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A Gibbs Sampling Alternative to Reversible Jump MCMC

Stephen G. Walker 1

Abstract. This note presents a simple and elegant sampler which
could be used as an alternative to the reversible jump MCMC method-
ology.
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1. Introduction. This note is about the problem of performing posterior
Bayesian inference via Markov chains when the dimension of the model is
not fixed. The standard solution is the reversible jump MCMC approach
described in Green (1995). The set–up is typically of the form p(y|θ(k), k), so
that a model for data y is described for each k = {1, 2, . . .} and the parameter
for model of dimension k is θ(k). A prior distribution is now assigned to θ(k),
say πk(θ

(k)), and a prior for k, say π(k).
So let us write the (incomplete) joint density for (y, θ(k), k) as

p(y, θ(k), k) = p(y|θ(k), k) πk(θ
(k)) π(k).

This is incomplete (though obviously a valid model) since there is nothing
about the (θ(j); j 6= k). So let us add a distribution for (θ(j); j 6= k) when
model k is conditioned on;

p(y, (θ(j); j = 1, 2, . . .), k) = p(y, θ(k), k)
1∏

l=k−1

p(θ(l)|θ(l+1))
∞∏

l=k+1

p(θ(l)|θ(l−1)),

where the choice of p(θ(l)|θ(l−1)) and p(θ(l)|θ(l+1)) is arbitrary. The marginal
model is correct, just integrate out the (θ(j); j 6= k). So the latent variables
(θ(j); j 6= k), conditioned on k, would at first sight not to be needed, but
they play a crucial role in that they serve as the proposal move between
dimensions.

The problem now is how to move between dimensions, since the choice
is infinite and so the precise probabilities can not be found. However, for
this we will introduce another latent variable u which facilitates the moves
in that it makes the choice finite and hence probabilities can be computed.
We write p(u|k) for this and for simplicity of exposition, though it is easily
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allowed to be more general, we take u = k + 1 with probability q and u = k

with probability 1−q, for all k. So, overall, the joint density being considered
is

p(u, y, (θ(j); j = 1, 2 . . .), k) = p(u|k) p(y, (θ(j); j = 1, 2, . . .), k).

We are now in a position to describe the Gibbs sampler for dimension jump-
ing.

2. The Gibbs sampler. Suppose the chain is currently at k. Then we
sample θ(k) from πk(θ

(k)|y, k) ∝ p(y|θ(k), k) πk(θ
(k)) in the usual way and

typically this is not an issue in such dimension varying models since it is
done assuming k is fixed. Now, given k, we will also sample θ(k+1) from
p(θ(k+1)|θ(k)) and θ(k−1) from p(θ(k−1)|θ(k)). We need these two since the
moves from k can be to {k − 1, k, k + 1}. The choice of these conditional
densities is precisely for the same reasons that particular moves are suggested
in the reversible jump MCMC approach; basically, to increase the chance of
a move away from k.

Once this has been done, the u is sampled, and is either k or k + 1. Let
us assume it is k + 1, so that the next k, we will call it j, can be either k or
k + 1. Now, clearly, we have

π(j = k + 1|u = k + 1, . . .) ∝ (1 − q) p(y, θ(k+1), k + 1) p(θ(k)|θ(k+1))

and
π(j = k|u = k + 1, . . .) ∝ q p(y, θ(k), k) p(θ(k+1)|θ(k)). (1)

All the other latent variables and their densities are common to, and hence
cancel out from, both terms, and so are not needed.

On the other hand, if u = k then j can be either k or k − 1. It is then
easy to derive that

π(j = k|u = k, . . .) ∝ (1 − q) p(y, θ(k), k) p(θ(k−1)|θ(k))

and
π(j = k − 1|u = k, . . .) ∝ q p(y, θ(k−1), k − 1) p(θ(k)|θ(k−1)). (2)

Either way, j is easily sampled.
There is a special case which deserves attention and this is when we insist

on
p(θ(k)|θ(k−1)) πk−1(θ

(k−1)) = p(θ(k−1)|θ(k)) πk(θ
(k)) (3)

for all k. Then, for probabilities (1), we now have the simpler situation,

π(j = k + 1|u = k + 1, . . .) ∝ (1 − q) p(y|θ(k+1), k + 1) π(k + 1)
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and
π(j = k|u = k + 1, . . .) ∝ q p(y|θ(k), k) π(k),

and for probabilities (2), we have

π(j = k|u = k, . . .) ∝ (1 − q) p(y|θ(k), k) π(k)

and
π(j = k − 1|u = k, . . .) ∝ q p(y|θ(k−1), k − 1) π(k − 1).

Once the idea of the Gibbs sampler has been understood, a generalization
to more types of moves is quite straightforward, and this would involve a
modification of p(u|k).

3. Discussion. In summary, the algorithm is as easy as follows, given k:

1. Sample θ(k) from πk(θ
(k)|y, k), and sample θ(k+1) and θ(k−1) from “pro-

posals” p(θ(k+1)|θ(k)) and p(θ(k−1)|θ(k)), respectively.

2. Sample u from p(u|k) so that u = k + 1 with probability q and u = k

with probability q − 1.

3. Sample the new j from the appropriate probabilities (1) or (2).

Unlike the reversible jump MCMC approach we don’t actually need any
special relation between p(θ(k)|θ(k−1)) and p(θ(k−1)|θ(k)), though the proba-
bilities (1) and (2) are simplified if they do satisfy a particular relation (3).
This is because there is no pressure to force a detailed balance criterion. So,
we have described a Gibbs sampler version of the reversible jump MCMC
approach which shares features such as the evidence of proposal moves but,
as we have just said, removes some of the pressure, and also lacks the need for
a Jacobian. Also, unlike reversible jump MCMC there is no need to explain
the algorithm; it is self evident and remarkably simple.

It would be quite easy to demonstrate in particular cases a more effi-
cient algorithm has been introduced when compared to the reversible jump
MCMC. No doubt it would also be achievable the other way round. This is
rather beside the point. What is clear is that a vastly simpler algorithm has
been presented and it is clear that there is no obvious reason why it should
be uniformly worse than reversible jump MCMC.
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