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Abstract

The EM algorithm is a widely used methodology for penalized like-

lihood estimation. Provable monotonicity and convergence are the hall-

marks of the EM algorithm and these properties are well established for

smooth likelihood and smooth penalty functions. However, many relaxed

versions of variable selection penalties are not smooth. The goal of this

paper is to introduce a new class of Space Alternating Penalized Kull-

back Proximal extensions of the EM algorithm for nonsmooth likelihood

inference. We show that the cluster points of the new method are sta-

tionary points even when on the boundary of the parameter set. Special

attention has been paid to the construction of component-wise version

of the method in order to ease the implementation for complicated mod-

els. Illustration for the problems of model selection for finite mixtures of

regression and to sparse image reconstruction is presented.

Keywords: EM Algorithm Maximum Likelihood Estimation Sparsity

Model Selection Space Alternating Algorithm Nonsmooth Penalty.

1 Introduction

The EM algorithm of Dempster Laird and Rudin (1977) is a widely applica-
ble methodology for computing likelihood maximizers or at least stationary
points. It has been extensively studied over the years and many useful general-
izationshave been proposed including for instance the stochastic EM algorithm
of Delyon, Lavielle and Moulines (1999); Kuhn and Lavielle (2004); the PX-EM
accelerations of Liu, Rubin and Wu (1998); the MM generalization of Lange and
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Hunter (2004) and the recent approach using extrapolation such as proposed in
Varadhan and Roland (2007).

In recent years, much attention has been given to the problem of variable
selection for multiparameter estimation, for which the desiered solution is spase,
i.e. many of the parameters are zero. Several approaches have been proposed
for recovering sparse models. The main contributions in this direction are sparse
Bayes learning (Tipping ()), LASSO-like penalties penalized least squares (Tib-
shirani (1996)), ISLE (Friedman and Popescu (2003)), information theoretic
based prior methods of Barron (1999), empirical Bayes (Johnstone and Silver-
man ()) and ”hidden variable”-type approach developped by Figueiredo and
Nowak (2003). Among recent and exciting alternatives is the new Dantzig se-
lector of Candès and Tao (2008). Of particular interest are penalization methods
by miximizing the log-likelihood function with a penalty for non-sparsity. Most
approaches use non-differentiable penalization. See for example the paper of
Candès and Plan (2008) for a very elegant analysis of the l1-type penalization in
the context of linear variable selection. On the other hand, only a few attempts
have been made to use this type of penalization for more complex models than
the linear model; for some recent progress, see Koh, Kim, and Boyd (2007) for
the case of logistic regression; and Khalili and Chen (2007) for mixture models.
However, the use of non-differentiable penalties can be reasonnably expected to
be extended to more complex nonlinear models, the mixture model being one
of the most popular instance.

The goal of the present paper is to propose new extensions of the EM al-
gorithm that incorporate a non-differentiable penalty at each step. Following
previous work of the first two authors, we develop a Kullback Proximal frame-
work for understanding the EM-iterations and prove optimality for the cluster
points of the methods using nonsmooth analysis tools. A key additional feature
in our study is the consideration of Space Alternating extensions of EM and
Kullback Proximal Point (KPP) methods. Such component-wise versions of
EM-type algorithms can enjoy nice theoretical properties with respect to accel-
eration of convergence speed (Fessler and Hero (1994)). The KPP method was
applied to gaussian mixture models in Celeux et al. (2001). The main result
of our paper is that any cluster point of the Space Alternating KKP method
satisfies a nonsmooth Karush-Kuhn-Tucker necessary optimality equation.

The paper is organized as follows. In section 2 we present the penalized
EM-type methods that we call Penalized Kullback Proximal Point methods.
In Section 3, our main asymptotic results are presented. In Section 4, two
examples are presented. The first is a space alternating implementation of the
penalized EM algorithm for a problem of model selection in a finite mixture of
linear regressions using the SCAD penalty introduced in Fan and Li (2001) and
further studied in Khalili and Chen (2007). The second example is taken from
Ting, Raich and Hero, (2007) in which the theoretical issue of convergence was
not addressed. New asymptotic results follow from the theory developped in
Section 3.
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2 The EM algorithm and its Kullback proximal

generalizations

The problem of maximum likelihood (ML) estimation consists of finding a so-
lution of the form

θML = argmaxθ∈Θ ly(θ), (1)

where y is an observed sample of a random variable Y defined on a sample space
Y and ly(θ) is the log-likelihood function defined by

ly(θ) = log g(y; θ), (2)

defined on the parameter space Θ ⊂ R
p, and g(y; θ) denotes the density of Y at

y parametrized by the vector parameter θ.
The standard EM approach to likelihood maximization consists of introduc-

ing a complete data vector X with density f . Consider the conditional density
function k(x|y; θ̄) of X given y

k(x|y; θ̄) =
f(x; θ̄)

g(y; θ̄)
. (3)

As is well known, the EM algorithm then consists of alternating between two
steps. The first step, called the E(xpectation) step consists of computing the
conditional expectation of the complete log-likelihood given Y . Notice that the
conditional density k is parametrized by the current iterate of the unknown
parameter values, denoted here by θ̄ for simplicity. Moreover, the expected
complete log-likelihood is a function of the variable θ. Thus the second step,
called the M(aximization) step consists of maximizing the obtained expected
complete log-likelihood with respect to the variable parameter θ. The maximizer
is then accepted as the new current iterate of the EM algorithm and the two
steps are repeated in a recursive manner until convergence is achieved.

Consider now the general problem of maximizing a concave function Φ(θ).
The original proximal point algorithm introduced by Martinet (1970) is an it-
erative procedure which can be written

θk+1 = argmaxθ∈DΦ

{

Φ(θ) − βk

2
‖θ − θk‖2

}

. (4)

The influence of the quadratic penalty 1
2‖θ − θk‖2 is controled by using a se-

quence of positive parameters {βk}. Rockafellar (1976) showed that superlinear
convergence of this method is obtained when the sequence {βk} converges to-
wards zero. A relationship between Proximal Point algorithms and the EM
algorithm was discovered in Chrétien and Hero (2000) (see also Chrétien and
Hero (2007) for details). We review the EM analyogy to PPK methods. Assume
that the family of conditional densities {k(x|y; θ)}θ∈Rp is regular in the sense of
Ibragimov and Khasminskii (1981), in particular k(x|y; θ)µ(x) and k(x|y; θ̄)µ(x)
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are mutually absolutely continuous for any θ and θ̄ in R
p. Then the Radon-

Nikodym derivative k(x|y,θ̄)
k(x|y;θ) exists for all θ, θ̄ and we can define the following

Kullback Leibler divergence:

Iy(θ, θ̄) = E
[

log
k(x|y, θ̄)
k(x|y; θ) |y; θ̄

]

. (5)

Let us define Dl as the domain of ly, DI,θ the domain of Iy(·, θ) and DI the
domain of Iy(·, ·). Using the distance-like function Iy, the Kullback Proximal
Point algorithm is defined by

θk+1 = argmaxθ∈DΦ

{

Φ(θ) − βkIy(θ, θ̄)
}

. (6)

The following was proved in Chrétien and Hero (2000).

Proposition 2.1 [Chrétien and Hero (2000) Proposition 1]. The EM algorithm
is a special instance of the Kullback-proximal algorithm with βk = 1, for all
k ∈ N.

2.1 The Space Alternating Penalized Kullback-Proximal

method

In what follows, and in anticipation of component-wise implementations of pe-
nalized KKP, the parameter space is decomposed into subspaces Θr = Θ ∩ Sr,
r = 1, . . . , R where S1, . . . ,SR are subspaces of R

p and R
p = ⊕Rr=1Sr.

Then, our Penalized Proximal Point Algorithm is defined as follows.

Definition 2.1 Let ψ: R
p 7→ S1 × · · · × SR be a continuously differentiable

mapping. Let (βk)k∈N be a sequence of positive real numbers and λ be a positive
real vector in R

R. Let pn be a possibly nonsmooth penalty function with bounded
Clarke-subdifferential (see the Appendix for details) on compact sets. Then, the
Space Alternating Penalized Kullback Proximal Algorithm is defined by

θk+1 = argmaxθ∈Θk−1(mod R)+1∩Dl∩DI,θk
ly(θ) −

R
∑

r=1

λrpn(ψr(θ)) − βkIy(θ, θ
k).

(7)

The standard Kullback-Proximal Point algorithms as defined in Chrétien and
Hero (2007) is obtained as special case by selecting R = 1, Θ1 = Θ, λ = 0.

In most cases, the mappings ψr will simply be the projection onto the sub-
space Θr, r = 1, . . . , R.

2.2 Notations and assumptions

The notation ‖·‖ will be used to denote the norm on any previously defined space
without more precision. The space on which it is the norm should be obvious
from the context. For any bivariate function Φ, ∇1Φ will denote the gradient
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with respect to the first variable. In the remainder of this paper we will make
the following assumptions. For a locally Lipschitz function f , ∂f(x) denotes the
Clarke subdifferential of f at x; this notion is recalled in the Appendix.

Assumptions 1 (i) ly is differentiable on Dl and ly(θ) − ∑R

r=1 λrpn(ψr(θ))
converges to −∞ whenever ‖θ‖ tends to +∞.
(ii) the projection of DI onto the first coordinate is a subset of Dl.
(iii) (βk)k∈N is a convergent nonnegative sequence of real numbers whose limit
is denoted by β∗.
(iv) the mappings ψr are such that

ψr(θr + ǫd) = ψr(θr) (8)

for all d ∈ S⊥
r and ǫ > 0 sufficiently small so that θr + ǫd ∈ Θ, r = 1, . . . , R.

We will also impose one of the two following sets of assumptions on the distance-
like function Iy .

Assumptions 2 (i) There exists a finite dimensional euclidean space S, a dif-
ferentiable mapping t : Dl 7→ S and a functional Ψ : DΨ ⊂ S × S 7→ R such
that KL divergence (5) satisfies

Iy(θ, θ̄) = Ψ(t(θ), t(θ̄)),

where Dψ denotes the domain of Ψ.
(ii) For any {tk, t)k∈N} ⊂ DΨ there exists ρt > 0 such that lim‖tk−t‖→∞ Iy(t

k, t) ≥
ρt. Moreover, we assume that inft∈M ρt > 0 for any bounded set M ⊂ S.
For all (t′, t) in DΨ, we will also require that
(iii) (Positivity) Ψ(t′, t) ≥ 0,
(iv) (Identifiability) Ψ(t′, t) = 0 ⇔ t = t′,
(v) (Continuity) Ψ is continuous at (t′, t)
and for all t belonging to the projection of DΨ onto its second coordinate,
(vi) (Differentiability) the function Ψ(·, t) is differentiable at t.

Assumptions 3 (i) There exists a differentiable mapping t : Dl 7→ R
n×m such

that the Kullback distance-like function Iy is of the form

Iy(θ, θ̄) =
∑

1≤i≤n,1≤j≤m
αij(yj)tij(θ)φ

( tij(θ̄)

tij(θ)

)

,

where for all i and j, tij is continuously differentiable on its domain of definition,
αij is a function from Y to R+, the set of positive real numbers,
(ii) The function φ is a non negative differentiable convex function defined for
positive real numbers only and such that φ(τ) = 0 if and only if τ = 1.
(iii) There exists ρ > 0 such that

lim
R+∋τ→∞

φ(τ) ≥ ρ

.
(iv) The mapping t is injective on each Θr.
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In the context of Assumptions 3, DI is simply the set

DI = {θ ∈ R
p | tij(θ) > 0 ∀i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}}2.

Notice that if tij(θ) = θi and αij = 1 for all i and all j, the functions Iy turn out
to reduce to the well known φ divergence defined in Csiszàr (1967). Assumptions
3 are satisfied by most standard examples (for instance Gaussian mixtures and
Poisson inverse problems) with the choice φ(τ) = τ log(τ) − 1.

Assumptions 1(i) and (ii) on ly are standard and are easily checked in prac-
tical examples, e.g. they are satisfied for the Poisson and additive mixture
models.

Finally we make the following general assumption.

Assumptions 4 The Kullback proximal iteration (7) is well defined, i.e. there
exists at least one maximizer of (7) at each iteration k.

In the EM case, i.e. β = 1, this last assumption is equivalent to the com-
putability of M-steps. In practice it suffices to solve the inclusion 0 ∈ ∇ly(θ) −
λ∂pn(ψ(θ)) − βk∇Iy(θ, θk) in order to prove in practice that the solution is
unique. Then assumption 1(i) is sufficient to conclude that we actually have a
maximizer.

3 Asymptotic properties of the Kullback-Proximal

iterations

3.1 Basic properties of the penalized Kullback proximal

algorithm

Under Assumptions 1, we state some basic properties of the penalized Kullback
Proximal Point Algorithm. The most basic is the monotonicity of the penalized
likelihood values taken by successive iterates and the boundedness of the penal-
ized proximal sequence (θk)k∈N. The proofs of the following lemmas are given,
for instance, in Chrétien and Hero (2000) for the case where λ = 0 and their
generalizations to the present context is straightforward.

We start with the following monotonicity result.

Lemma 3.1 For any iteration k ∈ N, the sequence (θk)k∈N satisfies

ly(θ
k+1)−

R
∑

r=1

λrpn(ψr(θ
k+1))−(ly(θ

k)−
R

∑

r=1

λrpnψr(θ
k))) ≥ βkIy(θ

k, θk+1) ≥ 0.

(9)

Lemma 3.2 The sequence (θk)k∈N is bounded.

The next lemma will also be useful and its proof in the case where λ = 0 is
given in Chrétien and Hero (2007) Lemma 2.4.3. The generalization to λ > 0 is
also straightforward.
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Lemma 3.3 Assume that in the Space Alternating KPP sequence (θk)k∈N, there
exists a subsequence (θσ(k))k∈N belonging to a compact set C included in Dl.
Then,

lim
k→∞

βkIy(θ
k+1, θk) = 0.

One important property which is observed in pratice and onto which stopping
criteria often rely is that the distance between two successive iterates decreases
to zero. This fact was established in Chrétien and Hero (2007) and does not
depend on the fact that λ = 0.

Proposition 3.1 [Chrétien and Hero (2007) Proposition 4.1.2] The following
statements hold.

(i) For any sequence (θk)k∈N in R
p
+ and any bounded sequence (ηk)k∈N in

R
p
+, the fact that limk→+∞ Iy(η

k, θk) = 0 implies limk→+∞ |tij(ηk)−tij(θk)| = 0
for all i,j such that αij 6= 0.

(ii) If one coordinate of one of the two sequences (θk)k∈N and (ηk)k∈N tends
to infinity, so does the other’s same coordinate.

3.2 Properties of cluster points

The results of this subsection state that any cluster point θ∗ such that (θ∗, θ∗)
lies on the closure of DI satisfies some modified Karush-Kuhn-Tucker type con-
ditions on the domain of the log-likelihood function. For notational convenience,
we define

Fβ(θ, θ̄) = ly(θ) −
R

∑

r=1

λrpn(ψr(θ)) − βIy(θ, θ̄). (10)

We first establish this result in the case where Assumptions 2 hold in addition
to Assumptions 1 and 2 for the Kullback distance-like function Iy.

Theorem 3.1 Assume that Assumptions 1, 2 and 4 hold and if R > 1, then
for each r = 1, . . . , R t is injective on Θr. Let θ∗ be a cluster point of the Space
Alternating Penalized Kullback-proximal sequence of Definition 2.1. Assume
that all the functions tij are differentiable at θ∗. If θ∗ lies in the interior of Dl,
then θ∗ is a stationary point of the log-likelihod function ly(θ), i.e.

0 ∈ ∇ly(θ∗) −
R

∑

r=1

λr∂pn(ψr(θ
∗)).

Proof. We consider two cases, namely the case where R = 1 and the case where
R > 1.

A. If R = 1 the proof is exactly analog to the proof of Theorem 3.2.1 in
Chrétien and Hero (2007). In particular, we have

Fβ∗(θ∗, θ∗) ≥ F (θ, θ∗)

for all θ such that (θ, θ∗) ∈ DI . Since Iy(θ, θ
∗) is differentiable at θ∗, the result

follows by writing the first order optimality condition at θ∗ in (11).
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B. Assume that R > 1 and let (xσ(k))k∈N be a subsequence of iterates of (7)
converging to θ∗. Moreover let r = 1, . . . , R and θ ∈ Θr ∩ Dl. For each k, let
σr(k) the next index greater than σ(k) such that (σ(k) − 1) (mod R) + 1 = r.
Using the fact that t is injective on every Θr, r = 1, . . . , R, Lemma 3.3 and the
fact that (βk)k∈N converges to β∗ > 0, we easily conclude that (θσr(k))k∈N and
(θσr(k)+1)k∈N also converge to θ∗.

For k sufficiently large, we may assume that the terms (θσr(k+1), θσr(k)) and
(θ, θσr(k)) belong to a compact neighborhood C∗ of (θ∗, θ∗) included in DI . By
Definition 2.1 of the Space Alternating Penalized Kullback Proximal iterations,

Fβσr(k)
(θσr(k)+1, θσr(k)) ≥ Fβσr(k)

(θ, θσr(k)).

Therefore,

Fβ∗(θσ(k)+1, θσ(k)) −(βσr(k) − β∗)Iy(θσr(k)+1, θσr(k)) ≥
Fβ∗(θ, θσr(k)) − (βσr(k) − β∗)Iy(θ, θσ(k)).

(11)

Continuity of Fβ follows directly from the proof of Theorem 3.2.1 in Chrétien
and Hero (2007) where in this proof σ(k) has to be replaced by σr(k)). This
implies that

Fβ∗(θ∗, θ∗) ≥ F (θ, θ∗)

for all θ ∈ Θr such that (θ, θ∗) ∈ C∗ ∩ DI . Finally, recall that no assumption
was made on θ, and that C∗ is any compact neighborhood of θ∗. Thus, using
the assumption 1(i), which asserts that ly(θ) tends to −∞ as ‖θ‖ tends to +∞,
we may deduce that (12) holds for any θ ∈ Θr such that (θ, θ∗) ∈ DI and,
letting ǫ tend to zero, we see that θ∗ maximizes Fβ∗(θ, θ∗) for all θ ∈ Θr such
that (θ, θ∗) belongs to DI as claimed.

To conclude the proof of Theorem 3.1, take d in R
p and decompose d as

d = d1 + · · ·+dR with dr ∈ Sr. Then, equation (12) implies that the directional
derivatives satisfy

F ′
β∗(θ∗, θ∗; dr) ≤ 0 (12)

for all r = 1, . . . , R. Due to Assumption 1 (iv), the directional derivative of
∑R

r=1 λrpnψr(·)) in the direction d is equal to the sum of the partial derivatives
in the directions d1, . . . , dR and since all other terms in the definition of Fβ are
differentiable, we obtain using (12), that

F ′
β∗(θ∗, θ∗; d) =

R
∑

r=1

F ′
β∗(θ∗, θ∗; dr) ≤ 0. (13)

Therefore, using characterization (46) in the Appendix of the subdifferential,
the desired result follows. �

We now, consider the case where Assumptions 3 hold.

Theorem 3.2 Assume that in addition to Assumptions 1 and 4, Assumptions
3 hold. Let θ∗ be a cluster point of the Space Alternating Penalized Kullback
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Proximal sequence. Assume that all the functions tij are continuously differ-
entiable at θ∗. Let I∗ denote the index of the active constraints at θ∗, i.e.
I∗ = {(i, j) s.t. ti,j(θ

∗) = 0. If θ∗ lies in the interior of Dl, then θ∗ satisfies
the following property: there exists a family of subsets I∗r ⊂ I∗ and a set of real
numbers λij , (i, j) ∈ I∗

r , r = 1, . . . , R such that

0 ∈ ∇ly(θ∗) −
R

∑

r=1

λr∂pn(ψr(θ
∗)) +

R
∑

r=1

∑

(i,j)∈I∗∗

r

λ∗ijPSr(∇tij(θ∗)). (14)

Remark 3.1 The condition (14) ressembles the traditional Karush-Kuhn-Tucker
conditions of optimality but are in fact weaker since the vector

R
∑

r=1

∑

(i,j)∈I∗∗

r

λ∗ijPSr(∇tij(θ∗))

may not belong to the normal cone at θ∗ to the set {θ | tij ≥ 0, i = 1, . . . , n, j =
1, . . . ,m}.

Proof of Theorem 3.2. Let Φij(θ, θ̄) denote the bivariate function defined
by

Φij(θ, θ̄) = φ
( tij(θ̄)

tij(θ)

)

.

As in the proof of Theorem 3.1, let (xσ(k))k∈N be a subsequence of iterates of
(7) converging to θ∗. Moreover let r = 1, . . . , R and θ ∈ Θr∩Dl. For each k, let
σr(k) be the next index greater than σ(k) such that (σr(k)−1)(modR)+1 = r.
Using the fact that t is injective on every Θr, r = 1, . . . , R, Lemma 3.3 and the
fact that (βk)k∈N converges to β∗ > 0, we easily conclude that (θσr(k))k∈N and
(θσr(k)+1)k∈N also converge to θ∗.

Due to Assumption 3 (iv), the first order optimality condition at iteration
σr(k) can be written

0 = PSr(∇ly(θσ(k)+1)) − λrg
σr(k)+1
r + βσr(k)

(

∑

ij αij(yj)PSr(∇tij(θσr(k)+1))

Φij(θ
σr(k)+1, θσr(k)) +

∑

ij αij(yj)tij(θ
σr(k)+1)PSr(∇1Φij(θ

σr(k)+1, θσr(k)))
)

(15)

with g
σr(k)+1
r ∈ ∂pnψr(θ

σr(k)+1)).
Moreover, Claim A in the proof of Theorem 4.2.1 in Chrétien and Hero

(2007), gives that for all (i, j) such that αij(yj) 6= 0

lim
k→+∞

tij(θ
σr(k)+1)∇1Φij(θ

σr(k)+1, θσr(k)) = 0. (16)

Let I∗
r be a subset of indices such that the family {PSr(∇tij(θ∗))}(i,j)∈I∗

r
is

linearly independent and spans the linear space generated by the family of all
projected gradient {PSr(∇tij(θ∗))}i=1,...,n,j=1,...,m. Since this linear indepen-
dence and generating properties are preserved under small perturbations using
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continuity of the gradients, we may assume without loss of generality that the
family

{

PSr(∇tij(θσr(k)+1))
}

(i,j)∈I∗

r

is linearly independent for k sufficiently large. For such k, we may thus rewrite
equation (15) as

0 = PSr(∇ly(θσr(k)+1)) − λrg
σr(k)+1
r + βσr(k)

(

∑

(i,j)∈I∗

r
π
σr(k)+1
ij (yj)

PSr(∇tij(θσr(k)+1)) +
∑

ij αij(yj)tij(θ
σr(k)+1)PSr(∇1Φ(θσr(k)+1, θσr(k)))

)

.

(17)

Claim. The sequence {πσr(k)+1
ij (yj)}k∈N has a convergent subsequence for

all (i, j) in I∗r .
Proof of the claim. Since the sequence (θk)k∈N is bounded, ψ is continu-

ously differentiable and the penalty pn has bounded subdifferential on compact

sets, there exists a convergent subsequence (g
σr(γ(k))+1
r )k∈N with limit g∗r . Now,

using Equation (16), this last equation implies that the {πσr(γ(k))+1
(i,j)∈I∗

r
(yj)}(i,j)∈I∗

r

converges to the coordinates of a vector in the linearly independent family
{PSr(∇tij(θ∗))}(i,j)∈I∗

r
which concludes the proof. �

This claim allows us to finish the proof of Theorem 3.2. Since a subsequence

(π
σr(γ(k))+1
ij (yj))(i,j)∈I∗

r
is convergent, we may consider its limit (π∗

ij)(i,j)∈I∗∗

r
.

Passing to the limit, we obtain from equation (15) that

0 = PSr(∇ly(θ∗)) − λrg
∗
r + β∗

(

∑

(i,j)∈I∗∗

r

π∗
ijPSr(∇tij(θ∗))

)

. (18)

Using the outer semi-continuity property of the subdifferential of locally Lip-
schitz functions (see Appendix) we thus obtain that g∗r ∈ ∂pnψr(θ

∗)). Now,
summing over r in (18), we obtain

0 =

R
∑

r=1

PSr(∇ly(θ∗)) −
R

∑

r=1

λrg
∗
r + β∗

R
∑

r=1

(

∑

(i,j)∈I∗

r

π∗
ijPSr(∇tij(θ∗))

)

.

Moreover, since Φij(θ
σr(k)+1, θσr(k)) tends to zeros if (i, j) 6∈ I∗, i.e. if (i, j) is

not active, passing to the limit in equation equation (15) implies that

0 =
R

∑

r=1

PSr(∇ly(θ∗)) −
R

∑

r=1

λrg
∗
r + β∗

R
∑

r=1

(

∑

(i,j)∈I∗∗

r

π∗
ijPSr(∇tij(θ∗))

)

for I∗∗r being the subset of active indices of I∗r , i.e. I∗∗r = I∗r ∩ I∗. Since
∑R

r=1 λrg
∗
r ∈ ∑R

r=1 λr∂pn(ψr(θ
∗)), this implies that

0 ∈ ∇ly(θ∗) −
R

∑

r=1

λr∂pn(ψr(θ
∗)) + β∗

R
∑

r=1

∑

(i,j)∈I∗∗

r

π∗
ijPSr(∇tij(θ∗)). (19)

10



which establishes Theorem 3.2 once we take λ∗ij = λ∗π∗
ij . �

The result (19) can be refined to the classical Karush-Kuhn-Tucker type
condition under additional conditions such as stated in the next corrolary.

Corollary 3.1 If in addition to the assumptions of Theorem 3.2 we assume
that either PSr

(∇tij(θ∗)) = ∇tij(θ∗) or PSr
(∇tij(θ∗)) = 0 for all (i, j) ∈ I∗,

i.e. such that tij(θ
∗) = 0, then there exists a set of subsets I∗r ⊂ I∗ and a

family of real numbers λij , (i, j) ∈ I∗
r , r = 1, . . . , R such that the following

Karush-Kuhn-Tucker condition for optimality holds at cluster point θ∗:

0 ∈ ∇ly(θ∗) −
R

∑

r=1

λr∂pn(ψr(θ
∗)) +

R
∑

r=1

∑

(i,j)∈I∗∗

r

λ∗ij∇tij(θ∗).

4 Examples

In this section, we show two applications of the penalized KKP algorithm (7)
to enforce sparsity in a multiple parameter estimator. We first consider the
finite mixtures of linear regression models using the SCAD penalty for variable
selection as studied in Khalili and Chen (2007). We then address a problem in
sparse image reconstruction studied in Ting, Raich and Hero (2007).

4.1 Variable selection in finite mixtures of regression mod-

els

.
Until quite recently, variable selection in regression models was performed

using penalization strategies in the maximum likelihood framework, e.g. using
AIC, Akaike (1973) and BIC, Schwarz (1978) for instance. The main drawback
of these approaches is the combinatorial explosion of the set of possible models
in the case where the number of variables is large. Recently, new approaches
have been proposed that select the subsets of variables without enumeration of
all subsets of a given size. Most such methods use l1-type penalties of likelihood
functions as in the LASSO, Tibshirani (1996). The recent Dantzig selector of
Candès and Tao (2007) also uses the l1 penalty.

Computation of the maximizers of the penalized likelihood can be performed
using standard algorithms for nondifferentiable optimization such as bundle
methods as introduced in Hiriart-Urruty and Lemaréchal (1993). However gen-
eral purpose optimization methods might be difficult to implement in the situ-
ation where, for instance, log functions induce line-search problems. In certain
cases, the EM algorithm or its generalizations, or a combination of EM type
methods with general purpose optimization routines might be simpler to imple-
ment. Variable selection in finite mixture models, as described in Khalili and
Chen (2007), is such a case due to the presence of very natural hidden variables.

In the finite mixture estimation problem considered here, y1, . . . , yn are real-
izations of the response variable Y and x1, . . . , xn are the associated realizations

11



of the P -dimensional vector of covariates X . We focus on the case of a mixture
of linear regression models sharing the same variance as in the baseball data
example of section 7.2 in Khalili and Chen (2007), i.e.

Y ∼
K

∑

k=1

πkN (Xtβk, σ
2), (20)

with π1, . . . , πk ≥ 0 and
∑K

k=1 πk = 1. The main problem discussed in Khalili
and Chen (2007) is model selection for which a generalization of the smoothly
clipped absolute deviation (SCAD) method of Fan and Li (2001,2002) is pro-
posed using an MM-EM algorithm in the spirit of Hunter and Lange (2004).
No convergence property of the MM algorithm is established. The purpose of
this section is to show that the Space Alternating KPP EM genaralization is
easily implemented and that stationarity of the cluster points is garanteed by
the theoretical analysis of Section 3.

The SCAD penalty, studied in Khalili and Chen (2007) is a modification of
the l1 penalty which is given by

pn(β1, . . . , βK) =

K
∑

k=1

πk

P
∑

j=1

pγnk
(βk,j) (21)

where pnk is specified by

p′γnk
(β) = γnk

√
n1√n|β|≤γnk

+

√
n(aγnk −

√
n|β|)+

a− 1
1√n|β|>γnk

(22)

for β in R.
Define the complete data as the class indices z1, . . . , zn of the mixture com-

ponent from which the observed data point yn was drawn. The complete log-
likelihood is then

lc(β1, . . . , βK , σ
2) =

n
∑

i=1

log(πzi
) − 1

2
log(2πσ2) − (yi − xtiβzi

)2

2σ2
. (23)

Setting θ = (π1, . . . , πK , β1, . . . , βK , σ
2), the penalized Q-function is given by

Q(θ, θ̄) =
n

∑

i=1

K
∑

k=1

tik(θ̄)

[

log(πk) −
1

2
log(2πσ2) − (yi − xtiβk)

2

2σ2

]

−pn(β1, . . . , βK)

(24)
where

tik(θ) =
πk

1√
2πσ2

exp
(

− (yi−Xβk)2

2σ2

)

∑K
l=1 πl

1√
2πσ2

exp
(

− (yi−Xβl)2

2σ2

) . (25)

The computation of this Q-function corresponds to the E-step. Due to the
fact that the penalty pn is a function of the mixture probabilities πk, the M-step

12



estimate of the π vector is not given by the usual formula

πk =
1

n

n
∑

i=1

tik(θ̄) k = 1, . . . ,K, (26)

although this is the choice made in Khalili and Chen (2007) in their imple-
mentation. Moreover, optimizing jointly in the variables βk and πk is clearly
a more complicated task than independently optimizing with respect to each
variable. We implement a componentwise approach consisting of successively
optimizing with respect to the πk’s and alternatively with respect to each vector
βk. Optimization with respect to the πk’s can be easily performed using any
standard optimization routine and optimization with respect to the βk’s requires
a specific algorithm for optimization of non-differentiable functions as provided
by the function optim of Scilab using the ’nd’ (standing for ’non-differentiable’)
option.

We now turn to the description of the Kullback proximal penalty Iy defined
by (5). The conditional density function k(y1, . . . , yn, z1, . . . , zn | y1, . . . , yn; θ)
is

k(y1, . . . , yn, z1, . . . , zn | y1, . . . , yn; θ) =

n
∏

i=1

tizi
(θ).

and therefore, the Kullback distance-like function Iy(θ, θ̄) is

Iy(θ, θ̄) =
n

∑

i=1

K
∑

k=1

tik(θ̄) log
( tik(θ̄)

tik(θ)

)

. (27)

We have R = K + 1 subsets of variables with respect to which optimization
must be performed successively. All components of assumptions 1 and 3 are
trivially satisfied for this model except for Assumption 3 (iv). However As-
sumption 3 (iv) is proved in Lemma 1 of Celeux et al. (2001). On the other
hand, since tik(θ) = 0 implies that πk = 0 and πk = 0 implies

∂tik

∂βjl
(θ) = 0 (28)

for all j = 1, . . . , p and l = 1, . . . ,K and

∂tik

∂σ2
(θ) = 0, (29)

it follows that PSr
(∇tik(θ∗)) = ∇tik(θ∗) if Sr is the vector space generated by

the probability vectors π and PSr
(∇tik(θ∗)) = 0 otherwise. Therefore, Corollary

3.1 applies.
We now turn to some experiments on the real data set (available at
http://www.amstat.org/publications/jse/v6n2/datasets.watnik.html).
Khalili and Chen (2007) report that a model with only two components was

selected by the BIC criterion in comparision to the three components model.
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Figure 1: Baseball data of Khalili and Chen (2007). This experiment is per-
formed with the plain EM. The parameters are γnk = .1 and a = 10. The first
plot is the vector β obtained for the single component model. The second (resp.
third) plot is the vector of the optimal β1 (resp. β2). The fourth plot is the
euclidean distance to the optimal θ∗ versus iteration index. The starting value
of π1 was .3
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Figure 2: Baseball data of Khalili and Chen (2007). This experiment is per-
formed with the plain EM. The parameters are γnk = 5 and a = 10. The plot
shows the probability π1 of the first component versus iteration index. The
starting value of π1 was .3

Here, two algorithms are compared: the approximate EM using (26) and the
plain EM using the optim subroutines. The results for γnk = 1 and a = 10 are
given in Figures 1.

The experiments shown in Figure 1 that the approximate EM algorithm has
similar properties to the plain EM algorithm for small values of the threshold
parameters γnk. Moreover, the larger the values of γnk, the closer the probability
of the first component is to 1. One important fact to notice is that with the
plain EM algorithm, the optimal probability vector becomes singular, in the
sense that the second component has zero probability as shown in Figure 2
(we fixed a maximum upper bound equal to .99 in order to avoid numerical
problems). Figure 3 demonstrates that this behavior is not reproduced by the
approximate EM algorithm chosen by Khalili and Chen (2007).

4.2 l2/l1 penalized EM for sparse image reconstruction

.
In this section, we justify the convergence of the l1-penalized EM algorithm

of Ting, Raich and Hero (2007).
The image will be denoted by θ ∈ R

p and the main problem is to reconstruct
this image from a set of noisy measurements y ∈ R

N , e.g. a set of noisy projec-
tions of the image. We assume that the image θ is sparse, i.e. the number of
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Figure 3: Baseball data of Khalili and Chen (2007). This experiment is per-
formed with the approximate EM. The parameters are γnk = 5 and a = 10.
The plot shows the probability π1 of the first component versus iteration index.
The starting value of π1 was .3

nonzero pixels is small compared to the size of θ. The projection y is obtained
from θ via a linear transformation with additive gaussian white noise

y = Hθ + w (30)

where w ∼ N (0, σ2I) and where H ∈ R
N×d.

One very successfull method for reconstruction of sparse signals is the LASSO.
This method was first proposed in Alliney and Ruzinsky (1994) and then further
developped in Tibshirani (1996). The LASSO estimator is given by

θ̂(y, β) = argminθ‖Hθ − y‖2
2 + β‖θ‖1 (31)

where β is a regularization parameter that can be tuned manually. We will

denote by p(y | θ) the density of Y whose log-likelihood is − ‖Hθ−y‖2
2

2σ2 .
In Ting, Raich and Hero (2007), the authors propose a more general frame-

work allowing for more general possible penalties and in particular more tractable
forms of the LAZE prior of Johnstone and Silverman (2004). The prior incor-
porated in the Ting Raich and Hero model is as follows. For each i = 1, . . . , d
define the random variables θ̃i and Ii such that θi = θ̃iIi with the following
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density

Ii =

{

0 with probability (1 − w)

1 with probability w
(32)

p(θ̃i | Ii) =

{

g(θ̃i) if Ii = 0

γ(θ̃i; a) if Ii = 1
(33)

where g(·) is some p.d.f. that will be specified later on and where it is assumed
that the sequence {(θ̃i, Ii)} is i.i.d. The variables {Ii} play the role of the
delta function in the standard LAZE prior. The Maximum A Posteriori (MAP)
reconstruction problem is then given by

(ˆ̃θ, Î , ŵ, â) = argmaxθ̃,I,w,a log p(θ̃, I | Y,w, a). (34)

Let I1 = {i | Ii = 1} and I0 = {i | Ii = 0}. The MAP problem is equivalent to

max− ‖Hθ−Y ‖2
2

2σ2 +(M − Card(I1)) log(1 − w) + Card(I1) logw

+
∑

i∈I1
log

(

1
2ae

−a|θ̃i|
)

+
∑

i∈I0
log g(θ̃i).

(35)

Maximization is performed in a block coordinate-wise fashion, handling max-
imization over (w, a) and (θ̃, I) by alternating between them as described in
Ting, Raich and Hero (2007) Section IV, Algorithm 1.

Two options are considered MAP1 and MAP2; we refer to Ting, Raich and
Hero (2007) for more details. We only present MAP1 since our results readily
apply to MAP2 once case MAP1 has been justified. Set g(x) = γ(x, a) where
1
2ae

−a|x| is the Laplacian p.d.f. Maximization over (w, a) is easily obtained by

â =
M

‖ ˆ̃
θ‖1

and ŵ =
Card(Î1)

M
. (36)

The M step with respect to (θ̃, I) is obtained by applying the EM strategy. For
this purpose, introduce the complete data model

Z = θ + w1 (37)

Y = HZ + w2 (38)

where w1 and w2 are gaussian white noises with w1 ∼ N (0, α2I) and w =
Hw1 + w2 which implies that w2 ∼ N (0, σ2I − α2HHt). This representation
is very interesting since it allows to decompose the problem in two tasks, the
first being the one of deconvolving, the second of denoising. In this model, the
hidden data is z = θ + αw. Assuming (w, a) fixed, the E-step of the algorithm
is obtained as follows from Figueiredo and Nowak (2003), Section V.B. We
can write the complete likelihood fY,Z|θ = fY |Z,θfZ|θ. First, given Z, Y is
independent of θ. Next, we have

log fZ|θ(Z) =
θtθ − 2θtZ

2α2
+ C (39)
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where C is a constant dependent on θ. Hence, finding the function Q(θ, θ̄), is
equivalent to replacing Z by its conditional expectation given Y and θ̄. This
conditional expectation is a deconvolution step and is given by

E
[

Z | Y, θ̄
]

= θ̄ +
α2

σ2
Ht(Y −Hθ̄). (40)

therefore, the E-step corresponds to the computation of

( E-step ) Q(θ, θ̄) = − 1

2α2
‖θ−E

[

Z | Y, θ̄
]

‖2−
θtθ − 2θtE

[

Z | Y, θ̄
]

2α2
+C. (41)

Now, recalling that θi = θ̃iIi, the M step is

( M-step ) θi =

{

Thy(E[Z | Y, θ̄]; aα2 +
√

2α2 log(1−w
w
, aα2) if 0 < w ≤ 1

2

Ts(E[Z | Y, θ̄]; aα2) if 1
2 < w ≤ 1

(42)
where Thy denotes the hybrid soft thresholding function

Thy(x, t1, t2) = (x− sign(x)t21|x|>t1) (43)

and Ts denotes the usual soft thresholding function

Ts(x, t) = Thy(x, t, t). (44)

Finally, we obtain an EM algorithm which satisfies the assumptions of The-
orem 3.1 above and the asymptotic properties asserted by Theorem 3.1 hold.

5 Appendix: The Clarke subdifferential of a lo-

cally Lipschitz function

Since we are dealing with non differentiable functions, the notion of generalized
differentiability is required. The main references for this appendix are Clarke
(1990) and Rockafellar and Wets (2004). A locally Lipschitz function f : R

p 7→ R

always has a generalized directional derivative f◦(θ, ω): R
p × R

p 7→ R in the
sense given by Clarke, i.e.

f◦(θ, ω) = lim supη∈Rp→θ, t↓0
f(η + tω) − f(η)

t
. (45)

The Clarke subdifferential of f at θ is the convex set defined by

∂f(θ) = {η | f◦(θ, ω) ≥ ηtω, ∀ω}. (46)

Proposition 5.1 The function f is differentiable if and only if ∂f(θ) is a sin-
gleton.
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We now introduce another very important property of the Clarke subdifferential
related to generalization of semicontinuity for set-valued maps.

Definition 5.1 A set-valued map Φ is said to be outer-semicontinuous if its
graph

graph Φ = {(θ, g) | g ∈ Φ(θ)} (47)

is closed, i.e. if for any sequence graphΦ ⊃ (θn, gn) → (θ∗, g∗) as n → +∞,
then (θ∗, g∗) ∈ graphΦ.

One crucial property of the Clarke subdifferential is that it is outer-semicontinuous.
A point θ is said to be a stationary point of f if

0 ∈ ∂f(θ). (48)

Consider now the problem
sup
θ∈Rp

f(θ) (49)

subject to
g(θ) = [g1(θ), . . . , gm(θ)]t ≥ 0 (50)

where all the functions are locally Lipschitz from R
p to R. Then, a necessary

condition for optimality of θ is the Karush-Kuhn-Tucker condition, i.e. there
exists a vector u ∈ R

m
+ such that

0 ∈ ∂f(θ) +

m
∑

j=1

uj∂gj(θ). (51)

Convex functions are in particular locally Lipschitz and the notions of subdiffer-
ential can the Clarke subdifferential is well defined. The main references on their
particular properties are Rockafellar (1970) and Hiriart-Urruty and Lemaréchal
(1993).
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