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Abstract

Killing vector fields in three dimensions play important role in
the construction of the related spacetime geometry. In this work we
show that when a three dimensional geometry admits a Killing vector
field then the Ricci tensor of the geometry is determined in terms of
the Killing vector field and its scalars. In this way we can generate
all products and covariant derivatives at any order of the ricci tensor.
Using this property we give ways of solving the field equations of Topo-
logically Massive Gravity (TMG) and New Massive Gravity (NMG)
introduced recently. In particular when the scalars of the Killing vec-
tor field (timelike, spacelike and null cases) are constants then all three
dimensional symmetric tensors of the geometry, the ricci and einstein
tensors, their covariant derivatives at all orders, their products of all
orders are completely determined by the Killing vector field and the
metric. Hence the corresponding three dimensional metrics are strong
candidates of solving all higher derivative gravitational field equations
in three dimensions.

0

http://arxiv.org/abs/1001.1039v2


1 Introduction

Einstein gravity in three dimensions is trivial because it contains no dynam-
ics. A theory in three dimensions which dynamics is known as topologically
massive gravity (TMG) [1],[2]. The action of TMG is the sum of the stan-
dard Einstein-Hilbert and Chern-Simons terms in three dimensions. TMG
with cosmological constant is considered recently [3], [4]. This theory violates
parity, it is renormalizable but not unitary. Recently a new massive gravity
theory (NMG) is introduced. In the framework of perturbation theory NMG
is both renormalizable and unitary [5]-[7] (see also [8], [9]). Although higher
derivative theories play important role to have a consistent quantum gravity
it is however very difficult to obtain classical solutions of these theories. For
this purpose there have been several attempts to solve these theories, in par-
ticular to find black hole solutions. In these attempts different methods were
used. In [10] we used perfect fluid solutions of Einstein theory to solve the
TMG field equations. In [11] - [16] by assuming commuting two Killing vec-
tor fields Clement gave some solutions of the TMG and NMG field equations.
Another method is the principle of symmetric criticality [17], [18], [19]. In
[20] algebraic classification of the ricci tensor is used and reviewed all known
solutions of the TMG. In this work it has been also emphasized the impor-
tance of the Killing vector fields in obtaining the solutions of the TMG field
equations. It was shown that (see also [21]) all solutions are locally belong to
one the three solutions: Timelike-squashed AdS3, Spacelike-squashed AdS3

and AdS pp-waves [22]. In [23] Chow et al used the Kundt metrics to solve
TMG field equations and they obtained new solutions of the TMG. Another
method is to use the Gödel type metrics [24]-[26] in three dimensions [27].
There are also some other attempts [28]-[30] to solve the field equations of
TMG. The importance of the Killing vectors is observed in some of these
works but , as far as we see, the crucial point is missed. Killing vectors in
three dimensions are not only important in derivation of the exact solutions
but they control the whole geometry of spacetime.

In this work we shall introduce a new method for three dimensional grav-
ity theories. The starting point is to assume a one parameter family of
isomorphism. This implies existence of a Killing vector field in the space-
time geometry. In general this assumption may simplify and reduce the
number the field equations by choosing a suitable coordinate patch so that
one coordinate in the line element becomes cyclic. In the case of four and

1



higher dimensional geometries this may give information about some com-
ponents of the curvature and hence the ricci tensors but it does not provide
all components of these tensors. We shall show that this is possible in three
dimensions.

If a three dimensional spacetime admits a non-null Killing vector field,
writing it in terms of two scalars, its norm and rotation scalar, we show that
the metric and the ricci tensors are completely determined in terms of the
Killing vector, its scalars and vectors obtained through these scalars (The-
orem 1). Physical interpretation of the corresponding spacetime metric is
that it solves the Einstein-Maxwell- Dilaton field equations in three dimen-
sions. When the scalars of the Killing vector field become constant then the
corresponding ricci tensor becomes relatively simple (Theorem 2). We show
that the spacetime metric, in this case, solve the field equations of TMG and
NMG. Indeed these metrics (for timelike and spacelike cases) solve not only
these field equations, but they solve all higher (curvature) derivative theories
at any order. When the Killing vector field is null we have similar result (The-
orem 3). Without referring to the metric tensor we construct the Einstein
tensor when the spacetime geometry admits a null vector. The corresponding
metric solves Einstein field equations with a null fluid distribution and an
exotic scalar field. When the scalar of the null Killing vector field become
constant the Einstein tensor becomes more simpler (Theorem 4) and the
metric solves the field equations of TMG and NMG. Both for non-null and
null cases when the scalars of the Killing vector fields become constant then
the metric solves not only the field equations of TMG and NMG bu solves
also all higher derivative gravitational filed equations in three dimensions .

In Section 2 we give the ricci and metric tensors in terms of the non-null
Killing vector field and its scalars. In particular if the scalars are constants
the ricci tensor is expressed in terms of the Killing vector field and he Gaus-
sian curvature of the two dimensional background space. In Section 3 we
show that when the Killing vector field is null then the ricci tensor is calcu-
lated in terms of the null Killing vector filed and its scalar. In Section 4 we
investigate the the case when the scalar is a constant. In Sections 5 and 6,
by using the ricci tensors found in the previous Sections, we solve the field
equations of the TMG and NMG respectively.
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2 Non-Null Killing Vectors in Three Dimen-

sions

In this section we shall construct the metric and Einstein tensors in terms
of scalar functions of non-null Killing vector. Our conventions in this paper
are similar to the convention of Hawking-Ellis [31].

Let uµ be a non-null Killing vector field satisfying the Killing equation

uµ ; ν + uν ;µ = 0 (1)

with uα u
α = α 6= 0. One can show that

uα uα ;µ =
1

2
α,µ, uα uµ ;α = −1

2
α,µ (2)

The norm function α is in general not a constant. It is possible to write the
Killing equation as

uµ ; ν =
1

2
(uµ ; ν − uν ;µ) = ηµνα v

α (3)

where vα is any vector field and ηµνα is the Levi-Civita alternating symbol.
Using (2) we find that

vρ = wuρ + ηρµσ φ,µ uσ (4)

where w = uµv
µ

α
. Using (4) in (3) we get

uµ ; ν = w ηµνα u
α + uµ φ,ν − uν φ,µ (5)

where φ = 1
2
lnα. The functions w and φ specify the Killing vector field and

they are assumed to be linearly independent. Differentiating (5) with respect
to xσ and anti-symmetrizing both sides with respect ν and σ we get

uµ ; ν σ − uµ ; σ ν = w,σ ηµνα u
α − w,ν ηµσα u

α − w ηµνα φ
α u,σ + w ηµσα φ

α uν

−2 ηνσα u
α φ,µ − uν φ,σ φ,µ + uσ φ,µ φ,ν − uν φ;µσ + uσ φ;µν

+w2 (gµν uσ − gµσ uν) (6)

Using the identities
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w,σ ηµνα u
α + w,µ ηνσα u

α + w,ν ησµα u
α = ησµν u

α φ,α = 0, (7)

ηµνα φ
α u,σ + ηνσα φ

α u,µ + ησµα φ
α u,ν = ησµν φ

α u,α = 0 (8)

then Eq. (6) reduces to

uµ ; ν σ − uµ ; σ ν = w ηνσα φ
α uµ − ηνσα u

α yµ + φ,µ (uσ φ,ν − uν φσ)

+w2 (gµν uσ − gµσ uν) (9)

where

yµ = wµ + 2w φµ (10)

Using the ricci identity uµ ; ν σ − uµ ;σ ν = Rρ
µνσ uρ in (9) we get

Rρ
µνσ uρ = w ηνσα φ

α uµ − ηνσα u
α yµ + φ,µ (uσ φ,ν − uν φσ)

+w2 (gµν uσ − gµσ uν) (11)

and hence we obtain

Rρ
ν uρ = −ζν − (∇2 φ+ 2w2) uν (12)

where
ζµ = ηµαβ y

α uβ (13)

In three dimensions the Weyl tensor vanishes and hence curvature tensor is
expressed solely in terms of the ricci tensor

Rρµνα = −Rµν gρα+Rρν gµα+Rµα gρν−Rρα gµν +
R

2
(gρα gµν − gρν gµα) (14)

Combining equations (11) and (14) we obtain

R̄µν uσ − R̄µσ uν + ζσ gµν − ζν gµσ = −ηνσα uα yµ + w ηνσα φ
α uµ, (15)
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where

R̄µν = −Rµν + (P + R
2
− w2) gµν − φ;µν − φ,µ φ,ν, (16)

P = ∇2 φ+ 2φ,α φ
α + 2w2 (17)

In addition to the identities (7) we have also the following identities

zµ uσ − zσ uν = α ηµσρ φ
ρ, (18)

ζµ yσ − ζσ yν = −(yα y
α) ηµσρ u

ρ (19)

Using these identities in (20) we arrive at the following theorem:

Theorem 1. If a three dimensional spacetime admits a non-null Killing
vector field uµ then its metric and the Einstein tensors are respectively given
by

gµν =
1

α
uµ uν +

1

ζα ζα
ζµ ζν +

1

yαyα
yµ yν, (20)

Gµν = −H
α
uµ uν +

1

α
[(w zµ − ζµ) uν + (w zν − ζµ) uµ] (21)

+(∇2 φ+ w2) gµν − φµ φ,ν − φ;µν , (22)

H = 2∇2φ+ 3w2 +
1

2
R − φα φ,α, (23)

zµ = ηµαβ φ
α uβ (24)

where R is the ricci scalar provided that the functions w and φ are not con-
stant at the same time.

Remark 1. When uµ is a timelike Killing vector field, α = −e2φ, then
it can be shown that the source of the Einstein equations is composed of
a charged fluid distribution and a dilaton field φ (in Einstein frame). The
electromagnetic field tensor fµν is given by

fµν = w ηµνα u
α − uµ φ,ν + uν φ,µ (25)

so that
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fµν ;µ = −ζν + (∇2 φ− 2w2) uν (26)

The Maxwell energy momentum tensor is given as

Mµν = −1

2
α (w2 + φ,α φ

α) gµν + (w2 + φ,α φ
α) uµ uν

+αφ,µ φ,ν − w (zµ uν + zν uµ) (27)

Then field equations are

Gµν =
1

4
e−2φMµν + e−2φ (−2∇2φ+ 4φ,α φ

α + e−2φ f 2 − R

2
) uµ uν

+(∇2φ+
1

4
e−2φ f 2)gµν − e−2φ (Jµ uν + Jν uµ)− φ;µν (28)

where J µ = fαµ ;α and f 2 = fαβ f
αβ.

If w and φ are both constants then we get

uµ ; ν = w ηµνα u
α (29)

Then following the above procedure we have the following result.

Theorem 2. If a three dimensional spacetime admits a non-null Killing
vector field uµ with w and α are both constants then the Einstein tensor is
given as

Gµν = − 1

α
(3w2 +

1

2
R) uµ uν + w2 gµν (30)

In this case, since the vector ζµ vanishes in (15), the metric tensor is not
obtained.

Remark 2. If uµ is a timelike Killing vector field the above Einstein tensor
represents a dust distribution in a spacetime with a positive cosmological
constant.
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For completeness let us give the spacetime metrics of each case: We shall
consider the case α and w are constants.

1. Let uµ = − 1
u0
δµ0 be the timelike vector field then uµ uµ = −1. Hence

α = −1 and uµ = gµα u
α, then g00 = −u20, g01 = −u0 u1, g02 = −u0 u2. Then

the spacetime metric can be taken as (xµ = (t, r, z))

ds2 = −(u0 dt+ u1 dr + u2 dz)
2 +M2 dr2 + 2Ldrdz +N2 dz2 (31)

where M2 = g11 + u21, N
2 = g22 + u22, L = g12 + u1 u2. Here u0 is a constant

(due to the Killing equation) and the metric functions M ,N , L , u1 and u2
depend on the variables r and z. The metric in (31) is of Gödel type which
was used in [27]. The Einstein tensor is given in (30) with α = −1. The only
field equation is

u2,r = u1,z + 2w∆/u0, (32)

where ∆ = |u0|
√
M2N2 − L2. For simplicity consider the case L = 0. Then

R = 2K+2w2 whereK is the Gaussian curvature of the locally Euclidian two
dimensional background space with the line element ds22 =M2 dr2++N2 dz2.
Metric (31) gives the Einstein tensor (30) where the only field equation is
given in equation (32) with α = −1 and w constant.

2. Let uµ = 1
u2
δµ2 be the spacelike vector field then uµ uµ = 1. Hence α = 1

and uµ = gµα u
α = 1

u2
gµ2, then g22 = u22, g12 = u1 u2, g02 = u0 u2. Then

spacetime metric can be taken as

ds2 = (u2 dz + u1 dr + u0 dt)
2 +M2 dr2 + 2Ldrdt−N2 dt2, (33)

where M2 = g11 − u21, N
2 = u20 − g00, L = g01 − u0 u1, u2 is a constant (due

to the Killing equation) and the metric functions M ,N , L, u1 and u0 depend
on the variables t and r. The Einstein tensor is given in (30) with α = 1.
The only field equation is

u0,r = u1,t + 2w∆/u2, (34)

where ∆ = |u2|
√
M2N2 + L2. In both cases the ricci scalar is R is not

constant. In this case as well, take L = 0 for simplicity we have R = 2K+2w2

where K is the Gaussian curvature of two dimensional locally minkowskian
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background space with the line element ds22 =M2 dr2 −N2 dt2. Metric (33)
gives the Einstein tensor (30) where the only field equation is given in (34)
with α = 1 and w constant. In Both cases the ricci tensor takes the form

Rµν = − 1

α
(4w2 +K) uµ uν + (2w2 +K) gµν , (35)

Gµν = − 1

α
(4w2 +K) uµ uν + w2 gµν . (36)

It is possible to pass from timelike case to spacelike case by complex trans-
formation [13]. When the background two dimensional spaces are de-sitter
od anti de-sitter, in each case, these solutions are known as timelike squashed
AdS3 and spacelike squashed AdS3 [20],[21], [11].

When R is a constant, the Cotton tensor and the Laplacian of the ricci
tensor take simple forms (for both cases). They will used later.

Cµν = −w (4w2 +K)[gµν −
3

α
uµ uν ], (37)

∇2Rµν = −2w2 (4w2 +K)[gµν −
3

α
uµ uν ] (38)

3 Three Dimensional Spacetime Admitting a

Null Killing Vector Field

In this section we shall construct the Einstein tensor with respect to the
scalar functions of a null Killing vector field.

Let ξµ be Killing Vector field. It satisfies the Killing equation

ξµ; ν =
1

2
(ξµ; ν − ξν;µ) = ηµνα v

α (39)

where ηµνα =
√

−det(g) ǫµνα and vµ is an arbitrary vector field and a semi-
colon defines the covariant derivative with respect to the metric gµν . Here
the ǫµνα is the three dimensional Levi-Civita alternating symbol. Since
ξα ξα;β = 0 and ξα ξβ;α = 0, then vµ = wξµ. Hence (39) becomes
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ξµ; ν = w ηµνα ξ
α (40)

where w is an arbitrary function. Taking one more covariant derivative of
(40) we find that

ξµ; να = w,α ηµνρ ξ
ρ − w2 (gµα ξν − gνα ξµ) (41)

Using this equation and the Ricci identity we get

ξµ; να − ξµ;αν = w,α ηµνρ ξ
ρ − w,ν ηµαρ ξ

ρ − w2 (gµα ξν − gνµ ξα)

= Rρ
µνα ξρ. (42)

On the other hand, since the Weyl tensor vanishes in three dimensions the
Riemann tensor is expressed totally in terms of the ricci tensor as expressed
in (14). Using (42) and (14) we find

Qµν ξα −Qµα ξν − ζν gµα + ζα gµν = w,α ηµνρ ξ
ρ − w,ν ηµαρ ξ

ρ (43)

where

ζµ = ηµαβ w
,α ξβ, (44)

Qµν = −Rµν + (w2 +
R

2
) gµν. (45)

Here R is the ricci scalar.
Let a vector Xµ be defined as

Xµ = ηµαβ F
,α ξβ (46)

where F ,µ = gµα F,α and F is any function independent of t. It is easy to
show that ξµXµ = XµXµ = 0. Since the orthogonal null vectors can only
be parallel then we have

Xµ = σξµ, (47)

Hence

ζµ = ψξµ, (48)

9



and
ξµwν − ξν wµ = ψ ηµνα ξ

α, ψ 6= 0 (49)

which leads also

w,αw,α = ψ2. (50)

Using (49) in (43) we obtain

Qµν + ψ gµν −
1

ψ
w,uw,ν + ρξµ ξν = 0. (51)

Hence

Rµν = ρ ξµ ξν − (ψ + 2w2) gµν −
1

ψ
w,uw,ν (52)

where ρ is a function to be determined and the ricci scalar is given by

R = −6w2 − 4ψ. (53)

Then we have the following theorem:

Theorem 3. Let ξµ be a null Killing vector field of a three dimensional
spacetime, then the corresponding Einstein tensor is given by

Gµν = ρ ξµ ξν −
1

ψ
w,uw,ν + (w2 + ψ) gµν (54)

where ρ is a function to be determined. Furthermore the scalar field satisfies
the following partial differential equation

∇µ (
1

ψ
w,µ) = 2w. (55)

It is quite interesting that by imposing a null Killing vector in a three
dimensional spacetime geometry we obtain the form of the Einstein ten-
sor without knowing the metric tensor explicitly, except the function ρ.
The source of the Einstein field equations is composed of a null fluid and
a scalar field. The scalar field satisfies a nonlinear differential equation
(55). From the Einstein equations the energy momentum tensor Tµν of the
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source satisfies Tµν ξ
µ ξν = 0. For any timelike unit vector field uµ we have

Tµν u
µ uν = ρ (ξµ uµ)

2− 1
ψ
(w,µ u

µ)2+(ψ+w2). Choosing ψ = −√
wµwµ then

the sign of the energy depends on the sign of the function ρ.
As a summary we can conclude in this section as: If ξµ is a null Killing

vector field of a three dimensional spacetime geometry then the correspond-
ing metric solves the Einstein-null fluid-scalar field equations.The only field
equations are (40) and the scalar field equation (55).

4 Null Case Without Scalar Field

In the previous section we considered the case ψ 6= 0. Vanishing of ψ is a
distinct case. Due to this reason we consider it in a separate section. We
have the following result:

Theorem 4.
When ψ = 0 in Theorem 3 then w becomes a constant and the ricci,

Einstein tensors take simple forms

Rµν = ρ ξµ ξν − 2w2 gµν , (56)

Gµν = ρ ξµ ξν + w2 gµν , (57)

with R = −6w2.

For explicit solutions we shall adopt some simplifying assumptions.

(4.A). As an example let us assume that ξµ = δµ0 . Then ξµ = gµα ξ
α = gµ0.

Let ξ0 = 0, hence we get g00 = 0, g01 = ξ1, g02 = ξ2. The corresponding
spacetime metric can be given as (xµ = (t, r, z))

ds2 = 2(ξµ dx
µ) dt+m2 dr2 + n2dz2 + 2 ℓ drdz (58)

where ξ1, ξ2, m, n and l are functions of r and z. Let ℓ = 0, then det(g) ≡
−∆2 = −(ξ21 n

2 + ξ22 m
2), ψ = ξ1 w,z−ξ2 w,r

∆
, and

gµν =





0 ξ1 ξ2
ξ1 m2 0
ξ2 0 n2



 , gµν =
1

∆2





−m2 n2 ξ1 n
2 ξ2m

2

ξ1 n
2 ξ22 −ξ1 ξ2

ξ2m
2 −ξ1 ξ2 ξ21



 (59)
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The equation (40) reduces to

ξ1,z − ξ2,r = 2w∆ (60)

The function ρ can be calculated in terms of the metric functions ξ1, ξ2, m
and n. By using a transformation r = f(R,Z) and z = g(R,Z) where f and
g are any differentiable functions, without loosing any generality, we can let
one of the functions ξ1 or ξ2 zero . Here in this work we will take ξ1 = 0
and ξ2 = q. The with these simplifications ∆ = q m,, q,r = −2w qm, w is a
nonzero constant and

ds2 = 2 q dz dt+m2 dr2 + n2dz2. (61)

With such a choice we have

ρ =
1

m3 q3
[2wqm2 nn,r+nqm,rn,r−m2qm,zz+m

2m,zq,z−mnqn,rr−mq(n,r)2]
(62)

If w = 0 the Killing vector becomes hypersurface orthogonal and q becomes
a constant. Then

ρ =
1

m3 q2
[nqm,rn,r −m2m,zz +m2m,zq,z −mnn,rr −m(n,r)

2]. (63)

(4.B). Letting q = ey and n = m we get m = − 1
2w
y,r, w 6= 0. Here y is a

function of r and z. Then

ρ =
1

e2y y,r
[−(y,zz + y,rr) +

1

2
((y,r)

2 + (y,z)
2)],r (64)

We get a nonlinear partial differential equation for y when ρ = ρ0 is a con-
stant.

−(y,zz + y,rr) +
1

2
((y,r)

2 + (y,z)
2) =

1

2
ρ0 e

2y + ρ1 (65)

where ρ1 is an integration constant. An exact solution of the above equation
is given as y = − ln[A + B(r − r0)

2] where ρ1 = 0 and ρ0 = 4AB. After
performing some scale transformations the metric becomes

ds2 =
dt dz

ρ0 + w r2
+

r2

[ρ0 + w r2]2
(dr2 + dz2) (66)
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This metric solves Einstein field equations (57) with null fluid whose en-
ergy density ρ = ρ0 is a constant. All curvature invariants are constants.
For instance R = −6w2, Rαβ Rαβ = 12w4. Hence the spacetime is not
asymptotically flat. When ρ0 = 0 the metric becomes anti-de Sitter in three
dimensions.

(4.C). When w = 0, the Killing vector becomes covariantly constant. By
taking m = n the function ρ becomes

ρ = − 1

mq
(mzz +mrr) (67)

and the metric takes the form

ds2 = 2 q dz dt+m2 (dr2 + dz2). (68)

Einstein tensor becomes
Gµν = ρξµ ξν (69)

All scalars constructed from the ricci tensor vanish. We will not consider this
case in the sequel.

5 Topologically Massive Gravity Theory

Topologically Massive Gravity (TMG) equations found by Deser, Jackiw and
Templeton (DJT) [1]. Recently [3], [4] this theory was extended to the case
with a cosmological constant. They are given as follows.

Gµ
ν +

1

µ
Cµ

ν = λ δµν . (70)

Here Gµν and Rµν are the Einstein and Ricci tensors respectively and Cµ
ν is

the Cotton tensor which is given by

Cµ
ν = ηµβα (Rνβ −

1

4
Rgνβ);α. (71)

The constants µ and λ are respectively the DJT parameter and the cosmo-
logical constant. Solutions of this theory were studied by several authors
[10]-[27].
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1. When the spacetime admits a non-null Killing vector field uµ, assuming
that the ricci scalar R is a constant (or the Gaussian curvature, R = 2K+2w2,
of the two spaces orthogonal to the Killing directions is a constant) and using
the Eq. (30) we get

Cµν = −w (3w2 +
R

2
)[gµν −

3

α
uµ uν ]. (72)

Using the TMG field equations we obtain

µ = 3w, λ = −R
6
. (73)

which is valid for both spacelike and timelike cases. When w = 0 then Killing
vector becomes hypersurface orthogonal and the Cotton tensor vanishes. In
this case TMG reduces to the Einstein theory, i.e., vacuum spacetime with
a cosmological constant [32]

2. If the spacetime admits a null Killing vector the Einstein tensor takes the
form (57). Using the Killing equation (40) and the Einstein tensor (57) we
get

Cµ
ν = (wρ− σ) ξµ ξν , σ =

ξ1 ρ,z − ξ2 ρ,r
∆

(74)

which leads to the following equations

λ = w2, (75)

(µ+ w)ρ = σ = ξ1 ρ,z−ξ2 ρ,r
∆

. (76)

In addition to the Killing equation (60) these equations constitute the field
equations to be solved for the DJT Theory. With the simplification done in
4.A of the last section we get

ρ = ρ0 q
µ+w

2w , m = − q,r
2wq

(77)

where ρ0 is an arbitrary constant. As far as the solutions are concerned we
have the following three classes:

a). We obtain a simple solution of (76) when µ = −w which leads to ρ = ρ0
constant. Then using the simplifications done in 4.B of last section (ξ1 = 0
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and ξ2 = q = ey, n = m = − 1
2w
y,r) we get all metric functions related to the

function y which satisfies the differential equation (65). An exact solution
and metric of the spacetime is given in (66) of 4.B part of the last section.

b). A more general solution is obtained when µ+3w = 0 where the function
y satisfies the equation

−(y,zz + y,rr) +
1

2
((y,r)

2 + (y,z)
2) = ρ0 y + ρ2 (78)

where ρ2 is an integration constant. A solution of this equation is y =
ρ0
2
r2, ρ2 = −ρ0. Then the metric becomes

ds2 = e
ρ0
2
r2 dt dz +

ρ20 r
2

4w2
[dr2 + dz2] (79)

Here ρ0 6= 0.

c). The case when µ+ 5w 6= 0. Function y satisfies the equation

−(y,zz + y,rr) +
1

2
((y,r)

2 + (y,z)
2) =

ρ0
ǫ
eǫ y + ρ3 (80)

where ρ3 is an integration constant and ǫ = µ+5w
2w

. The circularly symmetric
metric has the form

ds2 = ey dt dz +
1

4w2
eǫy [− 2ρ0

ǫ (ǫ− 1)
+ 2ρ3 e

−ǫ y + ρ4 e
(1−ǫ) y] (dr2 + dz2) (81)

where the function y = y(r) satisfies the equation

yr = ± e
ǫ

2
y

√

− 2ρ0
ǫ (ǫ− 1)

+ 2ρ3 e−ǫ y + ρ4 e(1−ǫ) y (82)

Here ρ4 is also an integration constant. All other cases will be considered
later.

15



6 A New Massive Gravity in Three Dimen-

sions

Recently a new, parity-preserving theory introduced by Bergshoeff-Hohm-
Townsend (BHT) [5] in three dimensions which is equivalent to Pauli-Fierz
massive field theory at the linearized level. Originally this theory, known
as NMG does not contain a cosmological term in the action. Adding a
cosmological constant λ the new massive gravity field equations (CNMG)
are given as

2m2
0Gµν +Kµν + λ gµν = 0 (83)

where

Kµν = 2∇2Rµν −
1

2
(R;µν + gµν ∇2R)− 8Rρ

µRνρ

+
9

2
RRµν + [3Rαβ Rαβ −

13

8
R2] gµν (84)

wherem0 is relative mass parameter and∇2 is the Laplace-Beltrami operator.
Here we used the mass parameter as m0 not to confuse with the metric
function m. Solutions of these equations have been recently studied in [15],
[6]

1. When the spacetime admits a non-null Killing vector field, assuming
that the ricci scalar R is a constant and using the equation (30) we get
R = 2K + 2w2 and

∇2Rµν = −2w2 (3w2 +
R

2
)[gµν −

3

α
uµ uν ], (85)

RµαRνα =
1

α
(3w2 +

R

2
)(w2 − R

2
) uµ uν + (w2 +

R

2
)2 δµ ν , (86)

Kµν =
1

α
(3w2 +

R

2
) (4w2 − R

2
) uµ uν + (−2w4 − 4w2R

+
R2

8
) gµν . (87)

Then using the field equations of NTM gravity we obtain (3w2 + R
2
6= 0)
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2m2
0 = 4w2 − R

2
, λ = −2w4 − R2

8
. (88)

Observe that the solution does not exist when the cosmological constant
vanishes, λ = 0.

2. When the spacetime admits a null Killing vector field, using Eq.(40) and
the Einstein tensor (57) we obtain R = −6w2 and

∇2Rµν = (∇2 ρ+ 4wσ + 4w2ρ) ξµ ξν , (89)

Rρ
µRρν = −4w2ρ ξµ ξν + 4w4 gµν , (90)

Kµν = [2∇2 ρ+ 8wσ + 13w2ρ] ξµ ξν −
1

2
w4 gµν . (91)

These equations lead to the following results

2∇2 ρ+ (2m2
0 + 13w2) ρ+ 8wσ = 0, (92)

4m2
0w

2 − w4 + 2λ = 0. (93)

The full massive gravity field equations reduce to (92), (93) and the equation
(40). A circularly symmetric solution of this equation is given by ρ = ρ0 e

k y

where ρ0 is a constant and k satisfies the quadratic equation 8k2 + 24k +

27/2− λ
w4 = 0 with roots k1,2 =

(

−6 ±
√

9 + 2λ
w4

)

/4. If λ = 0 then k1 =
−3
4

and k2 =
−9
4
. The circularly symmetric metric becomes

ds2 = e2 y dt dz +
1

4w2
[
2ρ0
k − 1

eky + ρ1e
y] (dr2 + dz2) (94)

Here y satisfies a similar equation like in (82)

y,r = ±
√

2ρ0
k − 1

eky + ρ1 ey (95)

where ρ1 is an integration constant. For each value of k (k1 and k2) we have
two different metrics.

BHT introduced also a more general model [5] which also includes the
topologically massive gravity as a special case.
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λm2
0gµν + αGµν +

1

µ
Cµν +

β

2m2
0

Kµν = 0, (96)

where λ, α and β are dimensionless parameters. For m0 → ∞ and for fixed
µ generalized BHT equations reduce to the DJT equations (70). We solve
these equations with

β

m2
0

∇2ρ+ (α + w
µ
+ 13w2β

2m02
) ρ+ (− 1

µ
+ 4βw

m2
0

)σ = 0, (97)

λm2
0 + αw2 − β

4m2
0

w4 = 0 (98)

In a similar fashion letting ρ = ρ0 e
k y we get a quadratic equation for k

4w2 β

m2
0

k(k + 1) + 2(−1

µ
+

4βw

m2
0

)w k + (α +
w

µ
+

13w2β

2m02
) = 0 (99)

In order that the roots to exists the following condition should be satisfied

(−1

µ
+

4βw

m2
0

+ 2
β2

m2
0

)2 − 4
β

m2
0

(α +
w

µ
+

13w2β

2m02
)w2 ≥ 0 (100)

The metric function y satisfies exactly the same equation (95) but k solves
the quadratic equation (99) in this case. The circularly symmetric metric is
of the form given (94) where y(r) satisfies (95).

Both for null and non-null cases when the scalars of the Killing vector fields
are constants the we have a more general result. The following theorem
implies that the corresponding metrics may solve all higher derivative gravi-
tational field equations in three dimensions.

Conjecture. Let a three dimensional spacetime admit a Killing vector field
uµ (non-null or null) with constant scalars. Let the Gaussian curvature K of
the two dimensional spaces be constant for the case of non-null vector fields
where corresponding einstein tensors are respectively given in (35) and (57).
Then any symmetric second rank covariant tensor constructed from the ricci
tensor by covariant differentiation and by contraction is the linear sum of
uµ uν and the metric tensor gµν
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7 Conclusion

In this work we first studied the Killing vector fields in a three dimensional
spacetime geometry. We showed that,independent of the type of the Killing
vector fields, the ricci tensor can be determined in terms of the Killing vector
fields and their scalars. Usually components of this tensor are calculated in
terms of the components of metric tensor in a given coordinate system. In
three dimensions, when the geometry admits at least a Killing vector field
we don’t have to follow such a direction to determine the components of
the ricci tensor. Using this property in each case, when the Killing vector
field is timelike, spacelike or null we first presented solutions of Einstein field
equations with sources. Then by using special cases, when the scalars of the
Killing vector fields are constants, we gave solutions of the field equations of
the Topologically Massive Gravity and New Massive Gravity field equations.
Some of the solutions of the Topologically Massive Gravity field equations
we obtained in this work may already be known. Our basic purpose in this
work is to present a new method to solve higher derivative gravity theories
rather finding specific solutions. We conjecture at the end that, for the three
type of Killing vector fields with constant scalars our method solves all higher
derivative theories in three dimensions.

This work is partially supported by the Scientific and Technological Re-
search Council of Turkey (TUBITAK) and Turkish Academy of Sciences
(TUBA).
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