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Abstract

Convergence of the ensemble Kalman filter in the limit for large ensembles
to the Kalman filter is proved. In each step of the filter, convergence of
the ensemble sample covariance follows from a weak law of large numbers for
exchangeable random variables, Slutsky’s theorem gives weak convergence of
ensemble members, and Lp bounds on the ensemble then give Lp convergence.
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1. Introduction

Data assimilation, a topic of importance in many disciplines, uses statistical
estimation to update the state of a running model based on new data. One
of the most succesful recent data assimilation methods is the ensemble Kalman
filter (EnKF). EnKF is a Monte-Carlo approximation of the Kalman filter (KF),
with the covariance in the KF replaced by the sample covariance computed from
an ensemble of realizations. Because the EnKF does not need to maintain the
state covariance matrix, it is suitable for high-dimensional problems.

A large body of literature on the EnKF and variants exists, but rigorous
probabilistic analysis is lacking. It is commonly assumed that the ensemble
is a sample (that is, i.i.d.) and it is normally distributed. Although the
resulting analyses played an important role in the development of EnKF, both
assumptions are false. The ensemble covariance is computed from all ensemble
members together, thus introducing dependence, and the EnKF formula is
a nonlinear function of the ensemble, thus destroying the normality of the
ensemble distribution.

The present analysis does not employ these two assumptions. The ensemble
members are shown to be exchangeable random variables bounded in Lp, which
provides properties that replace independence and normality. An argument
using uniform integrability and Slutsky’s theorem is then possible. The
result is valid for the EnKF version of Burgers, van Leeuven, and Evensen
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(Burgers et al., 1998) in the case of constant state space dimension, a linear
model, normal data likelihood and initial state distributions, and ensemble size
going to infinity. This EnKF version involves randomization of data. Efficient
variants of EnKF without randomization exist (Anderson, 1999; Tippett et al.,
2003), but they are not the subject of this paper.

The analysis in Burgers et al. (1998) consists of the comparison of the
covariance of the analysis ensemble and the covariance of the filtering
distribution under the assumption that the ensemble covariance converges in the
limit for large ensembles. Furrer and Bengtsson (2007) note that if the ensemble
sample covariance is a consistent estimator, then Slutsky’s theorem yields the
convergence in probability of the gain matrix. When this article was being
completed, we became aware of a presentation by Le Gland which announces
related results but does not seem to take advantage of exchangeability.

2. Preliminaries

The Euclidean norm of column vectors in R
m, m ≥ 1, and the induced

matrix norm are denoted by ‖ · ‖, and T is the transpose. The (stochastic) Lp

norm of random element is ‖X‖p = (E(‖X‖p))1/p. The j-th entry of a vector
X is [X ]j and the i, j entry of a matrix Y ∈ R

m×n is [Y ]ij .Weak convergence
(convergence in distribution) is denoted by ⇒; weak convergence to a constant
is the same as convergence in probability. All convergence is for N → ∞. We
denote by XN = [XNi]

N
i=1 = [XN1, . . . , XNN ], with various superscripts and

for various m ≥ 1, an ensemble of N random elements, called members, with
values in R

m. Thus, an ensemble is a random m×N matrix with the ensemble
members as columns. Given two ensembles XN and YN , the stacked ensemble
[XN ; YN ] is defined as the block random matrix

[XN ; YN ] =

[

XN

YN

]

=

[[

XN1

YN1

]

, . . . ,

[

XNN

YNN

]]

= [XNi; YNi]
N
i=1.

If all the members of XN are identically distributed, we write E(XN1) and
Cov(XN1) for their common mean vector and covariance matrix. The ensemble
sample mean and ensemble sample covariance matrix are the random elements

XN = 1
N

∑N
i=1 XNi and C(XN ) = XNXT

N − XNX
T

N .
We will work with ensembles such that the joint distribution of the ensemble

XN is invariant under a permutation of the ensemble members. Such ensemble
is called exchangeable. An ensemble XN is exchangeable if and only if
Pr(XN ∈ B) = Pr(XNΠ ∈ B) for every Borel set B ⊂ R

m×N and every
permutation matrix Π ∈ R

N×N . The covariance between any two members
of an exchangeable ensemble is the same, Cov(XNi, XNj) = Cov(XN1, XN2),
i 6= j.

Lemma 1. Suppose XN and DN are exchangeable, the random elements

XN and DN are independent, and YNi = F (XN , XNi, DNi), i = 1, . . . , N,

where F is measurable and permutation invariant in the first argument, i.e.
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F (XNΠ, XNi, DNi) = F (XN , XNi, DNi) for any permutation matrix Π. Then

YN is exchangeable.

Proof. Write YN = F(XN , DN ), where

F(XN , DN) = [F (XN , XN1, DN1), . . . , F
(k)(XN , XNN , DNN )].

Let Π be a permutation matrix. Then YNΠ = F(XNΠ, DNΠ). Because XN

is exchangeable, the distributions of XN and XNΠ are identical. Similarly,
the distributions of DN and DNΠ are identical. Since XN and DN

are independent, the joint distributions of (XN , DN) and (XNΠ, DNΠ) are
identical. Thus, for any Borel set B ⊂ R

n×N , Pr(YNΠ ∈ B) = E(1B(YNΠ)) =
E(1B(F(XNΠ, DNΠ))) = E(1B(F(XN , DN ))) = Pr(XN ∈ B).

We now prove a weak law of large numbers for exchangeable ensembles.

Lemma 2. If for all N , XN , UN are ensembles of R
1 valued random variables,

[XN ; UN ] is exchangeable, Cov(UNi, UNj) = 0 for all i 6= j, UN1 ∈ L2 is the

same for all N , and XN1 → UN1 in L2, then XN ⇒ E(UN1).

Proof. Since XN is exchangeable, Cov(XNi, XNj) = Cov(XN1, XN2) for all
i, j = 1, . . . , N , i 6= j. Since XN − UN is exchangeable, also XN2 − UN2 → 0
in L2. Then, using the identity Cov(X, Y ) = E(XY ) − E(X)E(Y ) and
Cauchy inequality for the L2 inner product E(XY ), we have |Cov(XN1, XN2)−
Cov(UN1, UN2)| ≤ 2‖XN1‖2‖XN2 − UN2‖2 + 2‖UN2‖2‖XN1 − UN1‖2, so
Cov(XN1, XN2) ⇒ 0. By the same argument, Var(XN1) ⇒ Var(UN1) < +∞.
Now E(XN ) = E(XN1) ⇒ E(UN1) from XN1 − UN1 → 0 in L2, and

Var(XN ) = 1
N2

∑N
i=1 Var(XNi) +

∑N
i,j=1,j 6=j Cov(XNi, XNj) = 1

N Var(XN1) +

(1 − 1
N )Cov(XN1, XN2) → 0, and the conclusion follows from Chebyshev

inequality.

The convergence of the ensemble sample covariance for nearly i.i.d.
exchangeable ensembles follows.

Lemma 3. If for all N , XN , UN are ensembles of R
n valued random elements,

[XN ; UN ] is exchangeable, UN are i.i.d., UN1 ∈ L4 is the same for all N , and

XN1 → UN1 in L4, then XN ⇒ E(UN1) and C(XN ) ⇒ Cov(UN1).

Proof. From Lemma 2, it follows that [XN ]j ⇒ [E(UN1)]j for each entry
j = 1, . . . , n, so XN ⇒ E(UN1). Let YNi = XNiX

T
Ni, so that C(XN )

= Y N −XNX
T

N . Each entry of [YNi]jℓ = [XNi]j [XNi]ℓ satisfies the assumptions
of Lemma 2, so [YNi]jℓ ⇒ E([UN1U

T
N1]jℓ). Convergence of the entries

[XNX
T

N ]jℓ = [XN ]j [XN ]ℓ to E([UN1]jℓ)E([UT
N1]jℓ) follows from the already

proved convergence of XN and Slutsky’s theorem (Chow and Teicher, 1997, p.
254). Applying Slutsky’s theorem again, we get C(XN ) ⇒ Cov(UN1).
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3. Formulation of the EnKF

Consider an initial state given as the random variable U (0). In step k,
the state U (k−1) is advanced in time by applying the model M (k) to obtain
U (k),f = M (k)(U (k−1)), called the prior or the forecast, with probability density
function (pdf) pU(k),f . The data in step k are given as measurements d(k) with
a known error distribution, and expressed as the data likelihood p(d(k)|u). The
new state U (k) conditional on the data, called the posterior or the analysis, then
has the density pU(k) given by the Bayes theorem, pU(k)(u) ∝ p(d(k)|u)pU(k),f (u),
where ∝ means proportional. This is the discrete time filtering problem. The
distribution of U (k) is called the filtering distribution.

Assume U (0) ∼ N(u(0), Q(0)), the model is linear, M (k) : u 7→ A(k)u + b(k),
and the data likelihood is normal, d(k) ∼ N(H(k)u(k),f , R(k)) given u(k),f ,
where H(k) is the given observation matrix and R(k) is the given data error
covariance, and the data error is independent of the model state. Then the
filtering distribution is normal, U (k) ∼ N(u(k), Q(k)), and it satisfies the KF
recursions (Anderson and Moore, 1979)

u(k),f = E(U (k),f ) = A(k)u(k) + b(k), Q(k),f = Cov U (k),f = A(k)TQ(k)A(k),

u(k) = u(k),f + L(k)(d(k) − H(k)u(k),f ), Q(k) = (I − L(k)H(k))Q(k),f ,

where the Kalman gain matrix L(k) is given by

L(k) = Q(k),fH(k)T(H(k)Q(k),fH(k)T + R(k))−1. (1)

The EnKF is essentially based on the following observation. Let U
(0)
i ∼

N(u(0), Q(0)) and D
(k)
i ∼ N(d(k), R(k)) be independent for all k, i ≥ 1. Given

N , choose the initial ensemble and the perturbed data as the the first N terms of

the respective sequence, U
(0)
Ni = U

(0)
i , i = 1, . . . , N , D

(k)
Ni = D

(k)
i , i = 1, . . . , N ,

k = 1, 2, . . . Define the ensembles U
(k)
N by applying the KF formulas to each

ensemble member separately using the corresponding member of perturbed data,

U
(k),f
Ni = M (k)(U

(k−1)
Ni ), i = 1, . . . , N, (2)

U
(k)
N = U

(k),f
N + L(k)(D

(k)
N − H(k)U

(k),f
N ). (3)

The next lemma shows that U
(k)
N is a sample from the filtering distribution.

Lemma 4. For all k = 1, 2, . . ., Uk
N is i.i.d. and U

(k)
N1 ∼ N(u(k), Q(k)).

Proof. The statement is true for k = 0 by definition of U
(0)
N . Assume that it is

true for k−1 in place of k. The ensemble U
(k)
N is i.i.d. and normally distributed

because it is an image under a linear map of the normally distributed i.i.d.

ensemble with members [U
(k−1)
Ni , D

(k)
Ni ], i = 1, . . . , N . Further, D

(k)
N and U

(k),f
Ni

are independent, so from Burgers et al. (1998, eq. (15) and (16)), U
(k)
N1 has the

correct mean and covariance, which determines the normal distribution of U
(k)
N1

uniquely.
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The EnKF is now obtained by replacing the exact covariance L(k) by the

ensemble sample covariance. The ensembles produced by EnKF are X
(0)
N = U

(0)
N

and

X
(k),f
Ni = M (k)(X

(k−1)
Ni ), i = 1, . . . , N. (4)

X
(k)
N = X

(k),f
N + K

(k)
N (D

(k)
N − H(k)X

(k),f
N ), (5)

where K
(k)
N is the ensemble sample gain matrix,

K
(k)
N = Q

(k)
N H(k)T (H(k)Q

(k)
N H(k)T + R(k))−1, Q

(k)
N = C(X

(k),f
N ). (6)

4. Convergence analysis

Lemma 5. There exist constants c(k, p) for all k and all p < ∞ such that

‖X
(k)
N1‖p ≤ c(k, p) and ‖K

(k)
N ‖p ≤ c(k, p) for all N .

Proof. For k = 0, each X
(k)
Ni is normal. Assume ‖X

(k−1)
N1 ‖p ≤ c(k − 1, p) for

all N . Then

‖X
(k),f
N1 ‖p = ‖A(k)X

(k−1)
N1 + b(k)‖p ≤ ‖A(k)‖‖X

(k−1)
N1 ‖p + ‖b(k)‖ ≤ const(k, p).

By Jensen’s inequality, for any XN , ‖ 1
N

∑N
i=1 XNi

‖p ≤ 1
N

∑N
i=1 ‖XNi

‖p. This

gives ‖X
(k),f

N ‖p ≤ const(k, p) and ‖Q
(k)
N ‖p ≤ ‖X

(k),f
N1 X

(k),fT
N1 ‖p + ‖X

(k),f
N1 ‖2

p ≤

‖X
(k),f
N1 ‖2

2p + ‖X
(k),f
N1 ‖2

p ≤ const(k, p), since from Cauchy inequality,

‖WZ‖p ≤ E (‖W‖
p
‖Z‖

p
)

1
p ≤ E(‖W‖

2p
)

1
2p E(‖Z‖

2p
)

1
2p = ‖W‖2p ‖Z‖2p , (7)

for any compatible random matrices W and Z.

Since H(k)Q
(k)
N H(k)T is symmetric positive semidefinite and R(k) is

symmetric positive definite, it holds that‖(H(k)Q
(k)
N H(k)T + R(k))−1‖ ≤

‖(R(k))−1‖ ≤ const(k), which, together with the bound on ‖Q
(k)
N ‖p, gives

‖K
(k)
N ‖p ≤ ‖Q

(k)
N ‖p const(k) ≤ const(k, p). Finally, we obtain the desired bound

‖X
(k)
N1‖p ≤ ‖X

(k),f
N1 ‖p + ‖K

(k)
N D

(k)
N1‖p + ‖K

(k)
N H(k)X

(k),f
N1 ‖p

≤ const(k, p)(‖X
(k),f
N1 ‖p + ‖K

(k)
N ‖p + ‖K

(k)
N ‖2p‖X

(k),f
N1 ‖2p) ≤ c(k, p),

using again (7).

Theorem 1. For all k, [XN ; UN ] is exchangeable and X
(k)
N1 → U

(k)
N1 in Lp for

all p < +∞.

Proof. The ensembles U
(k)
N are obtained by linear mapping of the i.i.d.

initial ensemble U
(0)
N , so they are i.i.d. Since X

(0)
Ni = U

(0)
Ni , [X

(0)
N ; U

(0)
N ] is

exchangeable, and XN1 = UN1. Suppose the statement holds for k − 1 in
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place of k. The ensemble members are given by a recursion of the form

[X
(k)
Ni ; U

(k)
Ni ] = F (k)(C(X

(k−1)
N ), [X

(k−1)
Ni ; U

(k−1)
Ni ], D

(k)
Ni ). The ensemble sample

covariance matrix C is permutation invariant, so [X
(k)
N ; U

(k)
N ] is exchangeable by

Lemma 1. Subtracting (5) and (3) gives X
(k),f
N −U

(k),f
N = A(k)(X

(k−1)
N −U

(k−1)
N ),

and X
(k),f
N and U

(k),f
N satisfy the assumption of Lemma 3. Thus, C(X

(k),f
N ) ⇒

Cov U
(k),f
N1 , K

(k)
N ⇒ L(k) by the mapping theorem (Billingsley, 1995, p. 334),

and X
(k)
N1 ⇒ U

(k)
N1 by Slutsky’s theorem. Since for all p < +∞, the sequence

{X
(k)
N1}

∞
N=1 is bounded in Lp by Lemma 5 and U

(k)
N1 ∈ Lp, it follows that

X
(k)
N1 → U

(k)
N1 in Lp for all p < +∞ from uniform integrability (Billingsley,

1995, p. 338).

Using Lemma 3 and uniform integrability again, it follows that the ensemble
mean and covariance are consistent estimators of the filtering mean and
covariance.

Corollary 1. X
(k)

N → u(k) and C(X
(k)
N ) → Q(k) in Lp for all p < +∞.
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