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Abstract

We study the Generalized Brans-Dicke cosmology in the presence of matter and dark energy.

Of particular interest for a constant Brans-Dicke parameter, the de Sitter space has also been

investigated.
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1. INTRODUCTION

The Brans-Dicke (BD) theory is defined by a scalar field ϕ and a constant coupling

function ω as perhaps the most natural extension of general theory of relativity that is

obtained in the limit of ω → ∞ and ϕ = constant. The theory appears naturally in

supergravity theory, Kaluza-Klein theories and in all the known effective string actions. In

FRW cosmology, the theory gives simple expanding solutions for scale factor a(t) and scalar

field ϕ(t) which are compatible with solar system experiments [1]

The generalized BD theory, sometimes referred to as graviton-dilaton or scalar -tensor

theory, is instead, defined by ω which is implicitly a function of time ω(t). Naturally, a

few attempts have been taken to study the dynamics of the universe using this formalism

[2][3][4].

The belief that modified gravity theories may have played a crucial role during the early

universe has recently been renewed by extended inflation (for example see [5][6]). In this case

a scalar tensor gravity theory allows the first order phase transition of the old inflationary

model to complete. This arises because the scalar field ϕ, that is essentially the inverse

of the Newtons gravitational constant, damps the rate of expansion and, in the original

extended inflationary model based on the BD theory, turns the exponential expansion found

in general relativity into power law inflation [7]. However, BD theory is unable to meet the

simultaneous and distinct requirements placed by the postNewtonian solar system tests and

by the need to keep the sizes of the bubbles nucleated during inflation within the limits

permitted by the anisotropies of the microwave background [8] [9].

In order to carry out a detailed study of the dynamics of the cosmic evolution in this

formalism, knowledge about exact time-dependence of a(t), ϕ(t) and ω(t) and energy mo-

mentum distribution in spacetime is essential. In part of this paper, similar to [10], we have

obtained red shift-dependence of ω(z) with the power of red shift z determined in terms of

the exponent of scale factor a(t) which is taken to vary as a(t) ∝ tδ and equation of state

parameter for the matter and dark energy contribution. With the help of observational

evidence we obtain certain information about the parameters describing the cosmological

model in particular regarding the early and late time behavior of the universe. We also in-

vestigate both empty and filled de Sitter space case with constant BD parameter and shows

that the result is consistent with recent measurements.
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2. THE MODEL

We consider a flat Universe filled with pressureless matter and dark energy both described

by perfect fluid. The field equations in generalized BD theory with time dependent ω, are

H2ϕ2 +Hϕ̇ϕ− ω

6
ϕ̇2 =

ρx + ρm
3

ϕ, (1)

2Ḣϕ2 + 3H2ϕ2 +
ω

2
ϕ̇2 + 2Hϕ̇ϕ + ϕ̈ϕ = −pxϕ, (2)

where px = αxρx, pm = αmρm are the equations of state for dark energy and matter and

the scale factor and scalar field are respectively a(t) and ϕ(t). In addition, the equation of

motion for BD scalar field is given by

ϕ̈+ 3Hϕ̇ =
ρx + ρm − 3px

2ω + 3
− ω̇ϕ̇

2ω + 3
· (3)

From equations (1), (2) and (3), the energy conservation equation can be obtained as

(ρ̇x + ρ̇m) + 3H(ρx + ρm + px) = 0· (4)

Note that the wave equation for the BD scalar field, (3), is not an independent expression

as it follows from the Bianchi identities alongside equations (1) and (2). In addition, the

dynamics of the scale factor is governed not only by the matter and dark energy, but also

by the BD scalar field, ϕ(t).

One may assume that the matter and dark energy interact with each other, thus the

growth of one is at the expense of the other. Then the conservation equations for them are

ρ̇m + 3Hρm = Q, (5)

ρ̇x + 3H(1 + αx)ρx = −Q, (6)

where Q > 0 stands for the interaction term. Alternately, one could construct the equivalent

uncoupled model described by:

ρ̇m + 3H(1− αm,eff)ρm = 0, (7)

ρ̇x + 3H(1 + αx,eff)ρx = 0, (8)

where

αm,eff =
Q

3Hρm
, (9)

αx,eff = αx +
Q

3Hρx
· (10)
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The wave equation (3) is not altered by the interaction equations (5) and (6), since although

the matter and dark energy components do not conserve separately the overall fluid -matter

plus dark energy- does. Thus, one may introduce the total energy density ρtot = ρm + ρx,

and from equation (7) and (8), obtains

ρ̇tot + 3H(1 + αtot)ρtot = 0, (11)

with the solution

ρtot ∝ a−3(1+αtot), (12)

where

αtot =
px

ρm + ρx
= αxΩx, (13)

and Ωx ≡ ρx
ρtot

. One can also find the rate of Ωx as

Ω̇x =
−3H(αx,eff + αm,eff)ρxρm

ρ2tot
= −3Hαtotρm +Q

ρtot
, (14)

or in terms of red shift z,

Ω′
x =

3(αx,eff + αm,eff)ρxρm
ρ2tot(1 + z)

, (15)

where 1
a
= 1+ z, and a = 1 is the present value of the scale factor and ”′” means derivative

with respect to z.

Also in terms of the red shift z, equation (8) can be rewritten as

ρ′x =
3(1 + αx,eff)ρx

1 + z
, (16)

where the equation based on the sign of 1+αx,eff shows whether the density of dark energy

will increase or not as the red shift becomes low. For positive sign, the density decreases

like the quintessence, for negative sign, it increases like the phantom, and when it is zero

the density is invariant like the cosmological constant.

3. THE GENERAL ω

Following paper [2] for a ∝ tδ, ϕ ∝ tβ and time dependent ω, equation (1) gives,

ω(t) = − 2

β2
t−3δ(1+αtot)−β+2· (17)
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One can rewrite equation (17) in terms of red shift z,

ω(z) = − 2

β2
(1 + z)3(1+αtot)+(β−2)/δ , (18)

where its derivative with respect to z is given by

ω′ =
2(−3δ(1 + αtot)− β + 2)

β2δ
(1 + z)2+3αtot+(β−2)/δ· (19)

After some calculations, we can also rewrite equations (1) and (3) as

[(
ȧ

a
+

ϕ̇

2ϕ
)2 − (2ω + 3)ϕ̇2

12ϕ2
]3ϕ = ρtot, (20)

β[
3(1− αtot)

4
β +

3δ(1− αtot)

2
] = 0. (21)

From equation (21) one finds that for αtot 6= 1, β restricted to be 0 or −2δ. In case of

αtot = 1, there is no constraint on β. For β = 0, from equation (18) one finds that ω → ∞
and from equation (20) we obtain ϕ = ϕ0 = constant and a ∝ tδ. So for β = 0, Brans-

Dicke model goes over to General Relativity [11] and to obtain δ, one has to solve equations

of General Relativity [12]. In case of β = −2δ, equations (18) and (19) reduce to,

ω(z) = − 1

2δ2
(1 + z)(1+3αtot)−2/δ, (22)

ω′ =
−δ(1 + 3αtot) + 2

2δ3
(1 + z)3αtot−2/δ· (23)

It is clear from equations (22) that, the parameter αtot which takes different values in different

era, controls the z dependence of ω in different era. For today value of z = 0, we have

ω0 = − 1

2δ2
, (24)

and

ω′
0 =

−δ(1 + 3αtot) + 2

2δ3
, (25)

where for the present acceleration of the universe that δ needs to be greater than one, ω0

given by (24) has the minimum value of 1/2 in agreement with the observation [13].

Further, in the last scattering surface, during the galaxy formation era (1 < z < 3)

where dark energy density must be sub-dominant to matter density (αtot > −0.5), we have

−1/12 < ω < −1/14.

In the Big Bang Nucleosynthesis (BBN) era where the presence of dark energy should

not disturb the observed Helium abundance in the universe ((αtot)BBN > −0.21 at z = 1010)
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[14], we have −9/32 < ω < −9/128. This also shows that at sometimes in the future,

z = −1, we have a big rip and ω → −∞.

One also finds from (22) and (23) that

ω′

ω
= ((1 + 3αtot)− 2/δ)(1 + z)−1, (26)

where the ration for today is negative, in the distance future for z = −1 it goes to minus

infinity and in the distance past where z → ∞, it approaches zero.

4. DE SITTER SPACE TIME WITH CONSTANT ω

We now assume an empty de Sitter spacetime with the solution H = H0. Then, for

ϕ ∝ eβ and constant BD parameter ω, equations (1) and (2) can be solved:

H2
0 +H0β − ω

6
β2 = 0, (27)

3H2
0 + 2H0β + (

ω

2
+ 1)β2 = 0, (28)

to give

β =
(−2±

√
−8− 6ω)H0

2 + ω
, (29)

β =
(3±

√
9 + 6ω)H0

ω
· (30)

For these two solutions to be consistent implies that ω = −4/3 or ω = −3/2. For equations

(1), (2) and (3) to be simultaneously satisfied only ω = −4/3 and so β = −3H0 is acceptable.

For large value of H0, during inflation, while the universe expands exponentially, the BD

scalar field drops exponentially.

In the presence of matter and dark energy we may also have a de Sitter solution H = H0.

Then the equations (1) and (2) become

H2
0 +H0β − ω

6
β2 =

1

3
e[−3H0(1+αtot)−β]t, (31)

3H2
0 + 2H0β + (

ω

2
+ 1)β2 = −αtote

[−3H0(1+αtot)−β]t· (32)

These equations are satisfied when

H2
0 +H0β − ω

6
β2 =

1

3
, (33)

3H2
0 + 2H0β + (

ω

2
+ 1)β2 = −αtot, (34)

−3H0(1 + αtot) = β· (35)
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Using equation (35) in (33) one gets

ω =
2(−3H2

0 (2 + 3αtot)− 1)

9H2
0(1 + αtot)2

· (36)

Similarly, equation (35) in conjunction with equation (34) gives

ω =
2(3H2

0 (1 + 2αtot)− 9H2
0 (1 + αtot)

2 − αtot)

9H2
0(1 + αtot)2

· (37)

For equations (33), (34) and (35) to be simultaneously satisfied, above two values of ω should

be equal. Imposition of this condition leads to

αtot =
−(3H2

0 + 1)±
√

9H4
0 + 42H2

0 + 1

18H2
0

· (38)

From the above solution we find that for negative sign and H0 > 10, αtot = −0.33 or for

H0 < 0.15, αtot > −0.33. For positive sign, for H0 ≫ 1 or H0 ≃ 0, we have αtot ≃ 0. In

case of αtot > −0.33 or from equation (13), Ωx < 0.33, this is consistent with last Scattering

Surface, during the galaxy formation era (1 < z < 3) where dark energy density must be

sub-dominant to matter density and accordingly Ωx < 0.5 . Then one gets ω = −1.5 and

β = −142.7.

From the above argument as to the Brans-Dicke parameters ω are concerned, it is negative

and of the order of unity. This could be considered as an unsatisfactory result, in view of

the high lower limits imposed to ω by astronomical tests in the Solar System.

A possible solution of this contradiction as discussed is in considering a non-constant

coupling function ω(t) in Generalised Brans-Dicke theory. Thus, the value of such a function

can change with the cosmic time and, in the limit t → ∞, it could agree with local measured

values [15]. This argument is based on the scalar-tensor theories in which ω depends on the

scale, being very high in the weak field approximation of Solar System that probe only a

limited range of space and time. To effectively constrain more general scalar-tensor theories,

one would also like to have strong-field experiments, such as that provided by the binary

pulsar [16]. It was also pointed out that in cosmological models based on more general

scalar-tensor theories in which ω can vary, there is generally an attractor mechanism that

drives ω to ∞ at late times [17].
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5. CONCLUSION

In this work,we have derived the explicit time and red shift dependence of the Brans-

Dicke parameter ω by solving gravitational field and wave equations of generalized BD theory

consistently in the present of matter and dark energy, assuming power law behavior for the

scale factor a(t) and scalar field ϕ(t). Similar to the work done in [2], we find two consistent

solutions of the field and wave equations. One solution leads to General Relativity and the

other one leads to a z-dependent ω(z) whose red shift dependence is governed by the equation

of state parameter αtot. Consequently, ω(z) exhibits different behavior in different epochs of

the evolving Universe characterized by its dominant matter/dark energy components. We

also find that the ratio ω′

ω
is a negative monotonically increasing function of z. In particular,

for an expanding universe, we have studied the empty de Sitter space with constant ω and

find that in the era of inflation that H0 is high, the scalar field drops exponentially and

ω = −4/3. Moreover, in the presence of matter and dark energy, we also find that ω is

negative and we are able to explain the last scattering surface constraint
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