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Abstract

We define approximate separation and extension properties of a Banach lattice
and study the relation between these and topological fullness of the ideal centre.
Banach lattices with topologically full ideal centre are characterized as those for
which the Arens homomorphism m : Z(E)" — Z(E') is surjective. Among the
positive operators T : E — F between Banach lattices E, F we distinguish nearly
Z(E) and Z(F) extremal ones and study their properties. '

Introduction

Riesz spaces considered in this note are assumed to have separating order duals.
If E is a Riesz space, we denote by L,(E) the space of all order bounded operators on
E. E~ will denote the order dual of E. Z(FE) will denote the ideal centre, OrthE will
denote the orthomorphisms of E. E,’ will denote the order continuous members of E™.
When T : E — F is order bounded, the adjoint of T': F~ — E”~ is denoted by T~ . The
dual of a normed space E is denoted by E’. In all undefined terminology we will adhere
to the definitions in [1] and [6].

Let us recall that for any associative algebra A a multiplication called Arens
multiplication can be introduced in the second algebraic dual A** of A. In particular,
for any Archimedean f-algebra A, the space (A™)y is an Archimedean f-algebra with
respect to the Arens multiplication [3]. Z(FE) is an unital f-algebra with unit. Thus
Z(E)" is an AM -space and with the Arens product, it is a partially ordered Banach
algebra(an Archimedean f-algebra) with unit where the order unit and algebra unit
coincide.

A Riesz space E is said to have topologically full centre if for each € E_, the
o(E,E™) closure of Z(E)r contains the ideal generated by z. Banach lattices with
topologically full centre were initiated in [11]. The class of Riesz spaces and the class
of Banach lattices that have topologically full centre are quite large. In a o-Dedekind
complete Riesz space E each positive element generates a projection band. Therefore,
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for each z € Ey,Z(FE)x is an ideal and Z(F) is topologically full [11]. However, not all
Riesz spaces have topologically full centre [10].

Example. Let E be the Riesz space of piecewise affine continuous functions on [0,1].
Since E is cofinal in C]0,1], we have E~ = C[—,1]'. But Z(FE) is trivial, that is, it
contains only the scalar multiplies of the identity. On the other hand E~, being Dedekind
complete, has the projection property and the centre Z(E™~) of E™ contains all band
projections and has to be large. Similarly for any infinite dimensional Riesz space E for
which Z(E) is finite dimensional Z(E™) cannot be a quotient of Z(E) = Z(E)"”. In
Proposition 3, Riesz spaces for which Z(E™) is a quotent of Z(E)" are characterized as
those with topologically full centre.

The example of an AM -space that does not have topologically full center was given
in [2].

If E is a Banach lattice with a topological orthogonal system then Z(FE) is
topologically full [11]. However there are Banach lattices with topologically full centre
which are neither o-Dedekind complete nor have a topological orthogonal system.

Example. Let GR denote the Stone-Cech compactification of R and p € BR\R. Let
Co(BR) denote the continuous real functions vanishing at p. Then Cy(BR) does not
have a topological orthogonal system and it is not o-Dedekind complete BR\{p} is
connected). However Cy(BR) is an order ideal of the Banach lattice C(BR). Since
C(BR) has topologically full center, Co(BR) also has topologically full center.

Results

A Riesz space E is said to have separating orthomorphisms if, whenever z Ay =0
in E, there exists m € OrthE such that 7(z) = z and n(y) = 0 (equivalently, for all
z € E there exists 7 € OrthE such that w(z") and m(z~) = 0). Clearly, any Riesz
space with the principal projection property has separating orthomorphisms. Note that
if z Ay =0 and 7 € OrthE satisfies 7(z) = z and 7(y) = 0, then the orthomorphism
m = |m| A I satisfies 7 (z) = z and m;(y) = 0. Hence, we may assume that 0 < < 1.

An order ideal I in E has the Z(F)-extension property if every mo € Z(I) has an
extension ™ € Z(FE). Obviously, any projection band has the Z(F)-extension property.
These properties were defined in [8]. Among other things it was proved that a uniformly
complete Riesz space E has separating orthomorphisms if and only if every principal ideal
has the Z(F)-extension property. In particular, therefore, any o-Dedekind complete
Riesz space has both of these properties. On the other hand every order ideal in a
uniformly complete Riesz space E has the Z(F)-extension property if and only if F is
Dedekind complete [12].

We now define approximate extension and separation properties for a Banach
lattice.
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Definition. (i) A Banach lattice E is said to have approzimate separation property if,
whenever x Ay =0 in E, there exists (m,) in Z(E) with m,(z) — z and 7,(y) — 0.

(it) An ideal I in a Banach lattice E is said to have the approzimate extension
property if for each my in Z(I), there exists (m,) in Z(E) such that m,(z) — w(z) for
every x € I.

A similar concept was introduced in [5]. A set B of operators on a topological
vector lattice separates z from y if there exists a net (m,) in B with m4(z) — z and
Ta(y) — 0. In the same paper it is proved that if B is a Boolean ring of order projections
on E and I, is dense in E then E is the smallest closed subspace contalnlng {me : 7 € B}
iff B separates every pair z,y in E for which z Ay = 0.

The next proposition exhibits the relation between topological fullness and the
preceding properties.

Proposition 1. Let E be a Banach lattice. Consider the following statements:

(i) Z(E) is topologically full

(i) Every principal ideal has approzimate extension property

(ii3) Z(E) has approzimate separation property.

Then (i) < (i) and (ii) = (ii).
Proof. (i)= (ii). Let z € Ey be arbitrary and I, be the ideal generated by z. Let
m € Z(I;) be such that0 < 7 < I. As 0 < mzx < z, there exists (m,) in Z(E) with
|| mn(z) — 7(z) ||— 0. Thus we have

0 < |mn = 7l(y) = 7(y) — 7(y)| < |mp — 7|(z) = |7n(z) — ()|

for each 0 <y < z. Continuity of the lattice operations imply that || m,(y) — n(y) ||— 0
for each 0 <y < z. That is to say m, — 7 pointwise on I, .

(ii)=(i). Let z € E; be arbitrary. Then there exists a unique f-algebra structure
on I, where z serves as the algebra unit. For each y € I, with 0 <y < z, the operator,
Ty : Iy — I, defined as my(2) = yz(z € I.,), is in Z(I;) and my(z) = y. Hence there
exists (m,) in Z(E) with m, — 7, pointwise on I,. In particular, || 7,(z) — my(z) |=
| mn(z) — y ||— 0 and we have (i).

(ii)=(iii). Let =,y € E be such that t Ay =0. f w=z+y then I, = [, & I,
by Theorem 17.6 in [6]. Each z € I, has a unique decomposition z; + z; where
21 € Ip,zp € Iy. Let w: I, — I, be the projection of I, onto I,. There exists
(rn) in Z(E) such that n, — 7 pointwise on I,. Then m,(z) — =n(z) = = and
T (y) — 7(y) = 0. O

Let E, F and G be Riesz spaces. A bilinear map ¢ : ExF — G is called bipositive
(bilattice homomorphism) if ¢, : F' — G :: 0.(y) = ¢(z,y) and ¢, : E — G :: py(z) =
¢(z,y) are both positive (lattice homomorphisms) for each z € E, and y € F. .

Given the bilinear map

371



ALPAY & TURAN

Z(EyYx E—E (1)
defined by (T, z) — Tz, consider its Arens extensions (2) and (3)

E~"XE— Z(E) :: (z,f) = pa,y (2)
where p, f(7) = f(nz) foreach z € E,f € E~ and 7 € Z(E).

E~x Z(EY' > E~ :: (f,F) > Fef (3)

where F' o f(z) = F(ug,s) for each z € E,f € E~ and F € Z(E)"”. The maps defined
in (1), (2) and (3) are bipositive. (3) makes it possible to define a linear operator m :
Z(E)'" — Ly(E~) where m(F)(f) = Fef. It is easily checked that m(T") = T~ whenever
T € Z(E). We will call the map m : Z(E)" — Ly(E™) the Arens homomorphism of the
bidual of Z(E) into Ly(E™).

Proposition 2. m is a unital algebra and order continuous lattice homomorphism such

that m(Z(E)") C Z(E™).

Proof. It is easy to see that m is a positive order continuous unital algebra homomor-
phism.

For each F € Z(E)", there is a net {T,} in Z(E)4 such that || T, ||<|| F || and
To — |F| in o(Z(E)",Z(E)'). Let f € EY and x € E, be arbitrary. Then

Im(F)(HI(@) < m(FD)(F) () = |F|(ke,) = lim pg,(Ta) <|| F || f(2)-

Therefore m(F) € Z(E™) for each F € Z(E)"”. That m is a Riesz homomorphism fol-
lows from the fact that is an algebra homomorphism by Corollary 5.5 in [4]. a

Lemma 1. Let E be a Banach lattice. If Z(E) has approzimate separation property, then
the map E — Z(E)' :: ¢ — pg 5 is a lattice homomorphism for each f € E!, .

Proof. It suffices to show that p = pg s A py r =0 whenever zAy =0 in E. Let I be
the identity operator on E. It is enough to verify that p(I) = 0. Recall that

0 < p(I) = inf{ug ¢(m1) + py,f(m2) : where 0 < my,mp and m + 7o = I}
= inf{f(mz + my): where 0 < my,m2 and m + 7 = I}.

On the other hand the hypothesis ensures the existence of (7,) in Z(E),0 < 7, < I with
mnx — z and m,y — 0 in E. Clearly, pu(I) < f((I — mn)z) + f(mny) for each n. Hence
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p(l) <Umf(( = mn)z) + lim f (7 y)

This shows p(I) =0. O

Lemma 2. Let E be a Banach lattice with topologically full centre. The map E' —
Z(E) = f — pey is a lattice homomorphism for each z € E. .

Proof. Positivity of the map f — p, ; immediately shows that (o)t < pg p+. We
ShOW lu’it,f+ S (szf)+‘
Let m € Z(E); be arbitrary. Then recall that

po,f+(m) = fH(mz) = sup{f(y) : 0 < y < Tx}.
Choose y with 0 < y < mz. There exists (,) in Z(E),0 < m, < I such that

mn(m(z)) — y in E. This leads to the fact that lim, f(m,7(z)) = f(y). On the other
hand,

f(rn(n(2)) <sup{f(Tz):0 < T < m} = (g 5) " (7)

as 0 < m,m <. Hence f(y) < (uz,£)" (7). Since y was chosen arbitrary in [0, 7z], we
conclude that p, p+(7) < (pg,f) (7). O

Let now E,F and G be Banach lattices. A bilinear map ¢ : FExX F — G is
a bilattice homomorphism if and only if ¢~ : G’ — Ly(E,F') :: f — ©~(f) where
e~ (f)(z)(y) = f(p(z,y)) is an interval preserving (Maharam) operator for each f € E'
and x € E by Theorem 13 in [9].

Position 3. Let E be a Banach lattice. The Arens homomorphism m : Z(E)" — Z(E")
us surjective if and only if Z(E) is topologically full.
Proof. Suppose Z(E) is topologically full. Proposition 1 and preceding lemmata show
that the bilinear map E' x E — Z(E)' of (2) is a bilattice homomorphism. Hence
m : Z(E)" — Z(E') is an interval preserving operator. Let T € Z(E') be such that
0 <T < I™ =m(I) where I is the identity operator on E. Then there exists F € Z(E)"
with m(F) =T. Thus m is surjective.

We now suppose m is surjective. It suffices to show that I, C Z(E)x = M.
M is a closed subspace of E. We claim M?° is an order ideal in E’. Let fe M°
be arbitrary. Let By be the band generated by f and 7 be the projection onto By.
Clearly we have m(f) = f* and = € Z(E'). Hence there exists F in Z(E)" such that
m(F) = 7. Choose (7,) in Z(E) with 7, — F in o(Z(E)", Z(E)') topology. Thus
Toa(tte,g) — F(tz,g) for £ € E and g € E’. On the other hand order continuity of
m implies that it is o(Z(E)", Z(E)'),o(E',(E'),) continuous. This observation yields
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m(ma)(g)(x) — m(F)(g)(z) for each z € E,g € E'. As m(n,) = 7} for 7, € Z(E),
we have 7} (g)(z) = (waa:) — 7(g)(z). Let f € MY as above and y € M be arbitrary.
Then f(moy) — 7(f)(y) = fT(y). We choose (n,) in Z(E) such that m,(z) -y in E.
Then 7, (7,7) — 7oy as 7, is continuous for each . Commutativity of Z(E) implies
that m,(maz) — 7oy so that may € M for each a. Therefore, f*(y) = lim, f(7may)
imply that f*(y) = 0. As y is arbitrary in M, this shows f* € M°. Thus M? is a
Riesz subspace.

Let now 0 < g < f with f € M® and g € E’. There exists 7 € Z(E’) such
that 7(f) = g by Dedekind completeness of E’[1]. Arguing as above we obtain (m,)
in Z(E) such that 7 (f)(y) — n(f)(y) = g(y) for each y € M. Thus g(y) = 0 as
7 (f)(y) = f(may) and 7o(y) € M for each o. Thus M is anideal in E as it is closed
and °(M®) = M. Thus I, C M as claimed. O

Let E,F be Riesz spaces. Suppose F' is Dedekind complete. It is well-known
that a positive operator T : E — F is a lattice homomorphism if and only if for every
positive operator S : £ — F with 0 < § < T, there exists a positive orthomorphism
7 € OrthF satisfying S = m o T [1]. We refer the reader to [11] for a further study for
lattice homomorphisms between Banach lattices.

Definition. Let E,F be Banach lattices and T : E — F be a positive operator. Then

(i) If S € L(E,F) with 0 < S < T umplies that there is 71 € Z(E), with
S =Torm then T is called Z(E)-extermal. T is called nearly Z(E)-extremal if under
the same circumstances we can find a net (mwy) in Z(E)y with T o1y — S in weak
operator topology.

(i1) T is called Z(F)-extremal if S € L(E,F) with 0 < S < T implies that there
is m € Z(F) with S = woT. T is called nearly Z(F)-extremal if under the same
circumstances we can find a net (wy) in Z(F) with mo 0T — S in weak operator topology.

Recall that a positive operator T : E — F between Banach lattices £ and F' is
called nearly interval preserving if [0,7z] C T'[0,z] for each z € E*.

Corollary 1. Let E,F be Banach lattices and suppose Z(F) is topologically full. Then
every Z(E)-extremal T : E — F' is nearly interval preserving.

Proof. Let y € [0,Tz] be arbitrary. There exists (m,) in Z(F),0 < 7, < I such
that 7,(Tx) — y since Z(F') is topologically full. As 0 < 7, oT < T, we can find
H, € Z(E)+ such that To H,, = m,oT for each n. Let z,, = Hy(z). 0 < H, < I imply
0 <z, <z. Then T(z,) — y implies y € T[0,z]. o

Let E be a Banach lattice. For each m € Z(E),n~ € Z(E'). If Z(E) is
topologically full, then for T € Z(E') thereis F € Z(E)" with m(F) =T . Let us choose
(1) in Z(E) with 7o, — F in o(Z(E)",Z(E)"). Then m(n,) = 1y — m(F) =T in
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the weak operator topology induced by o(E’,(E’).) on E’. In particular, (73 f)(z) —
(Tf)(z) for each z € E and f € E'.

Corollary 2. Let E,F be Banach lattices. Suppose Z(E) is topologically full. Then every
nearly interval preserving T : E — F is nearly Z(E)-extremal.

Proof. Let S be such that 0 < § < T. Then T~ is a lattice homomorphism and
0 < §¥ < T~. By Dedekind completeness of E',S~ = H o T~ for some H with
0<H <Iin Z(E'). By the preceeding paragraph there is a net (r,) in Z(E) such that
7, — H in the weak operator topology induced by o(E’,(E’).). In particular, we have
(ma f)(x) — (Hf)(z) for each z € E and f € E'. Hence 7} (T™g)(z) — H(T~g)(x) for
each £ € F and g € F’. That is,

g(T oma)(x) = (HoT™)(g9)(z) = S™(g9)(x) = g(Sz) for each z € E and g€ F'.

Therefore T o m, — S in weak operator topology and T is nearly Z(FE)-extremal. O

Corollary 3. Let E,F be Banach lattices. Suppose Z(F) is topologically full. If T : E —
F' s a lattice homomorphism, then T is nearly Z(F)-extermal.

Proof. Let S € L(E, F) besuch that 0 < S <T. T" is an interval preserving operator.
There exists H € Z(F') such that S~ = T~ o H by Theorem 3.1 in [7]. As observed
earlier, the hypothesis Z(F') is topologically full implies that there exist a net (T) in
Z(F) such that 73 — H in the weak operator topology induced by o(E’,(E’')"). In
particular (73 f)(z) — (Hf)(z) for each z € E and f € E’'. This immediately gives
o © T — S in weak operator topology. i

Corollary 4. Let E,F be Banach lattices. Suppose Z(E) is topologically full. If T : E —
F is Z(F)-extremal, T is a lattice homomorphism.

Proof. We first show [0,7~f] C T~[0, f] where the closure is taken in o(E’, (E').).
Let g € [0,7~f]. Thereis H € Z(E'),0 < H < I and H(T~f) =g as E' is Dedekind
complete [1]. On the other hand there exists (7o) in Z(E) such that G(xy(f)) —
G(H(f)) for each G € (E');, and f € E'. In particular, G(7} (T~ f)) — G(H(T™ f))
for each f € E' and G € (E');, so that G((T om,)~ f) — G(H o T™(f)) = G(g). There
is (Sa) in Z(F) such that Sy 0T = Tom, for each @ as 0 < Tomy < T and T is
Z(F)-extremal. Utilizing this, we obtain G((S, o T)™~(f)) — G(g) for each G € (EN),
and f € F' or G(T~(Sy(f))) — G(g) for each G € (E')'. 0 < S'f < f implies
0 <T~(S7f) <T~f for each a. Therefore we have [0,T™ f] C T~[0, f] as g € [0, T~ f]
is arbitrary.
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Now we show T~ : (E'), — (E')! is a lattice homomorphism. It suffices to show
T~~|G| < |T~~G| for G € (E')],. Let 0 < h € (E')), be arbitrary. Recall that

T~~G|(h) = sup{T™~~(G)(2g — h) : g € [0,h]} = sup{G(2T~g — T™h) : g € [0, ]}

and

T~~|G|(h) = |G|(T~h) =sup{G(2f —T~h) : f € [0,T™h]}.

Let v = 2f — T™h for some f € [0,T™h]. Then there exists (f,) in [0,h] witk
T~ fo — f in o(E',(E"))). Since G(2T™ fo — T™h) < |T~~G|(h) for each a, we have
G(v) <|T~~G|(h). We conclude that T~~|G|h < |T~~G|(h) for each h € E’. and that
T~ is a lattice homomorphism as h is arbitrary. That T is a lattice homomorphism is
immediate as E is a Riesz subspace of (E')], . O
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ARENS HOMOMORFIZMASININ ORTENLICGI UZERINE

Ozet

Banach orgii uzaylar igin yaklagik ayirma ve genigleme &zellikleri tanimlanmas,
bunlar ile merkezin topolojik zenginligi arasindaki iliski caligilmistir. Merkezin
topolojik zenginligi m : Z(E)” — Z(E') Arens homomorfizmasmin ortenligi ile
betimlenmistir. E,F Banach érgii uzaylan olmak iizere Z(E) ve Z(F) ekstrem
operatérleri tanimlanmig ve §zellikleri incelenmistir.
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