Dimension reduction in representation of the data

A. G. Ramm \dagger
\dagger Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA
email: ramm@math.ksu.edu

Abstract

Suppose the data consist of a set S of points $x_{j}, 1 \leq j \leq J$, distributed in a bounded domain $D \subset R^{N}$, where N is a large number. An algorithm is given for finding the sets L_{k} of dimension $k \ll N, k=1,2, \ldots K$, in a neighborhood of which maximal amount of points $x_{j} \in S$ lie. The algorithm is different from PCA (principal component analysis).

Key words: Data representation; data analysis; data mining. MSC: 62H30, 68T10, 68U10

1 Statement of the problem and the description of the algorithm

In many applications the data are presented as a set S of points $x_{j}, 1 \leq j \leq J$, $x_{j} \in D \subset R^{N}$, where J is a very large number, D is a known bounded domain, for example, a box, and N is a large number. It is useful practically to have a more economical data representation, if this is possible. For instance, there may be a case when the data points are concentrated in a neighborhood of some set L of dimension $k \ll N$. In this case one would like to find this set. This problem is an old one. One widely known version of it is the regression problem. In its simplest formulation the regression problem consists of finding a straight line $y=a_{1} x+a_{2}$ which represents the set of data points $\left\{\xi_{j}, \eta_{j}\right\}_{j=1}^{J}$, in R^{2} optimally in the sense $\sum_{j=1}^{J}\left(a_{1} \xi_{j}+a_{2}-\eta_{j}\right)^{2}=\min$, where the minimization is taken with respect to a_{1} and a_{2}. This problem is well studied in statistics. Analogous formulations can be done under the assumption that the regression curve is not a straight line but some function, depending on finitely many parameters $a_{m}, 1 \leq m \leq M$. A different
approach to the problem of the dimension reduction in the representation of the data was proposed in 1901 by K.Pearson, in a paper entitled "On lines and planes of closest fit to systems of points in space". This paper and many subsequent papers in which the theory of PCA (principal components analysis) was developed are referenced in $[G]$, where one can find the very recent survey papers on the problem of dimension reduction in representation of the data. The PCA theory in its simplest version which preassumes that the data points in R^{2} are concentrated in a neighborhood of a straight line L, consists of finding L from the minimization problem: $\sum_{j=1}^{J} d_{j}^{2}=\min$, where d_{j} is the distance from the point $\left\{\xi_{j}, \eta_{j}\right\}$ to the straight line L. The minimization is taken with resepct to parameters which define the straight line L, for example, with respect to a_{1} and a_{2}. There is a difference between the regression problem and the PCA problem: in the regression problem one minimizes not the sum of the squares of the distances from the points $\left\{\xi_{j}, \eta_{j}\right\}$ to L, but the sum of the squares of the lengths of the vertical segments from $\left\{\xi_{j}, \eta_{j}\right\}$ to L. A priori it is not known if a straight line is the set in a neighborhood of which most of the points of S lie.

The aim of this paper is to propose an algorithm for computing the set L_{k} of dimension $k \ll N$ in a neighborhood of which many points of S lie. The set L_{k} that we construct, is a polyhedron with vertices in an r-neighborhood of which many points of S lie. By an r-neighborhood of a pont $y \in R^{N}$ the ball $B(y, r):=\{x$: $|x-y| \leq r, x \in R^{N}$ is meant, $|x-y|$ is the Euclidean distance between points x and y in R^{N}.

Our algorithm does not preassume that the clusters of the points should lie near a linear manifold or near a non-linear manifold which is a priori known up to a finitely many parameters.

Let us now decsribe the steps of our algorithm for computing the set L in an r-neighborhood of which many points of S lie.

1. Fix a number $r>0$ and a cubic grid with the step-size r in R^{N}. Let y_{m} be the nodes of this grid, $1 \leq m \leq M$, and B_{m} be the ball of radius r centered at y_{m}.
2. Scan the domain D, in which the set S of the data points x_{j} lies, by moving the ball B_{m} so that m runs from 1 to M, that is, the center of the ball runs through all the nodes of the grid belonging to D. Each of the points of S will belong to some ball B_{m}. Calculate the number ν_{m} of the points of S in B_{m}, and arrange the numbers ν_{m} in a descending order: $\nu_{1} \geq \nu_{2} \geq \nu_{3} \ldots \ldots$. Let y_{k} be the center of the ball B_{m} containing ν_{k} points. Fix some threshold number ν and neglect the balls containing less than ν points. Let $K=K(\nu)$ be the number such that $\nu_{k}>\nu$ for $k \leq K$ and $\nu_{k} \leq \nu$ for $k>K$.
3. Define L^{1} to be the one-dimensional set of segments, joining y_{k} and y_{k+1}. Then L^{1} is a one-dimensional set, a union of segments in R^{N}, and in r-neighborhood of the vertices of this set, i.e., of the points $y_{k}, 1 \leq k \leq K$, one has many points of the set S. There is no guarantee that there are points of S near every point of the set

L^{1}.

One may change the algorithm by choosing the nearest to $y_{1}:=z_{1}$ point among the points $\left\{y_{k}\right\}_{y_{k} \neq y_{1}}$, denoting this point z_{2}, and then choosing the closest to z_{2} point z_{3} among the points $\left\{y_{k}\right\}_{y_{k} \neq z_{1}, y_{k} \neq z_{2}}$, and continuing in this fashion one gets the set of points $z_{k}, 1 \leq k \leq K$. Joining z_{k} and z_{k+1} by a segment and denoting L_{z}^{1} the union of these segments, one gets a one-dimensional set of points such that in an r-neighborhood of its vertices there are many points of S. In such a way one may construct more than one line: it might happen that two (or more) intersecting or non-intersecting lines will be constructed.

One may consider the triangles T_{k} with vertices $z_{k}, z_{k+1}, z_{k+2}, 1 \leq k \leq K-2$. The union of T_{k} forms a two-dimensional set in R^{N}. In an r-neighborhood of its vertices there are many points of S.

One may construct in a similar way the sets of dimension s in R^{N}, such that in an r-neighborhood of its vertices there are many points of S.

The threshold number ν is not known a priori, and one starts, e.g., with $\nu=10^{3}$, and if there are few balls with $\nu_{k}>\nu$, then one may restart the procedure with $\nu=10^{2}$. If, on the other hand, there are very many balls with $\nu_{k}>\nu$, then one may restart the procedure with $\nu=10^{4}$. Also, the parameter r may be treated similarly.

References

[1] A.N.Gorban, B.Kegl, D.Wunsch, A.Zinovyev, (Editors), Principal manifolds for data visualization and dimension reduction, Lecture notes in computational science and engineering, Vol. 58, Springer, Berlin, (2008).

