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Extended Abstract

Principal components analysis (PCA) is a classical method for the reduction of dimensionality of
data in the form of n observations (or cases) of a vector with p variables. Contemporary data sets
often have p comparable to, or even much larger than n. Our main assertions, in such settings, are
(a) that some initial reduction in dimensionality is desirable before applying any PCA-type search
for principal modes, and (b) the initial reduction in dimensionality is best achieved by working in
a basis in which the signals have a sparse representation. We describe a simple asymptotic model
in which the estimate of the leading principal component vector via standard PCA is consistent if
and only if p(n)/n → 0. We provide a simple algorithm for selecting a subset of coordinates with
largest sample variances, and show that if PCA is done on the selected subset, then consistency is
recovered, even if p(n)≫ n.

Our main setting is that of signals and images, in which the number of sampling points, or
pixels, is often comparable with or larger than the number of cases, n. Our particular example here
is the electrocardiogram (ECG) signal of the beating heart, but similar approaches have been used,
say, for PCA on libraries of face images.

Standard PCA involves an O(min(p3, n3)) search for directions of maximum variance. But if we
have some a priori way of selecting k ≪ min(n, p) coordinates in which most of the variation among
cases is to be found, then the complexity of PCA is much reduced, to O(k3). This is a computational
reason, but if there is instrumental or other observational noise in each case that is uncorrelated
with or independent of relevant case-to-case variation, then there is another compelling reason to
preselect a small subset of variables before running PCA.

Indeed, we construct a model of factor analysis type and show that ordinary PCA can produce
a consistent (as n → ∞) estimate of the principal factor if and only if p(n) is asymptotically of
smaller order than n. Heuristically, if p(n) ≥ cn, there is so much observational noise and so many
dimensions over which to search, that a spurious noise maximum will always drown out the true
factor.

Fortunately, it is often reasonable to expect such small subsets of variables to exist: Much recent
research in signal and image analysis has sought orthonormal basis and related systems in which
typical signals have sparse representations: most co-ordinates have small signal energies. If such a
basis is used to represent a signal – we use wavelets as the classical example here – then the variation
in many coordinates is likely to be very small.

Consequently, we study a simple “sparse PCA” algorithm with the following ingredients: a)
given a suitable orthobasis, compute coefficients for each case, b) compute sample variances (over
cases) for each coordinate in the basis, and select the k coordinates of largest sample variance, c)
run standard PCA on the selected k coordinates, obtaining up to k estimated eigenvectors, d) if
desired, use soft or hard thresholding to denoise these estimated eigenvectors, and e) re-express the
(denoised) sparse PCA eigenvector estimates in the original signal domain.

We illustrate the algorithm on some exercise ECG data, and also develop theory to show in
a single factor model, under an appropriate sparsity assumption, that it indeed overcomes the
inconsistency problems when p(n) ≥ cn, and yields consistent estimates of the principal factor.
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1 Introduction

Suppose {xi, i = 1, . . . , n} is a dataset of n observations on p variables. Standard principal
components analysis (PCA) looks for vectors ξ that maximize

Var (ξTxi)/‖ξ‖2. (1)

If ξ1, . . . , ξk have already been found by this optimization, then the maximum defining ξk+1

is taken over vectors ξ orthogonal to ξ1, . . . , ξk.
Our interest lies in situations in which each xi is a realization of a possibly high di-

mensional signal, so that p is comparable in magnitude to n, or may even be larger. In
addition, we have in mind settings in which the signals xi contain localized features, so that
the principal modes of variation sought by PCA may well be localized also.

Consider, for example, the sample of an electrocardiogram (ECG) in Figure 1 showing
some 13 consecutive heart beat cycles as recorded by one of the standard ECG electrodes.
Individual beats are notable for features such as the sharp spike (“QRS complex”) and the
subsequent lower peak (“T wave”), shown schematically in the second panel. The presence
of these local features, of differing spatial scales, suggests the use of wavelet bases for
efficient representation. Traditional ECG analysis focuses on averages of a series of beats.
If one were to look instead at beat to beat variation, one might expect these local features
to play a significant role in the principal component eigenvectors.
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Figure 1: (a) Sample of thirteen beats from one electrode of an electrocardiogram taken
in the laboratory of Victor Froelicher, MD, Palo Alto VA. (b) Cartoon of the key features
of the cardiac cycle reflected in the ECG trace, from Hampton (1997).

Returning to the general situation, the main contentions of this paper are:
(a) that when p is comparable to n, some reduction in dimensionality is desirable before

applying any PCA-type search for principal modes, and
(b) the reduction in dimensionality is best achieved by working in a basis in which the

signals have a sparse representation.
We will support these assertions with arguments based on statistical performance and

computational cost.
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We begin, however, with an illustration of our results on a simple constructed ex-
ample. Consider a single component (or single factor) model, in which, when viewed as
p−dimensional column vectors

xi = viρ+ σzi, i = 1, . . . , n (2)

in which ρ ∈ Rp is the single component to be estimated, vi ∼ N(0, 1) are i.i.d. Gaussian
random effects and zi ∼ Np(0, I) are independent p−dimensional noise vectors.
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True PC, p = 2048, n = 1024, || ρ || = 10.
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another sample path from model (2)
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smoothed PCA
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ASPCA, w = 99.5%, k = 372.

Figure 2: True principal component, the “3-peak” curve. Panel (a): the single component ρl =
f(l/n) where f(t) = C

{
0.7B(1500, 3000) + 0.5B(1200, 900) + 0.5B(600, 160)

}
and B(a, b)(t) =

[Γ(a + b)/(Γ(a)Γ(b))]ta−1(1 − t)b−1 denotes the Beta density on [0, 1]. Panels (b,c): Two sample
paths drawn from model (2) with σ = 1. n = 1024 replications in total, p = 2048. (d): Sample
principal component by standard PCA. (e): Sample principal component by smoothed PCA using
λ = 10−12 and λ = 10−6. (f): Sample principal component by sparse PCA with weighting function
w = 99.5%, k = 372.

Panel (a) of Figure 2 shows an example of ρ with p = 2048 and the vector ρl = f(l/n)
where f(t) is a mixture of Beta densities on [0, 1], scaled so that ‖ρ‖ = (

∑p
1 ρ

2
l )

1/2 = 10.
Panels (b) and (c) show two sample paths from model (2): the random effect viρ is hard to
discern individual cases. Panel (d) shows the result of standard PCA applied to n = 1024
observations from (2) with σ = 1. The effect of the noise remains clearly visible in the
estimated principal eigenvector.
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For functional data of this type, a regularized approach to PCA has been proposed by
Rice & Silverman (1991) and Silverman (1996), see also Ramsay & Silverman (1997) and
references therein. While smoothing can be incorporated in various ways, we illustrate the
method discussed also in Ramsay & Silverman (1997, Ch. 7), which replaces (1) with

Var (ξTxi)/[‖ξ‖2 + λ‖D2ξ‖2], (3)

where D2ξ is the (p − 2) × 1 vector of second differences of ξ and λ ∈ (0,∞) is the
regularization parameter.

Panel (e) shows the estimated first principal component vector found by maximizing
(3) with λ = 10−12 and λ = 10−6 respectively. Neither is really satisfactory as an estimate:
the first recovers the original peak heights, but fails fully to suppress the remaining baseline
noise, while the second grossly oversmooths the peaks in an effort to remove all trace of noise.
Further investigation with other choices of λ confirms the impression already conveyed here:
no single choice of λ succeeds both in preserving peak heights and in removing baseline noise.

Panel (f) shows the result of the adaptive sparse PCA algorithm to be introduced below:
evidently both goals are accomplished quite satisfactorily in this example.

2 The need to select subsets: (in)consistency of classical
PCA

A basic element of our sparse PCA proposal is initial selection of a relatively small subset
of the initial p variables before any PCA is attempted. In this section, we formulate some
(in)consistency results that motivate this initial step.

Consider first the single component model (2). The presence of noise means that the
sample covariance matrix S = n−1

∑n
i=1 xix

T
i will typically have min(n, p) non-zero eigen-

values. Let ρ̂ be the unit eigenvector associated with the largest sample eigenvalue—with
probability one it is uniquely determined up to sign.

One natural measure of the closeness of ρ̂ to ρ uses the angle ∠(ρ̂, ρ) between the two
vectors. We decree that the signs of ρ̂ and ρ be taken so that ∠(ρ̂, ρ) lies in [0, π/2]. It will
be convenient to phrase the results in terms of an equivalent distance measure

dist(ρ̂, ρ) = sin ∠(ρ̂, ρ) =
√

1− (ρT ρ̂)2. (4)

For asymptotic results, we will assume that there is a sequence of models (2) indexed by
n. Thus, we allow p(n) and ρ(n) to depend by n, though the dependence will usually not
be shown explicitly. [Of course σ might also be allowed to vary with n, but for simplicity
it is assumed fixed.]

Our first interest is whether the estimate ρ̂ is consistent as n → ∞. This turns out to
depend crucially on the limiting value

lim
n→∞

p(n)/n = c. (5)

We will also assume that
lim

n→∞
‖ρ(n)‖ = ̺ > 0. (6)

One setting in which this last assumption may be reasonable is when p(n) grows by adding
finer scale wavelet coefficients of a fixed function as n increases.
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Theorem 1. Assume model (2), (5) and (6). Define

ζ(τ ; c) =
4
√
c

τ

(
1 +

2 +
√
c

τ

)
.

Then with probability one as n→∞,

lim sup
n→∞

sin ∠(ρ̂, ρ) ≤ ζ(̺/σ, c), (7)

so long as the right side is at most one.

For the proof, see Appendix A.2. The bound ζ(τ ; c) is decreasing in the “signal-to-
noise” ratio τ = ̺/σ and increasing in the dimension-to-sample size ratio c = lim p/n. It
approaches 0 as c→ 0, and in particular it follows that ρ̂ is consistent if p/n→ 0.

The proof is based on an almost sure bound for eigenvectors of perturbed symmetric
matrices. It appears to give the correct order of convergence: in the case p/n→ 0, we have

ζ(τ, p/n) ∼ c(τ)
√
p/n,

with c(τ) = 4τ−1 + 8τ−2, and examination of the proof shows that in fact

∠(ρ̂, ρ) = Op(
√
p/n)

which is consistent with the n−1/2 convergence rate that is typical when p is fixed.
However if c > 0, the upper bound (7) is strictly positive. And it turns out that ρ̂ must

be an inconsistent estimate in this setting:

Theorem 2. Assume model (2), (5) and (6). If p/n→ c > 0, then ρ̂ is inconsistent:

lim inf
n→∞

E∠(ρ̂, ρ) > 0.

In short, ρ̂ is a consistent estimate of ρ if and only if p = o(n). The noise does not
average out if there are too many dimensions p relative to sample size n. A heuristic
explanation for this phenomenon is given just before the proof in Appendix A.3.

The inconsistency criterion extends to a considerably more general multi-component
model. Assume that we have n curves xi, observed at p time points. Viewed as p dimen-
sional column vectors, this model assumes that

xi = µ+

m∑

j=1

vj
i ρ

j + σzi, i = 1, · · · , n. (8)

Here µ is the mean function, which is assumed known, and hence is taken to be zero. We
make the following assumptions:

(a) The ρj, j = 1, ...,m ≤ p are unknown, mutually orthogonal principal components,
with norms ρj(n) = ‖ρj‖

‖ρ1‖ > ‖ρ2‖ ≥ · · · ≥ ‖ρm‖. (9)

(b) The multipliers vj
i ∼ N(0, 1) are all independent over j = 1, . . . ,m and i = 1, . . . ,m.

(c) The noise vectors zi ∼ Np(0, I) are independent among themselves and also of the

random effects {vj
i }.

For asymptotics, we add

5



(d) We assume that p(n),m(n) and {ρj(n), j = 1, . . . ,m} are functions of n, though
this will generally not be shown explicitly. We assume that the norms of the nth principal
components converge as sequences in ℓ1(N):

̺(n) = (‖ρ1(n)‖, . . . , ‖ρj(n)‖, . . .)
→ ̺ = (̺1, . . . , ̺j , . . .).

(10)

We write ̺+ for the limiting ℓ1 norm:

̺+ =
∑

j

̺j .

Remark on Notation. The index j, which runs over principal components, will be
written as a superscript on vectors vj , ρj and uj(defined in Appendix), but as a subscript
on scalars such as ̺j(n) and ̺j.

We continue to focus on the estimation of the principal eigenvector ρ1, and establish a
more general version of the two preceding theorems.

Theorem 3. Assume model (8) together with conditions (a)-(d). If p/n→ c, then

lim sup
n→∞

sin ∠(ρ̂1, ρ1) ≤ 4σ
√
c

̺2
1 − ̺2

2

[ρ+ + (2 +
√
c)σ]

so long as the right side is at most, say, 4/5.
If c > 0, then

lim inf
n→∞

E∠(ρ̂1, ρ1) > 0.

Thus, it continues to be true in the multicomponent model that ρ̂1 is consistent if and
only if p = o(n).

3 The sparse PCA algorithm

The inconsistency results of Theorems 2 and 3 emphasize the importance of reducing the
number of variables before embarking on PCA, and motivate the sparse PCA algorithm to
be described in general terms here. Note that the algorithm per se does not require the
specification of a particular model, such as (8).

1. Select Basis. Select a basis {eν} for Rp and compute co-ordinates (xiν) for each xi

in this basis:
xi(t) =

∑

ν

xiνeν(t), i = 1, . . . , n.

[The wavelet basis is used in this paper, for reasons discussed in the next subsection.]

2. Subset. Calculate the sample variances σ̂2
ν = V̂ ar(xiν). Let Î denote the set of

indices ν corresponding to the largest k variances.
[k may be specified in advance, or chosen based on the data, see Section 3.2 below].
3. Reduced PCA. Apply standard PCA to the reduced data set {xiν , ν ∈ Î , i = 1, . . . , n}

on the selected k−dimensional subset, obtaining eigenvectors ρ̂j = (ρ̂j
ν), j = 1, . . . , k.

4. Thresholding. Filter out noise in the estimated eigenvectors by hard thresholding

ρ̂∗jν = ηH(ρ̂j
ν , δ).
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[Hard thresholding is given, as usual, by ηH(x, δ) = xI{|x| ≥ δ}. An alternative is soft
thresholding ηS(x, δ) = sgn(x)(|x|− δ)+, but hard thresholding has been used here because
it preserves the magnitude of retained signals.

The threshold δ can be chosen, for example, by trial and error, or as δ = τ̂j
√

2 log k
for some estimate τ̂j . In this paper, estimate (13) is used. Another possibility is to set

τ̂j = MAD{ρ̂j
ν , ν = 1, . . . , k}/0.6745. ]

5. Reconstruction. Return to the original signal domain, setting

ρ̂j(t) =
∑

ν

ρ̂∗jν eν(t).

In the rest of this section, we amplify on and illustrate various aspects of this algorithm.
Given appropriate eigenvalue and eigenvector routines, it is not difficult to code. For
example, MATLAB files that produce most figures in this paper will soon be available at
www-stat.stanford.edu/∼imj/ – to exploit wavelet bases, they make use of the open-
source library WaveLab available at www-stat.stanford.edu/∼wavelab/.

3.1 Sparsity and Choice of basis

Suppose that in the basis {eν(t)} a population principal component ρ(t) has coefficients
{ρν}:

ρ(t) =

p∑

ν=1

ρνeν(t).

It is desirable, both from the point of view of economy of representation, as well as
computational complexity, for the expansion in basis {eν} to be sparse, i.e., most coefficients
ρν are small or zero.

One way to formalize this is to require that the ordered coefficient magnitudes decay at
some algebraic rate. We say that ρ is contained in a weak ℓq ball of radius C, ρ ∈ wℓq(C),
if |ρ|(1) ≥ |ρ|(2) ≥ . . . and

|ρ|(ν) ≤ Cν−1/q, ν = 1, 2, . . .

Wavelet bases typically provide sparse representations of one-dimensional functions that
are smooth or have isolated singularities or transient features, such as in our ECG ex-
ample. Here is one such result. Expand ρ in a nice wavelet basis {ψjk(t)} to obtain
ρ =

∑
jk ρjkψjk(t) and then order coefficients by absolute magnitude, so that (ρν) is a

re-ordering of the |ρjk| in decreasing order. Then smoothness (as measured by membership
in some Besov space Bα

p,q) implies sparsity in the sense that

ρ ∈ Bα
p,q ⇒ (ρν) ∈ wℓp, p = 2/(2α + 1).

[for details, see Donoho (1993) and Johnstone (2002): in particular it is assumed that
α > (1/p − 1/2)+ and that the wavelet ψ is sufficiently smooth.]

In this paper, we will assume that the basis {eν} is fixed in advance – and it will generally
be taken to be a wavelet basis. Extension of our results to incorporate basis selection (e.g.
from a library of orthonormal bases such as wavelet packets) is a natural topic for further
research.

7
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3.2 Adaptive choice of k

Here are two possibilities for adaptive choice of k̂ = |Î| from the data:
(a) choose co-ordinates with variance exceeding the estimated noise level by a specified

fraction αn:
Î = {ν : σ̂2

ν ≥ σ̂2(1 + αn)}.
This choice is considered further in Section 3.5.

(b) As motivation, recall that we hope that the selected set of variables Î is both small in
cardinality and also captures most of the variance of the population principal components,
in the sense that the ratio ∑

ν∈Î

ρ2
ν

/ ∑

ν

ρ2
ν

is close to one for the leading population principal components in {ρ1, . . . , ρm}. Now let
χ2

(n),α denote the upper α−percentile of the χ2
(n) distribution – if all co-ordinates were pure

noise, one might expect σ̂2
(ν) to be close to n−1σ̂2χ2

(n),ν/n. Define the excess over these
percentiles by

τ̂2
(ν) = max{σ̂2

(ν) − n−1σ̂2χ2
(n),ν/n, 0},

and for a specified fraction w(n), set

Î = {ν :

k̂∑

ν=1

τ̂2
(ν) ≥ w(n)

∑

ν

τ̂2
(ν)},

where k̂ is the smallest index k for which the inequality holds. This second method has
been used for the figures in this paper, typically with w(n) = .995.

Estimation of σ. If the population principal components ρj have a sparse representation
in basis {eν}, then we may expect that in most co-ordinates ν, {xiν} will consist largely of
noise. This suggests a simple estimate of the noise level on the assumption that the noise
level is the same in all co-ordinates, namely

σ̂2 = median(σ̂2
ν). (11)

3.3 Computational complexity

It is straightforward to estimate the cost of sparse PCA by examining its main steps:

1. This depends on the choice of basis. In the wavelet case no more than O(np log p)
operations are needed.

2. Sort the sample variances and select Î: O(p log p).

3. Eigendecomposition for a k × k matrix: O(k3).

4. Estimate σ̂2 and ‖̂ρ‖2: O(p).

5. Apply thresholding: O(k).

6. Reconstruct eigenvectors in the original sample space: O(k2p).
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Hence, the total cost of sparse PCA is

O(np log p+ k2p).

Both standard and smoothed PCA need at least O((p ∧ n)3) operations. Therefore, if
we can find a sparse basis such that k/p→ 0, then under the assumption that p/n→ c as
n → ∞,the total cost of sparse PCA is o(p3). We will see in examples to follow that the
savings can be substantial.

3.4 Simulated examples

The two examples in this section are both motivated by functional data with localized
features.
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True PC, p = 2048, n = 1024, || ρ || ≈ 25.
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Smoothed PCA, b:10−12, r:10−8, m:10−6.
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ASPCA, w = 99.5%, k = 438.

Figure 3: Comparison of the sample principal components for a step function. (a) True
principal component ρl = f(l/n), the “step” function (b): Sample principal component by standard
PCA. (c): Sample principal component by smoothed PCA using λ = 10−12, 10−8 and 10−6. (d):
Sample principal component by sparse PCA with weighting function w = 99.5%, k = 438.

The first is a three-peak principal component depicted in Figure 2, and already discussed
in Section 1. The second example, Figure 3, has an underlying first principal component
composed of step functions. For both examples, the dimension of data vectors is p = 2048,
the number of observations n = 1024, and the noise level σ = 1. However, the amplitudes
of ρ differ, with ‖ρ‖ = 10 for the “3-peak” function and ‖ρ‖ ≈ 25 for the “step” function.

Panels (d) and (b) in the two figures respectively show the sample principal components
obtained by using standard PCA. While standard PCA does capture the peaks and steps,
it retains significant noise in the flat regions of the function. Corresponding panels (e) and
(c) show results from smooth PCA with the indicated values of the smoothing parameter.
Just as for the three peak curve discussed earlier, in the case of the step function, none of
the three estimates simultaneously captures both jumps and flat regions well.

Panels (f) and (d) present the principal components obtained by sparse PCA. Using
method (b) of the previous section with w = 99.5%, the Subset step selects k = 372 and 438
for the “3-peak” curve and “step” function, respectively. The sample principal component

9



Standard Smoothed Smoothed Sparse
PCA λ : 10−12 λ : 10−6 PCA

ASE (3-peak) 9.681e-04 1.327e-04 3.627e-2 7.500e-05

Time (3-peak) ∼ 12min ∼ 47 min ∼ 43 min 1 min 15 s

ASE (step) 9.715e-04 3.174e-3 1.694e-2 1.947e-04

Time (step) ∼ 12min ∼ 47 min ∼ 46 min 1 min 31 s

Table 1: Accuracy and efficiency comparison

in Figure 2(d) is clearly superior to the other sample p.c.s in Figure 2. Although the
principal component function in the step case appears to be only slightly better than the
solid blue smooth PCA estimate, we will see later that its squared error is reduced by more
than 90%.

Table 1 compares the accuracy of the three PCA algorithms, using average squared
error (ASE) defined as

ASE = p−1‖ρ̂− ρ‖2.
The average ASE over 50 iterations is shown. The running time is the CPU time for a
single iteration used by Matlab on a MIPS R10000 195.0MHz server.

Figure 4 presents box plots of ASE for the 50 iterations. Sparse PCA gives the best
result for the “step” curve. For the “3-peak” function, in only a few iterations does sparse
PCA generate larger error than smoothed PCA with a small λ = 10−12. On the average,
ASE using sparse PCA is superior to the other methods by a large margin. Overall Table 1
and Figure 5 show that sparse PCA leads to the most accurate principal component while
using much less CPU time than other PCA algorithms.

Standard Smooth
e-12

Smooth
e-6

Sparse

e-4

e-3

e-2

e-1

‘3-peak’ ASE, 50 iterations

Standard Smooth
e-12

Smooth
e-6

Sparse

e-4

e-3

e-2

e-1

‘step’ ASE, 50 iterations

Figure 4: Side-by side box-plots of ASE from 50 iterations using different algorithms. (a) For the
“3-peak” function. (b) For the “step” function.

Remarks on the single component model.
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Anderson (1963) obtained the asymptotic distribution of
√
n(ρ − ρ̂) for fixed p; in

particular

Var{
√
n(ρν − ρ̂ν)} → (‖ρ‖2 + σ2)

σ2

‖ρ‖4 (1− ρ2
ν), (12)

as n→∞. For us, p increases with n, but we will nevertheless use (12) as an heuristic basis
for estimating the variance τ̂ needed for thresholding. Since the effect of thresholding is to
remove noise in small coefficients, setting ρν to 0 in (12) suggests

τ̂ν ≈
1√
n

σ
√
‖ρ‖2 + σ2

‖ρ‖2 . (13)

Neither ‖ρ‖2 and σ2 in (13) are known, but they can be estimated by using the informa-
tion contained in the sample covariance matrix S, much as in the discussion of Section 3.2.
Indeed S2

ν , the ν-th diagonal element of S, follows a scaled χ2 distribution, with expectation
ρ2

ν +σ2. If ρν is a sparse representation of ρ, then most coefficients will be small, suggesting
the estimate (11) for σ2. In the single component model,

||ρ||2 =

p∑

1

ρ2
ν =

p∑

1

E(S2
ν)− σ2,

which suggests as an estimate:

|̂|ρ||2 =

p∑

1

{
S2

ν −median(S2
ν)

}
. (14)

Figure 5 shows the histograms for these estimates of ‖ρ‖ and σ based on 100 iterations for
the “3-peak” curve and for the “step” function.

3.5 Correct Selection Properties

A basic issue raised by the sparse PCA algorithm is whether the selected subset Î in fact
correctly contains the largest population variances, and only those. We formulate a result,
based on large deviations of χ2 variables, that provides some reassurance.

For this section, assume that the diagonal elements of the sample covariance matrix
S = n−1

∑n
1 xix

T
i have marginal χ2 distributions, i.e.,

σ̂2
ν = Sνν ∼ σ2

νχ
2
(n)/n, ν = 1, . . . , p. (15)

We will not require any assumptions on the joint distribution of {σ̂2
ν}.

Denote the ordered population coordinate variances by σ2
(1) ≥ σ2

(2) ≥ . . . and the ordered

sample coordinate variances by σ̂2
(1) ≥ σ̂2

(2) ≥ . . .. A desirable property is that Î should, for
suitable αn small,
(i) include all indices l in

Iin = {l : σ2
l ≥ σ2

(k)(1 + αn)}, and

(ii) exclude all indices l in

Iout = {l : σ2
l ≤ σ2

(k)(1− αn)}.

11
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Figure 5: Histograms from 100 iterations. The “3-peak” function, (a) estimate for ‖ρ‖ = 10: mean
= 9.91, SD = 0.24. (b): estimate for σ = 1: mean = 1.0005, SD = .0006. The “step” function, (c):
estimate for ‖ρ‖ = 24.82: mean = 24.58, SD = 0.56. (d): estimate for σ = 1: mean = 1.0029, SD
= .0007.

We will show that this in fact occurs if αn = γ
√
n−1 log n, for appropriate γ > 0.

We say that a false exclusion (FE) occurs if any variable in Iin is missed:

FE =
⋃

l∈Iin

{σ̂2
l < σ̂2

(k)},

while a false inclusion (FI) happens if any variable in Iout is spuriously selected:

FI =
⋃

l∈Iout

{σ̂2
l ≥ σ̂2

(k)}.

Theorem 4. Under assumptions (15), the chance of an inclusion error of either type in
Îk having magnitude αn = γn−1/2(log n)1/2 is polynomially small:

P{FE ∪ FI} ≤ 2pkn−b(γ) + kn−(1−2αn)b(γ),

with b(γ) = [γ
√

3/(4 + 2
√

3)]2.

For example, if γ = 9, then b(γ)
.
= 4.36. As a numerical illustration based on (54)

below, if the subset size k = 50, while p = n = 1000, then the chance of an inclusion
error corresponding to a 25% difference in SDs (i.e.

√
1 + αn = 1.25) is below 5%. That

reasonably large sample sizes are needed is a sad fact inherent to variance estimation—as
one of Tukey’s ‘anti-hubrisines’ puts it, “it takes 300 observations to estimate a variance to
one significant digit of accuracy”.

3.6 Consistency

The sparse PCA algorithm is motivated by the idea that if the p.c.’s have a sparse repre-
sentation in basis {eν}, then selection of an appropriate subset of variables should overcome
the inconsistency problem described by Theorem 2.

12



To show that such a hope is justified, we establish a consistency result for sparse PCA.
For simplicity, we consider the single component model (2), and assume that σ2 is known—
though this latter assumption could be removed by estimating σ2 using (11).

To select the subset of variables Î, we use a version of rule (a) from Section 3.2:

Î = {ν : σ̂2
ν ≥ σ2(1 + γn)}, (16)

with γn = γ(n−1 log n)1/2 and γ a sufficiently large positive constant—for example γ >
√

12
would work for the proof.

We assme that the unknown principal components ρ = ρ(n) satisfy a uniform sparsity
condition: for some positive constants q, C,

ρ(n) ∈ wℓq(C) uniformly in n. (17)

Let ρ̂I denote the principal eigenvector estimated by step (3) of the sparse PCA algorithm
(thresholding is not considered here).

Theorem 5. Assume that the single component model (2) holds, with p/n → c > 0 and
‖ρ(n)‖ → ̺ > 0. For each n, assume that ρ(n) satisfies the uniform sparsity condition
(17).

Then the estimated principal eigenvector ρ̂I obtained by subset selection rule (16) is
consistent:

∠(ρ̂I , ρ)
a.s.→ 0.

The proof is given in Appendix A.5: it is based on a correct selection property similar to
Theorem 4: combined with a modification of the consistency argument for Theorem 3. In
fact, the proof shows that consistency holds even under the weaker assumption p = O(na),
for arbitrary a > 0, so long as γ = γ(a) is set sufficiently large.

3.7 ECG example

This section offers a brief illustration of sparse PCA as applied to some ECG data kindly
provided by Jeffrey Froning and Victor Froelicher in the cardiology group at Palo Alto Vet-
erans Affairs Hospital. Beat sequences – typically about 60 cycles in length – were obtained
from some 15 normal patients: we have selected two for the preliminary illustrations here.

Data Preprocessing. Considerable preprocessing is routinely done on ECG signals
before the beat averages are produced for physician use. Here we describe certain steps
taken with our data, in collaboration with Jeff Froning, preparatory to the PCA analysis.

The most important feature of an ECG signal is the Q-R-S complex: the maximum
occurs at the R-wave, as depicted in Figure 1(b). Therefore we define the length of one
cycle as the gap between two adjacent maxima of R-waves.

1. Baseline wander is observed in many ECG data sets, c.f. Figure 6. One common
remedy for this problem is to deduct a piecewise linear baseline from the signal, the linear
segment (dashed line) between two beats being determined from two adjacent onset points.

The onset positions of R-waves are shown by asterisks. Their exact locations vary for
different patients, and as Figure 6 shows, even for adjacent R-waves. The locations are
determined manually in this example. To reduce the effect of noise, the values of onset
points are calculated by an average of 5 points close to the onset position.

2. Since pulse rates vary even on short time scales, the duration of each heart beat
cycle may vary as well. We use linear interpolation to equalize the duration of each cycle,

13
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Figure 6: ECG baseline wander.

and for convenience in using wavelet software, discretize to 512 = 29 sample points in each
cycle.

3. Finally, due to the importance of the R-wave, the horizontal positions of the maxima
are the 150th position in each cycle.

4. Convert the ECG data vector into an n × p data matrix, where n is the number of
observed cycles and p = 512. Each row of the matrix presents one heart beat cycle with
the maxima of R-waves all aligned at the same position.

PCA analysis. Figure 7 (a) and (d) shows the mean curves for two ECG samples in
blue. The number of observations n, i.e. number of heart beats recorded, are 66 and 61,
respectively. The first sample principal components for these two sample sets are plotted
in plots (c) and (f), with red curves from standard PCA and blue curves from sparse PCA.
In both cases there are two sharp peaks in the vicinity of the QRS complex. The first peak
occurs shortly before the 150th position, where all the maxima of R-waves are aligned, and
the second peak, which has an opposite sign, shortly after.

The standard PCA curve in Figure 6.7.(b, red) is less noisy than that in panel (d, red),
even allowing for the difference in vertical scales. Using (11),

σ̂2
1 = 24.97 and σ̂2

2 = 82.12.

while the magnitudes of the two mean sample curves are very similar.
The sparse PCA curves (blue) are smoother than the standard PCA ones (red), espe-

cially in plot (d) where the signal to noise ratio is lower. On the other hand, the red and
blue curves match quite well at the two main peaks. Sparse PCA has reduced noise in the
sample principal component in the baseline while keeping the main features.

There is a notable difference between the two estimated p.c.’s. In the first case, the p.c.
is concentrated around the R-wave maximum, and the effect is to accelerate or decelerate
the rise (and fall) of this peak from baseline in a given cycle. This is more easily seen by
comparing plots of x̄ + 2ρ̂ (green) with x̄ − 2ρ̂ (red), shown over a magnified part of the
cycle in panel (b). In the second case, the bulk of the energy of the p.c. is concentrated in
a level shift in the part of the cycle starting with the ST segment. This can be interpreted
as beat to beat fluctuation in baseline – since each beat is anchored at 0 at the onset point,
there is less fluctuation on the left side of the peak. This is particularly evident in panel

14
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Figure 7: ECG examples. (a): mean curve for ECG sample 1, n = 66, in blue, along with x̄+ 2ρ̂
(green) and x̄ − 2ρ̂ (red), with ρ̂ being the estimated first principal component from sparse PCA
(see also (c)). (b) Magnified section of (a) over the range 120-220. (c): First principal components
for sample 1 from standard (red) and sparse PCA (blue). (d)– (f): corresponding plots for sample
2, n = 61.

(e) – there is again a slight acceleration/deceleration in the rise to the R wave peak – less
pronounced in the first case, and also less evident in the fall.

Obvious questions raised by this illustrative example include the nature of effects which
may have been introduced by the preprocessing steps, notably the baseline removal anchored
at onset points and the alignment of R-wave maxima. Clearly some conventions must be
adopted to create rectangular data matrices for p.c. analysis, but detailed analysis of these
issues must await future work.

Finally, sparse PCA uses less than 10% of the computing time than standard PCA.

A Appendix

A.1 Preliminaries

Matrices. We first recall some pertinent matrix results. Define the 2−norm of a rectan-
gular matrix by

‖A‖2 = sup{‖Ax‖2 : ‖x‖2 = 1}. (18)

If A is real and symmetric, then ‖A‖2 = λmax(A). If Ap×p is partitioned

A =

(
a bT

b C

)
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where b is (p− 1)× 1, then by setting x = (1 0T )T in (18), one finds that

‖b‖2 ≤ ‖A‖2. (19)

The matrix B = ρuT + uρT has at most two non-zero eigenvalues, given by

λ = (τ ± 1)‖ρ‖‖u‖, τ = ρTu/‖ρ‖‖u‖. (20)

Indeed, the identity det(I+AC) = det(I+CA) for compatible rectangular matrices A and
C means that the non-zero eigenvalues of

B =
(
ρ u

) (
uT

ρT

)

are the same as those of the 2× 2 matrix

B∗ =

(
uT

ρT

)(
ρ u

)
=

(
τ‖ρ‖‖u‖ ‖u‖2
‖ρ‖2 τ‖ρ‖‖u‖

)

from which (20) is immediate.

Angles between vectors. We recall and develop some elementary facts about angles
between vectors. The angle between two non-zero vectors ξ, η in Rp is defined as

∠(ξ, η) =
cos−1 |ξT η|
‖ξ‖2‖η‖2

∈ [0, π/2]. (21)

Clearly ∠(aξ, bη) = ∠(ξ, η) for non-zero scalars a and b; in fact ∠(·, ·) is a metric on one-
dimensional subspaces of Rp. If ξ and η are chosen to be unit vectors with ξT η ≥ 0,
then

‖ξ − η‖2 = 2 sin 1
2∠(ξ, η). (22)

The sine rule for plane triangles says that if ξ, η are non-zero and linearly independent
vectors in Rp, then

sin∠(ξ, η) =
‖ξ − η‖
‖ξ‖ sin ∠(ξ − η, η). (23)

These remarks can be used to bound the angle between a vector η and its image under
a symmetric matrix M in terms of the angle between η and any principal eigenvector of M .

Lemma 1. Let ξ be a principal eigenvector of a non-zero symmetric matrix M . For any
η 6= 0,

∠(η,Mη) ≤ 3∠(η, ξ).

Proof. We may assume without loss of generality that ‖ξ‖ = ‖η‖ = 1 and that ξT η ≥ 0.
Since ξ is a principal eigenvector of a symmetric matrix, ‖Mξ‖ = ‖M‖. From the sine rule
(23),

sin ∠(Mξ,Mη) ≤ ‖Mξ −Mη‖/‖Mξ‖
≤ ‖ξ − η‖ = 2 sin 1

2∠(ξ, η),

where the final equality uses (22). Some calculus shows that 2 sinα/2 ≤ sin 2α for 0 ≤ α ≤
π/4 and hence

∠(Mξ,Mη) ≤ 2∠(ξ, η). (24)
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From the triangle inequality on angles,

∠(η,Mη) ≤ ∠(η,Mξ) + ∠(Mξ,Mη)

≤ 3∠(η, ξ),

using (24) and the fact that ξ is an eigenvector of M .

Perturbation bounds. Suppose that a symmetric matrix Ap×p has unit eigenvector
q1. We wish to bound the effect of a symmetric perturbation Ep×p on q1. The following
result (Golub & Van Loan (1996, Thm 8.1.10), see also Stewart & Sun (1990)) constructs
a unit eigenvector q̂1 of A+E and bounds its distance from q1 in terms of ‖E‖2. Here, the
distance between unit eigenvectors q1 and q̂1 is defined as at (4) and (21).

Let Qp×p = [q1 Q2] be an orthogonal matrix containing q1 in the first column, and
partition conformally

QTAQ =

(
λ 0
0 D22

)
, QTEQ =

(
ǫ eT

e E22

)
,

where D22 and E22 are both (p− 1)× (p− 1).
Suppose that λ is separated from the rest of the spectrum of A; set

δ = min
µ∈λ(D22)

|λ− µ|.

If ‖E‖2 ≤ δ/5, then there exists r ∈ Rp−1 satisfying

‖r‖2 ≤ (4/δ)‖e‖2 (25)

such that
q̂1 = (1 + rT r)−1/2(q1 +Q2r)

is a unit eigenvector of A+ E. Moreover,

dist(q̂1, q1) ≤ (4/δ)‖e‖2 .

Let us remark that since ‖e‖2 ≤ ‖E‖2 by (19), we have ‖r‖2 ≤ 1 and

qT
1 q̂1 = (1 + ‖r‖22)−1/2 ≥ 1/

√
2. (26)

Suppose now that q1 is the eigenvector of A associated with the principal eigenvalue
λ1(A). We verify that, under the preceding conditions, q̂1 is also the principal eigenvector
of A+ E: i.e. if (A+ E)q̂1 = λ∗q̂1, then in fact λ∗ = λ1(A+ E).

To show this, we verify that λ∗ > λ2(A + E). Take inner products with q1 in the
eigenequation for q̂1:

λ∗qT
1 q̂1 = qT

1 Aq̂1 + qT
1 Eq̂1. (27)

Since A is symmetric, qT
1 A = λ1(A)qT

1 . Trivially, we have qT
1 Eq̂1 ≥ −‖E‖2. Combine these

remarks with (26) to get
λ∗ ≥ λ1(A)−

√
2‖E‖2.
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Now δ = λ1(A) − λ2(A) and since from the minimax characterization of eigenvalues
(e.g. Golub & Van Loan (1996, p. 396) or Stewart & Sun (1990, p.218)), λ2(A + E) ≤
λ2(A) + ‖E‖2, we have

λ∗ − λ2(A+E) ≥ δ − (1 +
√

2)‖E‖2
≥ δ[1 − (1 +

√
2)/5] > 0,

which is the inequality we seek.

Large Deviation Inequalities. If X̄ = n−1
∑n

1 Xi is the average of i.i.d. variates
with moment generating function exp{Λ(λ)} = E exp{λX1}, then Cramer’s theorem (see
e.g. Dembo & Zeitouni (1993, 2.2.2 and 2.2.12)) says that for x > EX1,

P{X̄ > x} ≤ exp{−nΛ∗(x)}, (28)

where the conjugate function Λ∗(x) = supλ{λx−Λ(λ)}. The same bound holds for P{X̄ <
x} when x < EX1.

When applied to the χ2
(n) distribution, with X1 = z2

1 and z1 ∼ N(0, 1), the m.g.f.

Λ(λ) = −1
2 log(1− 2λ) and the conjugate function Λ∗(x) = 1

2 [x− 1− log x]. The bounds

log(1 + ǫ) ≤
{
ǫ− ǫ2/2 −1 < ǫ < 0,

ǫ− 3ǫ2/8 0 ≤ ǫ < 1
2 ,

(the latter following, e.g., from (47) in Johnstone (2001)) yield

P{χ2
(n) ≤ n(1− ǫ)} ≤ exp{−nǫ2/4}, 0 ≤ ǫ < 1, (29)

P{χ2
(n) ≥ n(1 + ǫ)} ≤ exp{−3nǫ2/16}, 0 ≤ ǫ < 1

2 . (30)

We will use also a slightly sharper bound

P{χ2
(n) ≥ n+ t

√
2n} ≤ t−1e−t2/2. (31)

valid for n ≥ 16 and 0 ≤ t ≤ n1/6 (Johnstone 2001).
When applied to sums of variables X1 = z1z2, with z1 and z2 independent N(0, 1)

variates, the m.g.f. Λ(λ) = −1
2 log(1 − λ2). With λ∗(x) = [(1 + 4x2)1/2 − 1]/(2x), the

conjugate function satisfies

Λ∗(x) = λ∗x+ 1
2 log(1− λ2

∗) = (3/2)x2 +O(x4),

as x→ 0. Hence, for n large,

P{X̄ >
√
bn−1 log n} ≤ Cn−3b/2. (32)

Decomposition of sample covariance matrix. Now adopt the multicomponent
model (8) along with its assumptions (a) - (c). The sample covariance matrix S =
n−1

∑n
1 xix

T
i has expectation ES = R+ σ2Ip, where

R =

m∑

j=1

ρjρjT . (33)
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Now decompose S according to (8). Introduce 1×n row vectors vjT = (vj
1 · · · v

j
n) and collect

the noise vectors into a matrix Zp×n = [z1 · · · zn]. We then have

S − ES =
m∑

j,k=1

Ajk +
m∑

j=1

Bj + C. (34)

where the p× p matrices

Ajk =
(
n−1

n∑

i=1

vj
i v

k
i − δjk

)
ρjρkT = vjk

s ρ
jρkT ,

Bj = σn−1
(
ρjvjTZT + ZvjρjT

)
,

C = σ2
(
n−1ZZT − Ip

)
.

(35)

Some limit theorems. We turn to properties of the noise matrix Z appearing in (35).
The cross products matrix ZZT has a standard p-dimensional WishartWp(n, I) distribution
with n degrees of freedom and identity covariance matrix, see e.g. Muirhead (1982, p82).
Thus the matrix C = (cjk) in (34) is simply a scaled and recentered Wishart matrix. We
state results below in terms of either ZZT or C, depending on the subsequent application.
Properties (b) and (c) especially play a key role in inconsistency when c > 0.

(a) If p = O(n), then for any b > 8,

max
j,k
|cjk| ≤ σ

√
b log n

n
a.s. as n→∞. (36)

Proof. We may clearly take σ = 1. An off-diagonal term in n−1ZZT = (cjk) has the
distribution of an i.i.d. average X̄ = n−1

∑
Xi where X1 = z1z2 is the product of two

independent standard normal variates. Thus

P{max
j 6=k
|cjk| > x} ≤ 2p2P{X̄ > x}. (37)

Now apply the large deviation bound (32) to the right hand side. Since p ∼ cn, the
Borel-Cantelli lemma suffices to establish (36) for off-diagonal elements for any b > 2.

A diagonal term cjj +1 in n−1ZZT has the n−1χ2
(n) distribution. Setting t =

√
1
2b log n

in (31) yields

P{cjj >
√
bn−1 log n} ≤

√
2(b log n)−1/2n−b/4.

Since there are p ∼ cn diagonal terms, the conclusion (36) follows (again via Borel-Cantelli)
so long as b > 8.

(b) Geman (1980) and Silverstein (1985) respectively established almost sure limits for
the largest and smallest eigenvalues of a Wp(n, I) matrix as p/n→ c ∈ [0,∞), from which
follows:

λ1(C), λp(C)→ σ2(c± 2
√
c). (38)

[Although the results in the papers cited are for c ∈ (0,∞), the results are easily extended
to c = 0 by simple coupling arguments.]
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(c) Suppose in addition that v is a 1×n vector with independent N(0, 1) entries, which
are also independent of Z. Conditioned on v, the vector Zv is distributed as Np(0, ‖v‖2I).
Since Z is independent of v, we conclude that

Zv
D
= χ(n)χ(p)Up (39)

where χ2
(n) and χ2

(p) denote chi-square variables and Up a vector uniform on the surface of

the unit sphere Sp−1 in Rp, and all three variables are independent.
Now let up×1 = σn−1Zv. From (39) we have

‖u‖2 D
= σ2n−2χ2

(n)χ
2
(p)

a.s.→ σ2c, (40)

as p/n→ c ∈ [0,∞).
If ρ is any fixed vector in Rp, it follows from (39) that

τ = τ(p) = ρTu/‖ρ‖‖u‖ D
= Up,1,

the distribution of the first component of Up. It is well known that U2
1 ∼ Beta(1/2, (p−1)/2),

so that EU2
1 = p−1 and VarU2

1 ≤ 2p−2. From this it follows that

τ(p)
a.s.→ 0, p→∞. (41)

(d) Let uj = σn−1Zvj be the vectors appearing in the definition of Bj for 1 ≤ j ≤ m.
We will show that a.s.

lim
n→∞

sup
j
‖uj‖ < c0 (42)

(the constant c0 = 2σ(1 +
√
c) would do).

Proof. Since
‖uj‖2 = σ2n−2vjTZTZvj

we have
sup

j
‖uj‖2 ≤ σ2n−1λmax(ZZT ) sup

j
‖vj‖2/n. (43)

From (38), it follows that w.p. 1, ultimately

λmax(ZZT )/n ≤ 2(1 +
√
c)2. (44)

The squared lengths ‖vj‖2 follow independent χ2
(n) laws. Since from (28) there exists

c1 for which P{χ2
(n) ≥ 2n} ≤ e−c1n for n ≥ n0, it follows that

P{sup ‖vj‖2/n > 2} ≤ pe−c1n

and so w.p. 1 it is ultimately true that

sup
j
‖vj‖2/n ≤ 2. (45)

Substituting (44) and (45) into (43), we recover (42).
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A.2 Upper Bounds: Proof of Theorems 1 and 3

Instead of working directly with the sample covariance matrix S, we consider S∗ = S−σ2Ip.
It is apparent that S∗ has the same eigenvectors as S. We decompose S∗ = R + E, where
R is given by (33) and has spectrum

λ(R) = {‖ρ1‖2, · · · , ‖ρm‖2, 0}.

The perturbation matrix E = A+B + C, where A and B refer to the sums in (34).

Proposition 1. Assume that multicomponent model (8) holds, along with assumptions (a)
- (d). For any ǫ > 0, if p, n→∞, p/n→ c, then almost surely

lim sup ‖E‖2 ≤ σ
√
c
∑

̺j + σ2(c+ 2
√
c). (46)

Proof. We will obtain a bound in the form

‖E‖2 ≤ En(ω) = An(ω) +Bn(ω) + Cn(ω),

where the An, Bn and Cn will be given below. We have shown explicitly the dependence
on ω to emphasize that these quantities are random. Finally we show that the a.s. limit of
En(ω) is the right side of (46).

A term. Introduce symmetric matrices 2Ãjk = Ajk +Akj = vjk
s (ρjρkT + ρkρjT ). Since

ρj and ρk are orthogonal, (20) implies that

‖Ãjk‖2 ≤ |vjk
s | ‖ρj‖ ‖ρk‖,

and so

‖
∑

j,k

Ajk‖2 ≤ max
j,k
|vjk

s |
(∑

j

‖ρj‖
)2

=: An(ω).

The vjk
s are entries of a scaled and recentered Wm(n, I) matrix, and so by (36), the maximum

converges almost surely to 0. Since
∑

j ‖ρj‖ → ∑
̺j < ∞, it follows that the An-term

converges to zero a.s.
B term. Applying (20) to the definition (35) of Bj, we have

‖Bj‖2 ≤ Xn(j) = (1 + |τj |)‖ρj‖‖uj‖ a.s.→ σ
√
c̺j

where τj = ρjTuj/‖ρj‖‖uj‖ and uj = σn−1Zvj, and the convergence follows from (40) and
(41).

Since |τj| ≤ 1 and using (42), we have a.s. that for n > n(ω),

Xn(j) ≤ Yn(j) := 2c0‖ρj‖ → 2c0̺j.

The norm convergence (10) implies that
∑

j Yn(j) → 2c0
∑
̺j and so it follows from the

version of the dominated convergence theorem due to Pratt (1960) that

∑
‖Bj‖2 ≤

∑

j

Xn(j) =: Bn(ω)
a.s.→ σ

√
c
∑

̺j.

C term. Using (38),

Cn(ω) = ‖C‖2 = λmax(C)
a.s.→ σ2(c+ 2

√
c).
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Proof of Theorem 3 [Theorem 1 is a special case.] We apply the perturbation theorem
with A = R and E = A + B + C. The separation between the principal eigenvalue of R
and the remaining ones is

δn = ρ2
1(n)− ρ2

2(n)→ ρ2
1 − ρ2

2,

while from Proposition 1 we have the bound

‖E‖2 ≤ En(ω)
a.s.→ σ

√
c̺+ + σ2(c+ 2

√
c).

Consequently, if
4σ
√
c̺+ + σ2(c+ 2

√
c) ≤ ̺2

1 − ̺2
2,

then
lim sup

n→∞
dist(ρ̂1, ρ1) ≤ Ω(ρ, c;σ),

where
Ω(ρ, c;σ) = 4σ

√
c[̺+ + σ(

√
c+ 2)]/(̺2

1 − ̺2
2).

A.3 Lower Bounds: Proof of Theorem 2

We begin with a heuristic outline of the proof. We write S in the form D+B, introducing

D = (1 + vs)ρρ
T + σ2n−1ZZT ,

while, as before, B = ρuT + uρT and u = σn−1Zv.
A symmetry trick plays a major role: write S− = D − B and let ρ̂− be the principal

unit eigenvector for S−.
The argument makes precise the following chain of remarks, which are made plausible

by reference to Figure 8.

Dx − Bx

Dx

Bx

Bx

Sx = Dx + Bx = lam x

Figure 8: Needs caption, with x← ρ̂, lam← λ̂

(i) Bρ̂ is nearly orthogonal to Dρ̂+Bρ̂ = Sρ̂ = λ̂ρ̂.
(ii) the side length ‖Bρ̂‖ is bounded away from zero, when c > 0.
(iii) the angle between ρ̂ and S−ρ̂ is “large”, i.e. bounded away from zero.
(iv) the angle between ρ̂ and ρ̂− is “large” [this follows from Lemma 1 applied to

M = S−.]
(v) and finally, the angle between ρ̂ and ρ must be “large”, due to the equality in

distribution of ρ̂ and ρ̂−.
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Getting down to details, we will establish (i)-(iii) under the assumption that ρ̂ is close
to ρ. Specifically, we show that given δ > 0 small, there exists α(δ) = α(δ;σ, c) > 0 such
that w.p. → 1,

∠(ρ̂, ρ) ≤ δ ⇒ ∠(ρ̂, S−ρ̂) ≥ α(δ).

Let Nδ = {x ∈ Rp : ∠(x, ρ) ≤ δ} be the (two-sided) cone of vectors making angle at
most δ with x. We show that on Nδ, both

(ii’) ‖Bx‖ is bounded below (see (49)), and
(i’) Bx is nearly orthogonal to x (see (50).
For convenience in this proof, we may take ‖ρ‖ = 1. Write x ∈ Nδ1 in the form

x = (cos δ)ρ+ (sin δ)η, η ⊥ ρ, ‖η‖ = 1, 0 ≤ δ ≤ δ1. (47)

Since Bρ = (uT ρ)ρ+ u and Bη = (uT η)ρ, we find that

Bx = (cos δ)u + [(cos δ)(uT ρ) + (sin δ)(uT η)]ρ. (48)

Denote the second right side term by r: clearly ‖r‖ ≤ |uTρ|+ (sin δ)‖u‖, and so, uniformly
on Nδ,

‖Bx‖ ≥ (cos δ − sin δ)‖u‖ − |uT ρ|.
Since both ‖u‖ → σ

√
c and uTρ→ 0 a.s., we conclude that w.p. → 1,

inf
Nδ

‖Bx‖ ≥ 1
2σ
√
c cos δ. (49)

Turning to the angle between x and Bx, we find from (47) and (48) that

xTBx = 2(cos2 δ)(ρT u) + 2 cos δ sin δ(uT η),

and so, uniformly over Nδ,

|xTBx| ≤ 2 cos2 δ|ρTu|+ (sin 2δ)‖u‖.

Consequently, using ‖x‖ = 1 and (49), w.p. → 1, and for δ < π/4, say,

| cos ∠(Bx, x)| = |xTBx|
‖x‖‖Bx‖ ≤

2σ
√
c sin 2δ

1
2σ
√
c cos δ

≤ c2δ. (50)

Now return to Figure 8. As a prelude to step (iii), we establish a lower bound for
α = ∠(ρ̂,Dρ̂). Applying the sine rule (23) to ξ = Dρ̂ and η = λ̂ρ̂ = Dρ̂+Bρ̂, we obtain

sin ∠(Dρ̂, ρ̂) =
‖Bρ̂‖
‖Dρ̂‖ sin ∠(Bρ̂, ρ̂). (51)

On the assumption that ρ̂ ∈ Nδ, bound (50) yields

sin ∠(Bρ̂, ρ̂) ≥ sin(π/2− c3δ),

and (49) implies that
‖Bρ̂‖ ≥ 1

2σ
√
c cos δ.

On the other hand, since ‖ρ̂‖ = 1,

‖Dρ̂‖ ≤ ‖D‖ ≤ 1 + vs + σ2λmax(n−1ZZT )

≤ [1 + σ2(1 +
√
c)2](1 + o(1)),
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w.p. 1 for large n.
Combining the last three bounds into (51) shows that there exists a positive α(δ;σ, c)

such that if ρ̂ ∈ Nδ, then w.p. 1 for large n,

sinα ≥ sinα(δ;σ, c) > 0.

Returning to Figure 8, consider ∠(Dρ̂+ Bρ̂,Dρ̂ − Bρ̂) = α + γ. Since β ≥ π/2 − c3δ,
we clearly have α+ γ ≤ π − β ≤ π/2 + c3δ and hence

∠(Dρ̂+Bρ̂,Dρ̂−Bρ̂) = min{α + γ, π − α− γ}
≥ min{α, π/2 − c3δ}.

In particular, with δ ≤ δ0(σ, c),

∠(ρ̂, S−ρ̂) ≥ min{α(δ), π/2 − c3δ} = α(δ),

which is our step (iii). As mentioned earlier, Lemma 1 applied to M = S− entails that
∠(ρ̂, ρ̂−) ≥ (1/3)α(δ). For the rest of the proof, we write ρ̂+ for ρ̂. To summarize to this
point, we have shown that if ∠(ρ̂+, ρ) ≤ δ, then w.p. → 1,

∠(ρ̂+, ρ̂−) ≥ (1/3)α(δ). (52)

Note that S and S− have the same distribution: viewed as functions of random terms
Z and v:

S−(Z, v) = S+(Z,−v).
We call an event A symmetric if (Z, v) ∈ A iff (Z,−v) ∈ A. For such symmetric events

E[∠(ρ̂+, ρ),A] = E[∠(ρ̂−, ρ),A].

From this and the triangle inequality for angles

∠(ρ̂+, ρ) + ∠(ρ, ρ̂−) ≥ ∠(ρ̂+, ρ̂−),

it follows that
E[∠(ρ̂+, ρ),A] ≥ 1

2E[∠(ρ̂+, ρ̂−),A] (53)

Hence
E[∠(ρ̂+, ρ)] ≥ E[∠(ρ̂+, ρ),Ac] + 1

2E[∠(ρ̂+, ρ̂−),A].

By the symmetry of the distributions, conclusion (52) is also obtained w.p. → 1 if
∠(ρ̂−, ρ) ≤ δ. Consequently, letting A refer to the symmetric event Aδ = {∠(ρ̂+, ρ) ≤
δ} ∪ {∠(ρ̂−, ρ) ≤ δ}, we have

E[∠(ρ̂+, ρ)] ≥ δP (Ac
δ) + 1

2E[∠(ρ̂+, ρ̂−),Aδ]

≥ min{δ, α(δ)/6}(1 + o(1)).

This completes the proof of Theorem 2. The lower bound proof for Theorem 3 proceeds
similarly, but is omitted – for some extra detail, see Lu (2002).
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A.4 Proof of Theorem 4.

We may assume, without loss of generality, that σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
p.

False inclusion. For any fixed constant t,

σ̂2
i ≥ t for i = 1, . . . , k and σ̂2

l < t ⇒ σ̂2
l < σ̂2

(k).

This threshold device leads to bounds on error probabilities using only marginal distribu-
tions. For example, consider false inclusion of variable l:

P{σ̂2
l ≥ σ̂2

(k)} ≤
k∑

i=1

P{σ̂2
i < t}+ P{σ̂2

l ≥ t}.

Write M̄n for a χ2
(n)/n variate, and note from (15) that σ̂2

ν ∼ σ2
νM̄n. Set t = σ2

k(1− ǫn) for

a value of ǫn to be determined. Since σ2
i ≥ σ2

k and σ2
l ≤ σ2

k(1− αn), we arrive at

P{σ̂2
l ≥ σ̂2

(k)} ≤ kP{M̄n < 1− ǫn}+ P
{
M̄n ≥

1− ǫn
1− αn

}

≤ k exp
{
−nǫ

2
n

4

}
+ exp

{
−3n

16

(αn − ǫn
1− αn

)2}

using large deviation bound (29). With the choice ǫn =
√

3αn/(2 +
√

3), both exponents
are bounded above by −b(γ) log n, and so P{FI} ≤ p(k + 1)n−b(γ).

False exclusion. The argument is similar, starting with the remark that for any fixed t,

σ̂2
i ≤ t for i ≥ k, i 6= l and σ̂2

l ≥ t ⇒ σ̂2
l ≥ σ̂2

(k).

Consequently, if we set t = σ2
k(1 + ǫn) and use σ2

l ≥ σ2
k(1 + αn), we get

P{σ̂2
l < σ̂2

(k)} ≤
∑

i≥k

P{σ̂2
i > t}+ P{σ̂2

l < t}

≤ (p− 1)P{M̄n > 1 + ǫn}+ P
{
M̄n >

1 + ǫn
1 + αn

}

≤ (p− 1) exp
{
−3nǫ2n

16

}
+ exp

{
−n

4

(αn − ǫn
1 + αn

)2}
,

this time using (30).
The bound P{FE} ≤ pkn−b(γ)+ke−b(γ)(1−2αn) log n follows on setting ǫn = 2αn/(2+

√
3)

and noting that (1 + αn)−2 ≥ 1− 2αn .
For numerical bounds, we may collect the preceding bounds in the form

P (FE∪FI) ≤ [pk+(p−1)(k−1)]e−b(γ) log n+pe−b(γ) log n/(1−αn)2 +(k−1)e−b(γ) log n/(1+αn)2 .
(54)

A.5 Proof of Theorem 5

Outline. Recall that γn = γ(n−1 log n)1/2, that the selected subset of variables Î is defined
by

Î = {ν : σ̂2
ν ≥ σ2(1 + γn)}
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and that the estimated principal eigenvector based on Î is written ρ̂I . We set

ρI = (ρν : ν ∈ Î),

and will use the triangle inequality d(ρ̂I , ρ) ≤ d(ρ̂I , ρI) + d(ρI , ρ) to show that ρ̂I → ρ.
There are three main steps.

(i) Construct deterministic sets of indices

I±n = {ν : ρ2
ν ≥ σ2a∓γn}

which bracket Î almost surely as n→∞:

I−n ⊂ Î ⊂ I+
n w.p. 1. (55)

(ii) the uniform sparsity, combined with Îc ⊂ I−c
n , is used to show that

d(ρI , ρ)
a.s.→ 0.

(iii) the containment Î ⊂ I+
n , combined with |I+

n | = o(n) shows via methods similar to
Theorem 4 that

d(ρ̂I , ρI)
a.s.→ 0.

Details. Step (i). We first obtain a bound on the cardinality of I±n using the uniform
sparsity conditions (17). Since |ρ|(ν) ≤ Cν−1/q

|I±n | ≤ |{ν : C2ν−2/q ≥ σ2a∓γn}|,
≤ Cq/(σ2a∓γn)q/2 = o(n1/2).

Turning to the bracketing relations (55), we first remark that σ̂2
ν

D
= σ2

νχ
2
(n)/n, and when

ν ∈ I±n ,
σ2

ν = σ2(1 + ρ2
ν/σ

2) ≥ σ2(1 + a∓γn).

Using the definitions of Î and writing M̄n for a random variable with the distribution of
χ2

(n)/n, we have

P−
n = P (I−n * Î) ≤

∑

ν∈I−n

P{σ̂2
ν < σ2(1 + γn)}

≤ |I−n |P{M̄n < (1 + γn)/(1 + a+γn)}.

We apply (29) with ǫn = (a+−1)γn/(1+a+γn) and for n large and γ′ slightly smaller than
γ2,

nǫ2n > (a+ − 1)2γ′ log n,

so that
P−

n ≤ cn1/2 exp{−nǫ2n/4} ≤ cn1/2−γ
′′

+

with γ
′′

+ = (a+ − 1)2γ′/4. If
√
γ ≥ 12, then γ

′′

+ ≥ 3 for suitable a+ > 2.
The argument for the other inclusion is analogous:

P+
n = P (Î * I+

n ) ≤
∑

ν /∈I+
n

P{σ̂2
ν ≥ σ2(1 + γn)}

≤ pP{M̄n ≥ (1 + γn)/(1 + a−γn)}

≤ pn−γ
′′

− ,
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with γ
′′

− = 3(1 − a−)2γ′/16 so long as n is large enough. If
√
γ ≥ 12, then γ

′′

− > 2 for

suitable a− < 1−
√

8/9.
By a Borel-Cantelli argument, (55) follows from the bounds on P−

n and P+
n .

Step (ii). For n > n(ω) we have I−n ⊂ Î and so

‖ρI − ρ‖2 =
∑

ν /∈Î

ρ2
ν ≤

∑

I−c
n

ρ2
ν .

When ν ∈ I−c
n , we have by definition

ρ2
ν(n) < σ2a+γ

√
n−1 log n := ǫ2n,

say, while the uniform sparsity condition entails

|ρ|2(ν) ≤ C2ν−2/q.

Putting these together, and defining s∗ = s∗(n) as the solution of the equation Cs−1/q =
ǫn, we obtain

∑

I−c
n

ρ2
ν ≤

∑

ν

ǫ2n ∧ ρ2
ν

=
∑

ν

ǫ2n ∧ |ρ|2(ν)

≤
∑

ν

ǫ2n ∧ C2ν−2/q

≤
∫ ∞

0
ǫ2n ∧ C2s−2/qds

= s∗ǫ
2
n + q(2− q)−1C2s

1−2/q
∗

= [2/(2 − q)]Cqǫ2−q
n → 0

as n→∞.

Step (iii). We adopt the abbreviations

uI = (uν : ν ∈ Î),
ZI = (zνi : ν ∈ Î , i = 1, . . . , n),

SI = (Sνν′ : ν, ν ′ ∈ Î).

As in the proof of Theorem 3, we consider S∗
I = SI − σ2Ik̂ = ρIρ

T
I + EI and note that the

perturbation term has the decomposition

EI = vsρIρ
T
I + ρIu

T
I + uIρ

T
I + σ2(n−1ZIZ

T
I − I),

so that
‖EI‖2 ≤ vs‖ρI‖22 + 2‖ρI‖2‖uI‖2 + σ2[λmax(n−1ZIZ

T
I )− 1].

Consider the first term on the right side. Since ‖ρI − ρ‖2 a.s.→ 0 from step (ii), it follows
that ‖ρI‖2 a.s.→ ‖ρ‖. As before vs

a.s.→ 0, and so the first term is asymptotically negligible.
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Let ZI+ = (zνi : ν ∈ I+
n , i = 1, . . . , n) and uI+ = (uν : ν ∈ I+

n ). On the event
Ωn = {Î ⊂ I+

n }, we have
‖uI‖ ≤ ‖uI+‖

and setting k+ = |I+
n |, by the same arguments as led to (40), we have

‖uI+‖2 D
= σ2(k+/n)(χ2

(n)/n)(χ2
(k+)/k+)

a.s.→ 0,

since k+ = o(n) from step (i).
Finally, since on the event Ωn, the matrix ZI+ contains ZI , along with some additional

rows, it follows that

λmax(n−1ZIZ
T
I − I) ≤ λmax(n−1ZI+ZT

I+ − I) a.s.→ 0

by (38), again since k+ = o(n). Combining the previous bounds, we conclude that ‖EI‖2 →
0.

The separation δn = ‖ρI‖22 → ‖ρ‖22 > 0 and so by the perturbation bound

dist(ρ̂I , ρI) ≤ (4/δn)‖EI‖2 a.s.→ 0.
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