

{

2
[

(∂1~φ)
2

+(∂2~φ)
2 + κ2(S13 + S23)

]

+
[

(∂3~φ)
2 + κ2S12

]}

r3dr (74)

Evaluating the integrals in this equation for n = 2 and N = 1, we are led to
the following result for the total energy per unit length

12



ǫtot =
πη2

2

(

8 + πm2k2λ2
b +

8

3
m2k2κ2

)

+
πη2

R2

(

πλ2
b +

π

4
m2k2κ2λ2

b +
4

3
κ2

)

+
πη2

8R2
m2k2λ4

b

[

log(1 +
R4

λ4
b

)− R4

λ4
b

(

1 +
R4

λ4
b

)

−1]

(75)

To simplify numerical calculations, we neglect the small last term on the rhs
of this eqation and obtain the loop energy in the form

ǫloop ≃ 2πRη2
[

4π +
3π2κ

(32R
2 + 1

4κ
2)

1

2

(

1 +
κ2

6R2

)

+
8πκ2

3R2

]

(76)

The minimum of this expression occurs for the preferred radius Re satisfying
the following equation

4 ≃ 8κ2

3R2
e

+
3πκ3

4(32R
2
e +

1
4κ

2)
3

2

(

1 +
κ2

6R2
e

)

(77)

A numerical solution of this equation yields R2
e ≃ κ2. Using this value in Eq.

(73), we obtain λ2
b ≃ 1.5κ2. From these results, we obtain the ratio Re/λb ≃ 0.81

showing a substantial enhancement in comparison with Re/λ ≃ 0.45 obtained
from the calculation which disregards the effect of the bending energy.

Let us compare ǫloop obtained from Eq. (76) with the numerical results
obtained in Ref. [17] for the minimum energy configurations characterized by
Hopf charge Q. According to Ref. [12], the knot quantum number Q = mn.
Since 2π/k is one period in the x3 coordinate, we have k = 1/R which implies
m = N . Thus, the loop with N = 1, n = 2 has Hopf charge Q = 2.

The numerical result for the Q = 2 soliton energy is 835 e.u. [17]. The
energy unit e.u. = Fπ/4e = κη2/4. By fitting the parameters Fπ and e to
the baryon masses, Adkins, Nappi, and Witten [18] find Fπ = 129 MeV and
e = 5.45. Thus the energy unit used in Ref. [17] is e.u. = 5.9 MeV and the
Q = 2 soliton energy is E = 4.92 GeV. This should be compared with our result
for the loop energy 295κη2 ≃ 7 GeV. This is consistent with the numerical
results of Gladikowski and Hellmund [19] who also found that the energy of the
configuration with N = 2, n = 1 is lower than that with N = 1, n = 2.

9 Gravitational Field of a Circular Loop

Starting with the Einstein equation in three spatial dimensions, we introduce
the gravitational potential φg = h00/2 and obtain from the 00-component of
Eq. (6) a Newton-Poisson equation with the solution

φg(~x) = −2G

∫

τ(~x′)

|~x− ~x′|d
3x′ (78)
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where τ(~x′) is given in Eq. (13). Developing 1/|~x−~x′| in a Taylor series, we
obtain

φg(~x) = φ0(~x) + φ2(~x) + ... (79)

where

φ0(~x) = −2G

x

∫

τ(~x′)d3x′ = −MaG

x
(80)

where x is the distance from the loop center.
The quantity Ma is the total active gravitational mass contained in the

integration volume. Owing to the rotational symmetry of the loop, there are
no odd terms in the expansion (79). In what follows, we assume that x ≫ R.
Then φ0(~x) dominates this expansion.

For a large loop of radius R, we have Ma = 2πRma, where ma is the active
gravitational mass density per unit length of the string discussed in Sec. 3.
Using Ansatz (41) on the rhs of Eq. (25), we obtain

ma = πη2κ2
(4π

λ2
+

8m2k2

3

)

(81)

Using in Eq. (81) the equilibrium values ue =
√
3, Re = Nκ/

√
3, and the

quantity λ2 given in Eq.(45) we obtain ma ≃ 49η2. The active gravitational
mass of the loop is then equal to Ma = 2πRema ≃ 178Nκη2.

For a small loop, we need to calculate ma from Eq. (25) with τ(r) that is
modified by the bending energy. The gravitational mass per unit length of a
rigid string is given by

m̄a ≃ 4π

∫

∞

0

τ̄ (r)rdr = 2π

∫

∞

0

(T̄00 + T̄11 + T̄22 + T̄33)rdr (82)

where T̄ii equals Tii renormalized by the bending energy ǫb. Thus, we have

2π

∫

∞

0

T̄00rdr = 2π

∫

∞

0

T00rdr + ǫb (83)

and

2π

∫

∞

0

T̄33rdr = 2π

∫

∞

0

T33rdr − ǫb (84)

Note that the lhs of Eq.(84) is the net pressure integrated over the cross
section of the rigid string. The second term on the rhs is the additional pressure
due to the stress tensor σ33 given in Eq.(67). This leads to the identity

∫

∞

0

rdr

∫ 2π

0

σ33(r, φ)dφ ≃ π

2R2

∫

∞

0

T00(r)r
3dr = ǫb (85)

Next, we consider the remaining terms of Eq. (82). Using Eqs. (9) and (10),
we have
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2π

∫

∞

0

(

T̄11 + T̄22

)

rdr = πη2
∫

∞

0

[

κ2S12 − (∂3~φ)
2
]

rdr (86)

For a flexible string, the rhs of Eq.(86) vanishes owing to the stability con-
dition (35). For a rigid string, this condition is replaced by Eq.(72) so that the
rhs of Eq. (86) is nonzero and given by

2π

∫

∞

0

(

T̄11 + T̄22

)

rdr =
πη2

4R2

∫

∞

0

[

(

∂1~φ
)2

+
(

∂2~φ
)2

+ κ2
(

S13 + S23

)

]

r3dr (87)

Using Eqs. (11), (83), and (84), we have

2π

∫

∞

0

(

T̄00 + T̄33

)

rdr = πη2
∫

∞

0

[

(

∂3~φ
)2

+ κ2
(

S13 + S23

)

]

rdr (88)

Introducing Eqs. (87) and (88) into (82), yields

m̄a = πη2
∫

∞

0

[

(

∂3~φ
)2

+ κ2
(

S13 + S23

)

]

rdr

+
πη2

4R2

∫

∞

0

[

(

∂1~φ
)2

+
(

∂2~φ
)2

+ κ2
(

S13 + S23

)

]

rdr (89)

Performing the integrations over r with use of Ansätze (2) and (41), Eq.
(89) yields

m̄a = η2
[

N2k2
(π2λ2

b

2
+

8πκ2

3
+

π2κ2λ2
b

4R2

)]

+ η2
π2λ2

R2
e

(90)

From the numerical solution of Eq. (77), we have k2λ2
b = λ2

b/R
2
e
∼= 1.5, k2κ2 ≃

1, and λ2
b/κ

2 ≃ 1.5. Introducing these values into Eq. (90), we have m̄a ≃ 34η2.
Consequently, the active gravitational mass of the N = 1, n = 2 loop, M̄a =
2πRem̄a, for the nucleon scale is given by M̄a ≃ 214κη2 ≃ 5 GeV. This is to be
compared with the net mass of the N = 1, n = 2 loop which according to Eq.
(76) amounts to ǫloop ≃ 295κη2 ≃ 7 GeV. The decrease of M̄a relative to ǫloop
is to be attributed to the rigidity of the small loops.

10 Knots and Dark Matter

Knowing that the twisted Baby Skyrmion string and loops produce a nonzero
long range gravitational acceleration, prompts us to look into the cosmological
implications of the model studied in this paper. In what follows, we focus on
the question if the smallest rings (knots) could be a candidate for the cold dark
matter.
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Spergel and Steinhardt [3] proposed a scenario in which the dark matter
particles are self-interacting so that they have large elastic scattering cross-
section but negligible annihilation with a lifetime larger than the present age
of the universe. We note that the model described by Lagrangian (1) is also
self -interacting owing to the presence of the Skyrme term that is fourth order
in the field variables. As pointed out in Ref. [12], this term is responsible for
the topological stability of the rings coming from linking the two color magnetic
fluxes. In the scenario of Ref. [3], the mean-free path of the particles should
be larger than 1 kpc but smaller than about 1 Mpc. This implies a range
8×10−(25−22) cm2/GeV for the ratio σ/m where σ is the scattering cross section
and m is the mass of the dark matter particles.

We now examine this ratio for the nucleon scale knot with N = 1, n = 1.
According to Ref. [17], the numerical mass for this knot is m ≃ 504 e.u. ≃ 3
GeV. Then the corresponding Compton wavelength is λc = 4 × 10−14 cm. For
a rough estimate of the scattering cross-section, we follow Ref. [3] and write
σ = 4πa2 where the scattering length a ≃ 100λc.Then σ ≃ 2 × 10−22 cm2,
and σ/m ≃ 6.6 × 10−23 cm2/GeV, a value that is within the range, σ/m ≃
8× 10−(25−22) cm2/GeV prescribed by Ref. [3].

Next, we consider the electroweak knot for which the energy unit is much
larger than that for the nucleon scale (e.u.≃ 5.9 MeV). Using the relations
η2κ2 = 2/g2 and MW ≃ ηg/2 where g = 3h̄c/2 is the coupling constant, and
MW ≃ 80 GeV is the mass of the W boson, we obtain η2κ2 ≃ 5.5h̄c and κ ≃
1.74 × 10−16cm. Thus, the electroweak energy unit is (e.u.)ew ≃ η2κ/4 ≃ 155
GeV. Consequently, the mass of the electroweak knot, with N = 1, n = 1[17], is
m ≃ 504(e.u.)ew ≃ 7.8× 104 GeV. Taking σ = 4πa2 where a ≃ 102κ, we obtain
σ/m ≃ 5 × 10−32 cm2/ GeV, a value that is about 10−7 times the lower limit
of the prescribed range [3]. Thus, owing to its large mass, the N = 1, n = 1
electroweak knot cannot be a candidate for the dark matter particle in the
scenario of Ref. [3].

The circular loops studied in Secs. 7 and 8 are classically stable implying
that the topological invariant N is conserved. However, this is not strictly true
quantum mechanically, since there is a possibility of N → N − 1 transitions due
to quantum tunneling. This process involves migration across the loop of the
flux line that is associated with the current along the loop. We now consider
the circular N = 1, n = 1 loop decaying into the N = 0, n = 1 loop. To estimate
the decay rate, we use the WKB formula 1/τ ≃ ω0 exp (−SE) where ω0 is the
rate of hitting the barrier and SE ≃ (2κ/h̄)

√
2M∆ǫ. Here M is the mass of

the migrating line and ∆ǫ ≃ ǫtotκ is the energy of a loop segment of width κ.
For N = 1, n = 1, we obtain ω0 ≃ c/(

√
πκ), M ≃ 17η2κ/c2 and ∆ǫ ≃ 20η2κ,

implying SE ≃ 52η2κ2/(h̄c).
For the nucleon scale loop, we have η2κ2 ≃ 7.1× 10−2h̄c, yielding SE ≃ 3.7.

With κ ≃ 4× 10−14cm, the decay time is τ ≃ 2× 10−24 exp (SE) s ≃ 8× 10−23s
which is extremely short in comparison with the age of the universe 1017s. This
excludes the N = 1, n = 1 knot from being the dark matter candidate within
the scenario of Ref. [3].

This prompts us to examine the stability of the N = 0 loops. Since the anal-
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ysis of the N = 0, n = 1 case is complicated by the presence of logarithmically
divergent integrals, we confine ourselves to the N = 0, n = 2 case.

First, we address the transverse stability condition for this case. Letting
m = N = 0 in Eq. (72), and evaluating the integrals with the Ansatz (41), we
obtain λ2

b ≃ 2Rκ. Next, we consider the loop energy ǫloop ≃ 2πRǫtot, where
ǫtot is given by the expression (75) with m = 0 and λ2

b ≃ 2Rκ. In this way, we
obtain

ǫloop = 8π2η2
(

R+ κ/2 + κ2/(3R)
)

(91)

There is a remarkable similarity of this result to the expression (61). We see
that the third term in the parenthesis of (91) now plays the role of the centrifugal
energy which stabilizes the loop against a radial collapse. The expression (91)
has a minimum at the preferred radius given by Re ≃ κ/

√
3. Using this result

in Eq. (91), we obtain ǫloop ≃ 130η2κ. For the nucleon scale loop, this implies a
mass ≃ 3 GeV. The N = 0, n = 1 loop is expected to have a lower mass owing
to the decreased kinetic energy of the currents (see Eq. (19)). With a mass that
is smaller than 3GeV, the ratio σ/m is expected to be within the range required
by the dark matter scenario of Ref. [3].

We should now inquire about the gravitational mass of the N = 0, n = 2
loop. Letting N = 0 in Eq. (90), we have m̄ ≃ π2η2λ2

b/R
2
e. Using λ2

b ≃ 2Reκ
and R2

e ≃ κ2/3, we obtain from this result m̄a ≃ 34η2. Then the gravitational
mass of the N = 0, n = 2 loop becomes M̄a = 2πRem̄a ≃ 124η2κ. Hence, for the
nucleon scale, η2κ ≃ 23.6 MeV, we have M̄a ≃ 2.9 GeV. Thus the gravitational
mass of the N = 0, n = 2 loop is practically equal to the entire mass of the loop
ǫloop ≃ 3.1 GeV. Consequently, these loops could play a role of the dark matter
particles in the scenario of Ref. [3].

Although, the electroweak knots are too heavy yielding a ratio σ/m that is
seven orders magnitude below the range given in Ref. [3], they may still be of
cosmological relevance. We recall that in the electroweak scale, the parameters
η2κ2 ≃ 5.5h̄c and κ ≃ 1.7 × 10−16 cm so that the action SE ≃ 286. Thus, the
decay time of the N = 1, n = 1 electroweak knot is τ ∼ 10113 s which is much
longer than the age of the universe. This is evidently due to the high energy
cost for the intersection of the flux lines involved in the N → N − 1 transition.

For the same reason, the long electroweak twisted Baby Skyrmion strings are
prevented from intercommuting. This could lead to the formation of a frustrated
string network. In an interesting paper, Bucher and Spergel [20] proposed that
a solid dark matter component could arise from frustrated networks of non-
Abelian cosmic strings. Owing to the finite shear modulus, this solid component
can have a negative pressure without instabilities that are expected for a perfect
fluid. Perhaps, the non-Abelian strings studied in the present paper could play
a role in the theory of Ref. [20].
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