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Abstract

We study a least squares estimator bθT for the Ornstein-Uhlenbeck
process, dXt = θXtdt+σdBH

t , driven by fractional Brownian motion BH

with Hurst parameter H ≥ 1

2
. We prove the strong consistence of bθT (the

almost surely convergence of bθT to the true parameter θ). We also obtain
the rate of this convergence when 1/2 ≤ H < 3/4, applying a central limit
theorem for multiple Wiener integrals. This least squares estimator can
be used to study other more simulation friendly estimators such as the
estimator θ̃T defined by (4.1).

1 Introduction

The Ornstein-Uhlenbeck process Xt driven by a certain type of noise Zt is
described by the Langevin equation

Xt = X0 − θ

∫ t

0

Xsds+ σZt.

If the parameter θ is unknown and if the process (Xt, 0 ≤ t ≤ T ) can be observed
continuously, then an important problem is to estimate the parameter θ based
on the (single path) observation (Xt, 0 ≤ t ≤ T ). When Zt is the standard
Brownian motion, this problem has been extensively studied (see for example
[9], [10] and the references therein). The most popular approaches are either
the maximum likelihood estimators or the least squares estimators, and in this
case they coincide. Other type of noise processes have also been studied. For
example, when Zt is an α-stable process maximum likelihood estimators do not
exist and other approaches are proposed in [5] and [6].
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†D. Nualart is supported by the National Science Foundation under DMS0604207
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In this paper we study the parameter estimation problem for the Ornstein-
Uhlenbeck process driven by fractional Brownian motion with Hurst parameter
H

Xt = X0 − θ

∫ t

0

Xsds+ σBH
t , (1.1)

where θ > 0 is an unknown parameter. Although the Ornstein-Uhlenbeck pro-
cess is defined for all H ∈ (0, 1), we assume H > 1/2 in this paper. In [8], the
the maximum likelihood estimator θ̄T for the parameter θ is obtained and has
the following expression

θ̄T = −
{∫ T

0

Q2(s)dwH
s

}−1 ∫ T

0

Q(s)dZs ,

where

kH(t, s) = κ−1
H s

1

2
−H(t− s)

1

2
−H , κH = 2HΓ

(
3

2
−H

)
Γ

(
H +

1

2

)
;

wH
t = λ−1

H t2−2H ; λH =
2HΓ(3 − 2H)Γ

(
H + 1

2

)

Γ
(

3
2 −H

) ;

Q(t) =
d

dwH
t

∫ t

0

kH(t, s)Xsds , 0 ≤ t ≤ T ;

Zt =

∫ t

0

kH(t, s)dXs .

It is proved that limT→∞ θ̄T = θ almost surely.
In this paper we propose two different estimators for the parameter θ and we

study their asymptotic behavior. First we introduce an estimator of the form

θ̂T = θ − σ

∫ T

0
XtdB

H
t∫ T

0 X2
t dt

, (1.2)

where
∫ T

0
XtdB

H
t is a divergence-type integral (see [1], [3], [4], [7] and the refer-

ences therein), and we call it the least squares estimator. This is motivated by
the following heuristic argument. The least square estimator aims to minimize

∫ T

0

|Ẋt + θXt|2dt ,

and this leads to the solution

θ̂T = −
∫ T

0
XtdXt

∫ T

0
X2

t dt
. (1.3)

If H = 1
2 , then the integral

∫ T

0
XtdXt is an Itô stochastic integral which can be

approximated by forward Riemann sums. However, for H > 1
2 the numerical
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simulation of the estimator θ̂T seems extremely difficult. For this reason, in this
case we introduce and study a second estimator θ̃T , defined in (4.1).

We prove the almost sure convergence of the estimator θ̂T to θ, as T tends
to infinity, and derive the rate of convergence, obtaining a central limit theorem
in the case H ∈

[
1
2 ,

3
4

)
. The proof of the central limit theorem is based on

the characterization of the convergence in law for multiple stochastic integrals
using the techniques of Malliavin calculus, established recently by Nualart and
Ortiz-Latorre in [12]. Finally, we derive the rate of convergence of the estimator

θ̃T from the rate of convergence of θ̂T .

2 Preliminaries

In this section we first introduce some basic facts on the Malliavin calculus for
the fractional Brownian motion and recall the main result in [12] concerning the
central limit theorem for multiple stochastic integrals.

The fractional Brownian motion with Hurst parameter H ∈ (0, 1), (BH
t , t ∈

R) is a zero mean Gaussian process with covariance

E(BH
t B

H
s ) = RH(s, t) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (2.1)

We assume that BH is defined on a complete probability space (Ω,A, P ) such
that A is generated by BH . Fix a time interval [0, T ]. Denote by E the set of
real valued step functions on [0, T ] and let H be the Hilbert space defined as
the closure of E with respect to the scalar product

〈1[0,t],1[0,s]〉H = RH(t, s),

where RH is the covariance function of the fBm, given in (2.1). The mapping
1[0,t] 7−→ BH

t can be extended to a linear isometry between H and the Gaussian
space H1 spanned by BH . We denote this isometry by ϕ 7−→ BH(ϕ). For

H = 1
2 we have H = L2([0, T ]), whereas for H > 1

2 we have L
1

H ([0, T ]) ⊂ H and

for ϕ, ψ ∈ L
1

H ([0, T ]) we have

〈ϕ, ψ〉H = αH

∫ T

0

∫ T

0

ϕsψt|t− s|2H−2dsdt, (2.2)

where αH = H(2H − 1).
Let S be the space of smooth and cylindrical random variables of the form

F = f(BH(ϕ1), . . . , B
H(ϕn)), (2.3)

where f ∈ C∞
b (Rn) (f and all its partial derivatives are bounded). For a random

variable F of the form (2.3) we define its Malliavin derivative as the H-valued
random variable

DF =
n∑

i=1

∂f

∂xi

(BH(ϕ1), . . . , B
H(ϕn))ϕi.
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By iteration, one can define the mth derivative DmF , which is an element of
L2(Ω;H⊗m), for every m ≥ 2. For m ≥ 1, D

m,2 denotes the closure of S with
respect to the norm ‖ · ‖m,2, defined by the relation

‖F‖2
m,2 = E

[
|F |2

]
+

m∑

i=1

E
(
‖DiF‖2

H⊗i

)
.

Let δ be the adjoint of the operator D, also called the divergence operator. A
random element u ∈ L2(Ω,H) belongs to the domain of δ, denoted Dom(δ), if
and only if it verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2,

for any F ∈ D
1,2, where cu is a constant depending only on u. If u ∈ Dom(δ),

then the random variable δ(u) is defined by the duality relationship

E(Fδ(u)) = E〈DF, u〉H, (2.4)

which holds for every F ∈ D
1,2. The divergence operator δ is also called the

Skorohod integral because in the case of the Brownian motion it coincides with
the anticipating stochastic integral introduced by Skorohod in [15]. We will

make use of the notation δ(u) =
∫ T

0
utdB

H
t .

For every n ≥ 1, let Hn be the nth Wiener chaos of B, that is, the closed lin-
ear subspace of L2 (Ω,A, P ) generated by the random variables {Hn

(
BH (h)

)
, h ∈

H, ‖h‖H = 1}, whereHn is the nth Hermite polynomial. The mapping In(h⊗n) =
n!Hn

(
BH (h)

)
provides a linear isometry between the symmetric tensor product

H⊙n and Hn. For H = 1
2 , In coincides with the multiple Itô stochastic integral.

On the other hand, In(h⊗n) coincides with the iterated divergence δn(h⊗n).
We will make use of the following central limit theorem for multiple stochas-

tic integrals (see [12]).

Theorem 2.1 Let {Fn , n ≥ 1} be a sequence of random variables in the p-
th Wiener chaos, p ≥ 2, such that limn→∞ E(F 2

n) = σ2. Then the following
conditions are equivalent:

(i) Fn converges in law to N(0, σ2) as n tends to infinity.

(ii) ‖DFn‖2
H converges in L2 to a constant as n tends to infinity.

Remark. In [12] it is proved that (i) is equivalent to the fact that ‖DFn‖2
H

converges in L2 to pσ2 as n tends to infinity. If we assume (ii), the limit of
‖DFn‖2

H must be equal to pσ2 because

E(‖DFn‖2
H) = pE(F 2

n).
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3 Asymptotic behavior of the least square esti-

mator

Consider Equation (1.1) driven by a fractional Brownian motion BH with Hurst
parameter H ≥ 1

2 . Suppose that X0 = 0 and θ > 0. The solution is given by

Xt = σ

∫ t

0

e−θ(t−s)dBH
s , (3.1)

where the stochastic integral is an Itô integral if H = 1
2 and a path-wise

Riemann-Stieltjes integral if H > 1
2 . Let θ̂T be the least squares estimator

defined in (1.2). The next lemma provides a useful alternative expression for

θ̂T .

Lemma 3.1 Suppose that H > 1
2 . Then

θ̂T = − X2
T

2
∫ T

0
X2

t dt
+ σ2αH

∫ T

0

∫ t

0 ξ
2H−2e−θξdξdt

∫ T

0
X2

t dt
. (3.2)

Proof Using the relation between the divergence integral and the path-wise
Riemann-Stieltjes integral (see Theorem 3.12 and Equation (3.6) of [3]) we can
write

∫ T

0

Xt ◦ dBH
t =

∫ T

0

XtdB
H
t + αH

∫ T

0

∫ t

0

DsXt(t− s)2H−2dsdt

=

∫ T

0

XtdB
H
t + σαH

∫ T

0

∫ t

0

e−θ(t−s)(t− s)2H−2dsdt

=

∫ T

0

XtdB
H
t + σαH

∫ T

0

∫ t

0

ξ2H−2e−θξdξdt .

As a consequence, we obtain

θ̂T = θ − σ

∫ T

0
Xt ◦ dBH

t∫ T

0 X2
t dt

+ σ2αH

∫ T

0

∫ t

0
ξ2H−2e−θξdξdt
∫ T

0 X2
t dt

. (3.3)

On the other hand,

σ

∫ T

0

Xt ◦ dBH
t =

∫ T

0

Xt ◦ dXt + θ

∫ T

0

X2
t dt =

1

2
X2

T + θ

∫ T

0

X2
t dt. (3.4)

Substituting (3.4) into (3.3) yields (3.2). �

The next theorem establishes the strong consistency of this estimator.

Theorem 3.2 If H ≥ 1
2 , then

θ̂T → θ (3.5)

almost surely, as T tends to infinity.
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In order to prove this theorem we make use of the following technical result.

Lemma 3.3 Assume H ≥ 1
2 . Then,

1

T

∫ T

0

X2
t dt→ σ2θ−2HHΓ(2H), (3.6)

almost surely and in L2, as T tends to infinity.

Proof For every t ≥ 0 define

Yt = σ

∫ t

−∞
e−θ(t−s)dBH

s = Xt + e−θtξ, (3.7)

where ξ = σ
∫ 0

−∞ eθsdBH
s . The stochastic process (Yt, t ≥ 0) is Gaussian, sta-

tionary and ergodic. For H = 1
2 this is well-known and for H > 1

2 this is proved
in [2]. Then, the ergodic theorem implies that

1

T

∫ T

0

Y 2
t dt→ E(Y 2

0 ),

as T tends to infinity, almost surely and in L2. This implies that

1

T

∫ T

0

X2
t dt→ E(Y 2

0 ),

as T tends to infinity, almost surely and in L2. If H = 1
2 , we know that

E(Y 2
0 ) = σ2

2θ
, which implies (3.6). If H > 1

2 , using (2.2) yields

E(X2
0 ) = αHσ

2

∫ ∞

0

∫ ∞

0

e−θ(s+u)|u− s|2H−2duds,

and (3.6) follows from Lemma 5.1. �

Proof of Theorem 3.2 In the case H = 1
2 , taking into account that the process(∫ t

0
XsdBs, t ≥ 0

)
is a martingale with quadratic variation

∫ t

0
X2

sds it follows

that θ̂T → θ almost surely, as T tends to infinity.
Now let H > 1/2. From Lemma 5.2 we deduce that almost surely

lim
T→∞

X2
T

T
= 0. (3.8)

It is easy to check that this convergence also holds in L2. Then we conclude the
proof using Lemma 3.3, (3.8), and

lim
T→∞

1

T

∫ T

0

∫ t

0

ξ2H−2e−θξdξdt = θ1−2HΓ(2H − 1).

�

The next theorem provides the convergence in distribution to a Gaussian
law of the fluctuations in the almost sure convergence (3.5).
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Theorem 3.4 Suppose H ∈
[

1
2 ,

3
4

)
. Let (Xt, t ∈ [0, T ]) be given by (3.1), then

√
T
[
θ̂T − θ

]
L→ N(0, θσ2

H) , (3.9)

as T tends to infinity, where

σ2
H = (4H − 1)

(
1 +

Γ(3 − 4H)Γ(4H − 1)

Γ(2 − 2H)Γ(2H)

)
. (3.10)

Proof We have

θ̂T − θ = −σ
∫ T

0 XtdB
H
t∫ T

0 X2
t dt

= −
σ2
∫ T

0

(∫ t

0
e−θ(t−s)dBH

s

)
dBH

t

∫ T

0 X2
t dt

= −
√
TFT∫ T

0 X2
t dt

,

(3.11)
where FT is the double stochastic integral

FT =
σ2

2
√
T
I2

(
e−θ|t−s|

)
. (3.12)

From Lemma 3.3 we know that 1
T

∫ T

0
X2

t dt converges almost surely and in L2,
as T tends to infinity to σ2θ−2HHΓ(2H). Then, it suffices to show that FT

converges in law as T tends to infinity to a centered normal distribution. In
order to show this convergence we will apply Theorem 2.1 to a given sequence of
random variables in the second chaos FTk

, where Tk ↑ ∞ as k tends to infinity.
To simplify we assume that T = 1, 2, . . . . The proof then follows from the
following facts:

(i) E(F 2
T ) converges to θ1−4Hσ4δH , where

δH = H2(4H − 1)(Γ(2H)2 +
Γ(2H)Γ(3 − 4H)Γ(4H − 1)

Γ(2 − 2H)
),

as T tends to infinity.

(ii) ‖DFT ‖2
H converges in L2 to a constant as T tends to infinity.

Step 1: Proof of (i) Suppose first that H = 1
2 . In this case, by the isometry

of the Itô integral we obtain

E
(
F 2

T

)
=
σ4

T

∫ T

0

∫ t

0

e−2θ(t−s)dsdt =
σ4

T

(
T

2θ
+
e−2θT − 1

4θ2

)
,

which implies that

lim
T→∞

E(F 2
T ) =

σ4

2θ
.

This implies the desired result because δ 1

2

= 1
2 .
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Now, let H ∈
(

1
2 ,

3
4

)
. In this case, by the isometry property of the double

stochastic integral I2, the variance of FT is given by

E
(
F 2

T

)
=
σ4α2

H

2T
IT , (3.13)

where

IT =

∫

[0,T ]4
e−θ|s2−u2|−θ|s1−u1||s2 − s1|2H−2|u2 − u1|2H−2duds. (3.14)

By Lemma 5.3 in the Appendix we obtain that

lim
T→∞

E(F 2
T ) = θ1−4Hσ4δH .

Step 2: Proof of (ii) For s ≤ T we have

DsFT =
σXs√
T

+
σ2

√
T

∫ T

s

e−θ(t−s)dBH
t .

Suppose first that H = 1
2 . In this case,

‖DFT ‖2
H =

σ2

T

∫ T

0



X2
s + 2σXs

∫ T

s

e−θ(t−s)dBt + σ2

(∫ T

s

e−θ(t−s)dBt

)2


 ds

= A
(1)
T +A

(2)
T +A

(3)
T .

We already know from (3.6) that A
(1)
T converges in L2 to σ4

2θ
as T tends to

infinity. The third term can be written as

A
(3)
T =

σ4

T

∫ T

0

(∫ T

s

e−θ(t−s)dBt

)2

ds =
σ4

T

∫ T

0

(∫ u

0

e−θ(u−x)dBx

)2

du,

so it also converges in L2 to σ4

2θ
a T tends to infinity. Finally we can show that

lim
T→∞

E ((A
(2)
T )2) = 0 .

In fact, we have

E ((A
(2)
T )2) =

8σ6

T 2

∫

{s<u≤T}
E

(
XsXu

(∫ T

s

e−θ(t−s)dBt

)(∫ T

u

e−θ(t−u)dBt

))
dsdu

=
8σ8

T 2

∫

{s<u≤T}

(∫ s

0

e−θ(s+u−2r)dr

)(∫ T

u

e−θ(2t−s−u)dt

)
dsdu

=
8σ8

4θ2T 2

∫

{s<u≤T}
(e2θs − 1)(e−2θu − e−2θT )dsdu,
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which clearly converges to zero as T tends to infinity. Therefore, ‖DFT ‖2
H

converges to σ4

θ
in L2.

Suppose now that H > 1
2 . From (2.2) we have

‖DFT ‖2
H =

αHσ
2

T

∫ T

0

∫ T

0

(
Xs + σ

∫ T

s

e−θ(t−s)dBH
t

)

×
(
Xu + σ

∫ T

u

e−θ(t−u)dBH
t

)
.|u− s|2H−2duds

We have to prove that ‖DFT ‖2
H converges to a constant in L2 as T tends to

infinity. In fact,

‖DFT ‖2
H =

αHσ
2

T

∫ T

0

∫ T

0

(
XsXu + 2σXu

∫ T

s

e−θ(t−s)dBH
t

+σ2

∫ T

s

e−θ(t−s)dBH
t

∫ T

u

e−θ(t−u)dBH
t

)
|u− s|2H−2duds

=
αHσ

2

T
(C

(1)
T + C

(2)
T + C

(3)
T ).

For the term C
(1)
T , since Xt is Gaussian we can write

E

(
|C(1)

T − E(C
(1)
T )|2

)
= 2

∫

[0,T ]4
E (XsXt) E (XuXv)

×|u− s|2H−2|v − t|2H−2dudvdsdt.

By Lemma 5.4

1

T

∫

[0,T ]3
E (XTXt) E (XuXv)(T − u)2H−2|v − t|2H−2dudvdt

≤ 1

T

∫

[0,T ]3
(T − t)2H−2|u− v|2H−2(T − u)2H−2|v − t|2H−2dudvdt

≤ C2
θ,HT

8H−6

∫

[0,1]3
(1 − t)2H−2|u− v|2H−2(1 − u)2H−2|v − t|2H−2dudvdt,

which converges to 0 as T tends to infinity when H < 3
4 . Hence, by l’Hôpital

rule, E

(
|C(1)

T − E(C
(1)
T )|2

)
converges to 0 as T tends to infinity. In the same

way we can prove that E

(
|C(i)

T − E(C
(i)
T )|2

)
converges to zero as T tends to

9



infinity, for i = 2, 3 when H < 3/4. By triangular inequality, we see that

E

[(
‖DFT ‖2

H − E(‖DFT ‖2
H)
)2]

= E

(
|C(1)

T + C
(2)
T + C

(3)
T − E(C

(1)
T + C

(2)
T + C

(3)
T )|2

)

≤ 9

3∑

i=1

E
(
|C(i)

T − E(C
(i)
T )|2

)

→ 0 .

Taking into account that

lim
T→∞

E(‖DFT ‖2
H) = 2 lim

T→∞
E(F 2

T ),

we conclude the proof of (ii). This completes the proof of the theorem. �

If one replaces the Itô type integral in (1.2) by the path-wise Riemann-
Stieltjes integral, then we can obtain the following estimator

θ̂′T = −
∫ T

0
Xt ◦ dXt
∫ T

0
X2

t dt
=

X2
T

2
∫ T

0
X2

t dt
,

which converges to zero in L2 as T tends to infinity from Lemma 3.3 and (3.8).

4 An alternative estimator

Suppose in this section that H > 1
2 . We introduce the following estimator

θ̃T :=

(
1

σ2HΓ(2H)T

∫ T

0

X2
t dt

)− 1

2H

. (4.1)

From (3.6), we see that θ̃T converges to θ almost surely as T → ∞. Theorem

3.4 allows us to derive the rate of convergence in the approximation of θ by θ̃T .

Theorem 4.1 Suppose H ∈
(

1
2 ,

3
4

)
. Then

√
T
[
θ̃T − θ

]
L→ N

(
0,

θ

(2H)2
σ2

H

)
, (4.2)

as T tends to infinity, where σH is defined in (3.10).

Proof From Equation (3.2), we have

∫ T

0

X2
t dt =

σ2αH

∫ T

0

∫ t

0 ξ
2H−2e−θξdξdt−X2

T /2

θ̂T

.
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Thus

√
T
[
θ̃T − θ

]
=

√
T



(

HΓ(2H)

αH
1
T

∫ T

0

∫ t

0
ξ2H−2e−θξdξdt− X2

T

2T

) 1

2H

θ̂
1

2H

T − θ




From Lemma 5.2 it follows that

αH

1

T

∫ T

0

∫ t

0

ξ2H−2e−θξdξdt− X2
T

2T
= αHΓ(2H − 1)θ1−2H + o(

1√
T

),

where o( 1√
T

) denotes a random variable HT such that
√
THT converges to zero

almost surely as T tends to infinity. Therefore,

(
HΓ(2H)

αH
1
T

∫ T

0

∫ t

0 ξ
2H−2e−θξdξdt− X2

T

2T

) 1

2H

=

(
1

θ1−2H + o( 1√
T

)

) 1

2H

= θ1−
1

2H + o(
1√
T

) . (4.3)

On the other hand, we can write

√
T
[
θ̂

1

2H

T − θ
1

2H

]
=

√
T

[
1

2H
θ

1

2H
−1
(
θ̂T − θ

)
+

1

2

(
θ̂T − θ

)2

θ∗T

]
,

where θ∗T is a random point between θ and θ̂T . From Theorem 3.4 we obtain
the following convergence in law as T tends to infinity:

√
T
[
θ̂

1

2H

T − θ
1

2H

]
→ N

(
0,

1

(2H)2
θ

1

2H σ2
H

)
. (4.4)

Finally, from the decomposition

√
T
[
θ̃T − θ

]
=

√
T




(

HΓ(2H)

αH
1
T

∫ T

0

∫ t

0
ξ2H−2e−θξdξdt− X2

T

2T

) 1

2H

− θ1−
1

2H



 θ̂
1

2H

T

+
√
Tθ1−

1

2H

[
θ̂

1

2H

T − θ
1

2H

]
,

and using (4.3) and (4.4) we deduce the desired convergence. �

5 Appendix

In the sequel we present some calculations used in the paper.

Lemma 5.1 For any H ∈
(

1
2 , 1
)

(2H − 1)

∫ ∞

0

∫ ∞

0

e−(s+u)|u− s|2H−2duds = Γ(2H).

11



Proof We can write, by the change-of-variables u− s = x,

∫ ∞

0

∫ ∞

0

e−(s+u)|u− s|2H−2dsdu = 2

∫ ∞

0

∫ u

0

e−(s+u)(u− s)2H−2dsdu

= 2

∫ ∞

0

∫ u

0

e−2u+xx2H−2dxdu.

Integrating first in the variable u and using that (2H − 1)Γ(2H − 1) = Γ(2H)
we conclude the proof. �

Lemma 5.2 Let Yt be the stationary Gaussian process defined in (3.7), where
H > 1/2. Then, for any α > 0, YT

T α converges almost surely to zero as T tends
to infinity.

Proof The covariance of the process is Yt is, using Lemma 5.1 to compute
Var(ξ),

Cov(Y0, Yt) = e−θt
E

(
ξ

[
ξ + σ

∫ t

0

eθudBH
u

])

= e−θt

[
Var(ξ) + σ2αH

∫ t

0

∫ 0

−∞
eθu+θv|u− v|2H−2dudv

]

= e−θt

[
Var(ξ) + σ2αH

∫ t

0

∫ ∞

v

e−θx+2θvx2H−2dxdv

]

= e−θt

[
σ2θ−2HHΓ(2H) + σ2{ θ1−2HHΓ(2H)t− 1

2
t2H + o(t2H) }

]

= σ2θ−2HHΓ(2H)

[
1 − θ2H

σ2Γ(2H + 1)
t2H + o(t2H) }

]
.

Then the result lemma from Theorem 3.1 of Pickands [14]. �

Lemma 5.3 Let IT given by (3.14). When 1
2 < H < 3

4 , we have

lim
T→∞

IT
T

= θ1−4HγH , (5.1)

where

γH = (8H − 2) Γ(2H − 1)2 + (16H − 4)
Γ(2H − 1)Γ(3 − 4H)Γ(4H − 2)

Γ(2 − 2H)
.

Proof Taking the derivative with respect to T we have

dIT
dT

= 4

∫

[0,T ]3
e−θ(T−u2)−θ|s1−u1| (T − s1)

2H−2 |u2−u1|2H−2du1du2ds1. (5.2)

12



Making the change of variable T −u2 = x1, T −u1 = x2, and T −s1 = x3 yields

dIT
dT

= 4

∫

[0,T ]3
e−θx1−θ|x2−x3|x2H−2

3 |x1 − x2|2H−2dx1dx2dx3.

As a consequence,

lim
T→∞

dIT
dT

= 4

∫

[0,∞)3
e−θx1−θ|x2−x3|x2H−2

3 |x1 − x2|2H−2dx1dx2dx3,

and this integral is finite. Indeed, we can decompose this integral into the
integrals in the six disjoint regions {xσ(1) < xσ(2) < xσ(3)}, where σ runs over
all permutations of the indices {1, 2, 3}. In the case x1 < x3 < x2 making the
change of variables x1 = a, x3 − x1 = b, and x2 − x3 = c, we obtain

∫

[0,∞)3
e−θ(a+c)(a+ b)2H−2(b+ c)2H−2dadbdc

≤
∫

[0,∞)3
e−θ(a+c)b4H−4dadbdc,

which is finite because H < 3
4 . The other cases are simpler and can be handled

in a similar way. We can write

∫

[0,∞)3
e−θx1−θ|x2−x3|x2H−2

3 |x1 − x2|2H−2dx1dx2dx3 = θ1−4HdH ,

where

dH =

∫

[0,∞)3
e−x−|y−z|z2H−2|x− y|2H−2dxdydz. (5.3)

The integral in (5.3) can be simplified as follows. First we make the change of
variables y 7→ w, where w = y − x, and we obtain

dH =

∫ ∞

0

∫ ∞

0

∫ ∞

−x

e−x−|x+w−z|z2H−2|w|2H−2dwdxdz

=

∫ ∞

0

∫ ∞

0

∫ ∞

z−x

e−(2x+w−z)z2H−2|w|2H−2dwdxdz

+

∫ ∞

0

∫ ∞

0

∫ z−x

−x

e−(z−w)z2H−2|w|2H−2dwdxdz.

Integrating in x we get

dH =
1

2

∫ ∞

0

∫ ∞

−∞
e−2[(z−w)∨0]−(w−z)z2H−2|w|2H−2dwdz

+

∫ ∞

0

∫ ∞

−∞
[(z − w) − ((−w) ∨ 0)]+ e−(z−w)z2H−2|w|2H−2dwdz.
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Therefore,

dH =
1

2

∫ ∞

0

∫ ∞

0

e−2[(z−w)∨0]−(w−z)z2H−2w2H−2dwdz

+
1

2

∫ ∞

0

∫ ∞

0

e−(z+w)z2H−2w2H−2dwdz

+

∫ ∞

0

∫ ∞

0

[(z − w)]+ e−(z−w)z2H−2w2H−2dwdz

+

∫ ∞

0

∫ ∞

0

e−(z+w)z2H−1w2H−2dwdz,

and we obtain

dH = fH +

(
2H − 1

2

)
Γ(2H − 1)2, (5.4)

where

fH =

∫ ∞

0

∫ z

0

(1 + z − w)e−(z−w)z2H−2w2H−2dwdz.

Making the change-of-variables z − w = x yields

fH =

∫ ∞

0

∫ ∞

0

(1 + x)e−x(w + x)2H−2w2H−2dwdx.

Substituting the equality (w + x)2H−2 = 1
Γ(2−2H)

∫∞
0 e−ξ(w+x)ξ1−2Hdξ in fH

we obtain

fH =
1

Γ(2 − 2H)

∫ ∞

0

∫ ∞

0

∫ ∞

0

(1 + x)e−x−ξ(w+x)w2H−2ξ1−2Hdξdwdx

=
Γ(2H − 1)

Γ(2 − 2H)

∫ ∞

0

∫ ∞

0

(1 + x)e−x−ξxξ2−4Hdξdx

=
Γ(2H − 1)Γ(3 − 4H)

Γ(2 − 2H)

∫ ∞

0

(1 + x)e−xx4H−3dx

= (4H − 1)
Γ(2H − 1)Γ(3 − 4H)Γ(4H − 2)

Γ(2 − 2H)
. (5.5)

Finally from (5.4) and (5.5) we get the desired result. �

Lemma 5.4 Let Xt be given by (1.2). We have

E

[∫ T

s

e−θ(ξ−s)dBH
ξ

∫ T

t

e−θ(η−t)dBH
η

]
≤ Cθ,H |t− s|2H−2, (5.6)

and
E [XtXs] ≤ σ2Cθ,H |t− s|2H−2, (5.7)

for some constant Cθ,H > 0.
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Proof Let us assume that s < t. We can write using (2.2)

E

[∫ T

s

e−θ(ξ−s)dBH
ξ

∫ T

t

e−θ(η−t)dBH
η

]

= αH

∫ T

t

∫ T

s

e−θ(ξ−s)e−θ(η−t)|ξ − η|2H−2dξdη = αH(B
(1)
T +B

(2)
T ),

where

B
(1)
T =

∫ T

t

∫ T

t

e−θ(ξ−s)e−θ(η−t)|ξ − η|2H−2dξdη

and

B
(2)
T =

∫ T

t

∫ t

s

e−θ(ξ−s)e−θ(η−t)|ξ − η|2H−2dξdη.

It is easy to see that B
(1)
T is bounded by Cθ,He

−θ|t−s|. The second term can be
estimated as follows

B
(2)
T =

∫ t

s

∫ T−ξ

t−ξ

e−θ(ξ−s+y+ξ−t)y2H−2dydξ

=

∫ T−s

0

y2H−2dy

∫ (T−y)∧t

(t−y)∨s

e−θ(y+2ξ−s−t)dξ

≤ 1

2θ

∫ T−s

0

e−θ(y+2 (t−y)∨s−s−t)y2H−2dy

=
1

2θ

∫ T−s

t−s

e−θ(y+s−t)y2H−2dy +
1

2θ

∫ t−s

0

e−θ(y+s−t)y2H−2dy

≤ Cθ,H |t− s|2H−2

∫ T−s

t−s

e−θ(y+s−t)dy + Cθ

∫ t−s

0

y2H−2dy

≤ Cθ,H |t− s|2H−2 .

This proves (5.6). The inequality (5.7) can be proved in a similar way (see also
[2]). �
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