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The Jordan-Brans-Dicke theory of gravitation, which promotes the gravitational constant to a
dynamical scalar field, predicts a value for the Eddington-Robertson post-Newtonian parameter γ

that is significantly different from the general relativistic value of unity. This contradicts precision
solar system measurements that tightly constrain γ around 1. We consider a modification of the
theory, in which the scalar field is sourced explicitly by matter. We find that this leads to a modified
expression for the γ-parameter. In particular, a specific choice of the scalar current yields γ = 1,
just as in general relativity, while the weak equivalence principle is also satisfied. This result has
important implications for theories that mimic Jordan-Brans-Dicke theory in the post-Newtonian
limit in the solar system, including our scalar-tensor-vector modified gravity theory (MOG).

PACS numbers: 04.20.Cv,04.50.Kd,04.80.Cc,98.80.-k

Jordan-Brans-Dicke [1, 2] theory is a theory of gravitation in which the gravitational constant G is replaced with
the inverse of a dynamical scalar field φ. It can be demonstrated by straightforward derivation that this scalar field
is effectively sourced by the curvature of space-time (see, e.g., [3]). There is, however, no scalar current: in the
Lagrangian formulation, the variation of matter fields with respect to the scalar field is assumed to be zero.
Jordan-Brans-Dicke theory runs into severe observational constraints within the solar system. Notably, the theory

predicts that the value of the post-Newtonian γ-parameter, first introduced by Eddington [4] and Robertson [5] and
also Schiff [6], and effectively measuring the amount of spatial curvature produced by unit rest mass, will deviate
from the standard general relativistic value of 11. Instead, its value will be γ = (ω + 1)/(ω + 2) [3], where ω is the
dimensionless coupling constant of the dynamical field. Constraints established by precision measurements of the
Cassini spacecraft [7] require the uncomfortably large value of |ω| > 4× 104.
Nonetheless, there is no a priori reason to exclude the possibility of a scalar current. A phenomenological matter

Lagrangian could be constructed such that it depends explicitly on G = φ−1. The variation of such a Lagrangian
with respect to φ would be non-zero, introducing a scalar current into the field equations. To demonstrate this, we
write the scalar theory Lagrangian as follows:

L =
1

16π
[(R − 2Λ)φ+ f(φ, gµν∂µφ∂νφ)]

√−g + LO.F., (1)

where R is the Ricci-scalar constructed from the metric gµν , g is the metric determinant, Λ is the cosmological
constant, φ is a scalar field, f is an arbitrary function, and O.F. stands for terms that represent other fields, which,
we assume, depend only on φ, not on its derivatives. We set c = 1, use the (+,−,−,−) metric signature, and define

the Ricci tensor as Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

µνΓ
β
αβ − Γα

µβΓ
β
αν , where the Γ are the usual Christoffel-symbols.

The field equations of the theory are the Euler-Lagrange equations corresponding to (1):

∂L
∂gµν

− ∂κ
∂L
∂gµν,κ

+ ∂κ∂λ
∂L

∂gµν,κλ
=0, (2)

∂L
∂φ

−∇µ

∂L
∂(∂µφ)

=0, (3)

where ∇µ is the covariant derivative with respect to xµ. These equations can be recast in the form,

Rµν − 1

2
gµνR + gµνΛ +

1√−g

1

φ

∂f
√−g

∂gµν
− ∂R

∂gµν,κ

∂κφ

φ
+

2√−g
∂λ

(

√−g
∂R

gµν,κλ

)

∂κφ

φ
+

∂R

∂gµν,κλ

∂κ∂λφ

φ
=
8π

φ
Tµν , (4)

R − 2Λ +
∂f

∂φ
−∇κ

∂f

∂(∂κφ)
=16πJ, (5)

1 The other Eddington-Robertson parameter, β, is identically 1 in Jordan-Brans-Dicke theory, just as in general relativity.
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where Tµν = −(2/
√−g)∂LO.F./∂g

µν and J = −(1/
√−g)∂LO.F./∂φ. The existence of a non-zero variation of matter

fields with respect to φ represents a significant generalization of the archetypal scalar field theory of Jordan, Brans
and Dicke.
Equation (4) can be rewritten using covariant derivatives, yielding

Rµν − 1

2
gµνR + gµνΛ +

1√−g

1

φ

∂f
√−g

∂gµν
− ∂R

∂gµνκλ

∇κ∇λφ

φ
=

8π

φ
Tµν , (6)

Spelled out, the field equations now take the following form:

Rµν − 1

2
gµνR+ gµνΛ + w

∂µφ∂νφ

φ
− 1

2
gµν

f

φ
+ (gκλgµν − δκµδ

λ
ν )

∇κ∇λφ

φ
=
8π

φ
Tµν , (7)

R− 2Λ + v − 2∂µw∂
µφ− 2w∇µ∇µφ =16πJ. (8)

where v = ∂f/∂φ and w = ∂f/∂(gµν∂µφ∂νφ). Taking the trace of (7), we obtain

−R+ 4Λ + w
∂µφ∂

µφ

φ
− 2

f

φ
+ 3

∇µ∇µφ

φ
=

8π

φ
T, (9)

allowing us to rewrite (7) and (8) as

Rµν =
8π

φ

{

Tµν +
1

3− 2wφ

[

φJ − (1 − wφ)

(

T − 1

4π
φΛ

)]

gµν

}

+
1− wφ

3− 2wφ

(

w∂µφ∂
µφ− 1

2
f

)

gµν

− 1

3− 2wφ

(

1

2
v − ∂µw∂

µφ

)

gµν +
∇µ∇νφ

φ
− w∂µφ∂νφ

φ
, (10)

∇µ∇µφ =
2

3− 2wφ
(16πT − 4φΛ + 32πφJ + 4f − 2vφ− 2w∂µφ∂

µφ+ 4∂µw∂
µφ) . (11)

For Jordan-Brans-Dicke theory, f(φ, gµν∂µφ∂νφ) = −ω∂µφ∂
µφ/φ, hence v = −f/φ and w = −ω/φ. Therefore, the

equations read

Rµν =
8π

φ

{

Tµν +
1

2ω + 3

[

φJ − (ω + 1)

(

T − 1

4π
φΛ

)]

gµν

}

+ ω
∂µφ∂νφ

φ2
+

∇µ∇νφ

φ
, (12)

∇µ∇µφ =
8π

2ω + 3

(

T + 2φJ − 1

4π
φΛ

)

, (13)

which, apart from the presence of J , are the equations of Jordan-Brans-Dicke theory in the standard form. To the first
post-Newtonian order, terms quadratic in derivatives vanish; the second derivative in (12) can, in turn, be eliminated
by a suitable gauge choice (for a thorough derivation, see Appendix A of [8]). In the post-Newtonian metric [9],
T ≃ T00 and the γ-parameter can be read off as the ratio of the ii and 00 components of (12). In the absence of a
cosmological term, Λ = 0, we get

γ =
(ω + 1)T − φJ

(ω + 2)T + φJ
(14)

If the scalar current vanishes (J = 0), we get back the usual post-Newtonian result for Jordan-Brans-Dicke theory:

γ =
ω + 1

ω + 2
. (15)

This result is frequently cited as a reason for rejecting Jordan-Brans-Dicke theory within the solar system, as precision
measurements by the Cassini spacecraft yielding γ−1 = (2.1±2.3)×10−5, for instance, are consistent with the theory
only if |ω| & 4× 104 [7].
However, if a scalar current is present, the situation changes. Specifically, we can choose a scalar current in the

form

φJ = −1

2
T, (16)

which is equivalent to

− φ
1√−g

∂LO.F.

∂φ
=

1√−g

∂LO.F.

∂gµν
gµν . (17)
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This choice can be made, in part, because J is not a conserved quantity, just as T is not conserved. In this case,
equations (12) and (13) read

Rµν =
8π

φ

(

Tµν − 1

2
Tgµν +

1

4π

ω + 1

2ω + 3
φΛgµν

)

+ ω
∂µφ∂νφ

φ2
+

∇µ∇νφ

φ
, (18)

∇µ∇µφ =− 2φΛ

2ω + 3
. (19)

Considering the trace of the bracketed term in Eq. (18), if

|Λ| ≪ π

∣

∣

∣

∣

2ω + 3

ω + 1
φ−1T

∣

∣

∣

∣

, (20)

the general relativistic result that is also consistent with solar system data,

γ ≃ 1, (21)

is easily satisfied.
The result (15) has been used as an argument against theories that, within the solar system, yield the same solution

as Jordan-Brans-Dicke theory to the first post-Newtonian order. We mention in particular our scalar-tensor-vector
(STVG) modified gravity theory (MOG) [10, 11], which, according to an extensive analysis by Deng, et al. [8], shows
the same behavior in the solar system as Jordan-Brans-Dicke theory. This problem is avoided by a suitable choice of
J yielding (21), as demonstrated above.
Nonetheless, we note that in the case of J 6= 0, the theory is no longer a metric theory: material particles carry a

scalar charge and no longer move along geodesics. To determine the equations of motion for a test particle, we use a
test particle Lagrangian in the form

LTP = −m
√

gµνuµuν − qφ, (22)

where q is the scalar charge associated with a particle of mass m, moving with four-velocity uµ = dxµ/dτ and τ is the
proper time along the particle’s world line. Integration of (16) over a three-volume encompassing a test particle gives

q = −1

2
φ−1m, (23)

and 1

2
φ−1m ≃ 1

2
GNm at the present epoch (GN is Newton’s constant of gravitation.) The equation of motion obtained

by varying (22) contains an extra term when compared to the standard geodesic equation of motion:

m

(

d2xκ

dτ2
+ Γκ

µνu
µuν

)

− qgκλ
∂φ

∂xλ
= 0. (24)

Given (23), we obtain

m

(

d2xκ

dτ2
+ Γκ

µνu
µuν

)

+mgκλ
1

2φ

∂φ

∂xλ
= 0. (25)

We observe that m cancels out in the equation of motion, hence the theory satisfies the weak equivalence principle.
Finally, we note that equation (19) can be rewritten in the familiar form

(�+ µ2)φ = 0, (26)

with � = ∇ν∇ν and µ given by

µ2 =
2Λ

2ω + 3
. (27)

This last term can be interpreted as the mass µ of the scalar field φ. Using Λ ≃ 1.2× 10−52 m−2, we obtain the mass
of an ultralight scalar field, µ ≃ 3.9

√

2/(2ω + 3)× 10−69 kg.
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