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Abstract

In this paper, we consider formal series associated with events, pro-
files derived from events, and statistical models that make predictions
about events. We prove theorems about realizations for these formal
series using the language and tools of Hopf algebras.
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1 Introduction

Many data mining problems can be formulated in terms of events, profiles,
models and predictions. As an example, consider the problem of predict-
ing credit card fraud. In this application, there is a sequence of credit card
transactions (called the learning set), each of which is associated with a credit
card account and some of which have been labeled as fraudulent. The goal
is to use the learning set to build a statistical model that predicts the likeli-
hood that a credit card transaction is associated with a fraudulent account.
Information about each credit card transaction is aggregated to produce a
statistical profile (or state vector) about each credit card account. The profile
consists of features. Applying the model to the profile produces a prediction
about whether the account is likely to be fraudulent. Note that we can think
of this example as a map from inputs (events) to outputs (predictions about
whether the associated account is fraudulent). Given such an input-output
map, we can ask whether there is a “realization” in which there is a state
space of profiles (corresponding to accounts) in which each event updates the
corresponding profile. We will see how to make this precise below.

Usually several different fraud models are developed and compared to one
and another. Each fraud model is associated with a misclassification rate,
which is the percent of fraudulent accounts that remain undetected. For
many data mining applications, especially large-scale applications, we do not
have a single learning set, but rather a collection of learning sets.

In this paper, we abstract this problem and use the language and tools of
Hopf algebras to study it. To continue the example above, we abstract credit
card transactions as events; state information about credit card accounts
as profiles; credit card account numbers as profile IDs or PIDs; statistical
models predicting the likelihood that a credit card account is fraudulent as
models; a sequence of credit card transactions each of which is labeled either
valid or fraudulent as learning sets of labeled events; and the accuracy rate
of the credit card fraud model as the classification rate of the model.

We are interested in the following set up. Consider a collection C, possibly
infinite, of labeled learning sets w of events. For a labeled learning set w, we
can build a model. Each model has a classification rate pw. This information
can be summarized in a formal series

p =
∑

C

pww
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In this paper, we prove some theorems about these formal series using the
language of Hopf algebras.

We now give the precise definitions we need. A labeled event is an event,
together with a Profile Identifier (PID) and a label. Fix a set D of labeled
events. We define a labeled learning set of events to be an element of W(D),
the set of words d1 · · · dk of elements di ∈ D. If k is a field, then H = kW(D)
is a k-algebra with basis W(D). In this paper we study formal series of the
form

p =
∑

w∈W(D)

pww.

By a formal series, we mean a map

H −→ k,

associating to each element w ∈ W(D) the series coefficient pw. The coef-
ficient pw is the classification (or misclassification) rate for the learning set
of the events in w. Formal series occur in the formal theory of languages,
automata theory, control theory, and a variety of other areas.

There is a more concrete realization of a model that we now describe.
This requires a space X whose points x ∈ X we interpret as profiles or
states, which abstract the features used in a model. We can now define a
model as a function from a space X of profiles that assigns a label (in k) to
each element x ∈ X:

f : X −→ k.

Notice that given an initial profile x0 ∈ X associated with a PID, a sequence
of events associated with a single PID will sweep out an orbit in X since
each event will update the current profile in X associated with the PID. In
the paper, we usually call the space X the state space and the initial profile
the initial state.

Fix a formal series p. We investigate a standard question: given a formal
series p built from the events D, is there a state space X, a (classification)
model

f : X −→ k,

and a set of initial states that yield p. This is called a realization theorem.
The state space captures the “essential” information in the data which is
implicit in the series p. The formal definition is given below.

Realization theorems use a finiteness condition to imply the infinite object
can be represented by a finite state space. One of the most familiar realization
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theorems is the Myhill–Nerode theorem. In this case, the infinite object
is a formal series of words forming a language; the finiteness condition is
the finiteness of a right invariant equivalence relation, and the state space
is a finite automaton. In the case of data mining, the infinite object is a
formal series of learning sets comprising a series of experiments, the finiteness
condition is described by the finite dimensionality of a span of vectors, and
the state space is R

n.
The Myhill–Nerode theorem and more generally languages, formal series,

automata, and finiteness conditions play a fundamental role in computer
science. Our goal is to introduce analogous structures into data mining.

We now briefly recall the Myhill–Nerode theorem following [4, page 65].
Let the set D be an alphabet, W(D) be the set of words in D, and L ⊂ W(D)
be a language. A language L defines an equivalence relation ∼ as follows: for
u, v ∈ W(D), u ∼ v if and only if for all w ∈ W(D) either both or neither of
uw and vw are in L. An equivalence relation ∼ is called right invariant with
respect to concatenation in case u ∼ v implies uw ∼ vw for all w ∈ W(D).

Theorem 1.1 (Myhill–Nerode) The following are equivalent:

1. L is the union of a finite number of equivalence classes generated by a

right invariant equivalence relation.

2. The language L ⊂ W(D) is accepted by a finite automaton.

We point out that in this case a language L ⊂ W(D) naturally defines a
formal series. Fix a field k and the k-algebra H = kW(D). Given a language
L, define the formal series p as follows:

p(w) =

{
1 if w ∈ L
0 otherwise

.

Section 2 contains preliminary material. Section 3 constructs a finite state
space X for the simple case of a formal series without profile identifiers or
labels. Section 4 proves a theorem about parametrized classifiers and near
to best realizations. Section 5 contains our main realization theorem.

One of the goals of this paper is to provide an algebraic foundation for
some of the formal aspects of data mining. Other (non-algebraic) approaches
can be found in [6], [7] and [1].

A short annoucement of the some of the results in this paper (without
proofs) appeared in [3].
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2 Preliminaries

Let D denote an event space. More precisely an element of D is a triple
whose first element is a Profile IDentifier (PID) chosen from a finite set I,
whose second element is a label chosen from a finite set of labels L, and
whose third element is an element of S, a set of events associated with PIDs.
In short, D = I×L×S, where I is the set of PIDs and L is the set of labels.

We use heavily the facts that I and L are finite sets.
We assume that S is a semigroup with unit 1 generated by S0 ⊆ S. For

example, S0 might be a set of transactions and S might be sequences of
transactions. Multiplication in S might be concatenation, or some operation
related to the structure of the data represented by S.

A labeled learning set is an element of W(D), the set of words w = d1 · · · dk

of events in D.
A labeled learning sequence is a sequence {w1, w2, . . .} of labeled learning

sets; a corresponding formal labeled learning series is a formal series
∑

w

pww.

Let H = kW(D) denote the vector space with basis W(D), and kS denote
the vector space with basis S. Then H is an algebra whose multiplication is
induced by the semigroup structure of W(D), which is simply concatenation,
and U = kS is an algebra whose structure is induced by the semigroup
structure of S.

Let H denote the space of formal labeled learning series. For (i, ℓ) ∈
I × L define the map π(i,ℓ) : H −→ U∗ as follows: first, define π(i,ℓ)(p)(s) =
p((i, ℓ, s)) for p ∈ D and s ∈ S; then, extend π(i,ℓ) to W(D) multiplicatively;

We have that U = kS is a bialgebra, with coproduct given by ∆(s) =
1 ⊗ s + s ⊗ 1 for s ∈ S0, and with augmentation ǫ defined by ǫ(1) = 1,
ǫ(s) = 0 for all non-identity elements s ∈ S. We will view S as acting
on a state space. Since U is primitively generated, U ∼= U(P (U)) (recall
that P (U) = { x ∈ U | ∆(x) = 1 ⊗ x + x ⊗ 1 } is a Lie algebra, and that
U(L) is the universal enveloping algebra of the Lie algebra L [5]). We put a
bialgebra structure on H by letting ∆((i, ℓ, s)) =

∑
(s)(i, ℓ, s(1)) ⊗ (i, ℓ, s(2))

where ∆(s) =
∑

(s) s(1) ⊗ s(2), and ǫ((i, ℓ, s)) = ǫ(s), for i ∈ I, ℓ ∈ L, s ∈ S,

and extending multiplicatively to W(D)
A simple formal learning series is an element p ∈ U∗. We can think of a

simple learning series p as an infinite series
∑

s∈S css. Essentially, a simple
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formal learning series is a formal labeled learning series, but without the
labels and PIDs.

3 Construction of the state space

We are concerned whether p ∈ U∗, or some finite set {pα} ⊂ U∗, arises from
a finite dimensional state space X. The reason we work with a finite set of
elements of U∗ rather than with a single one is that this allows us to deal
with individual profiles that get aggregated into the full dataset.

Since U is primitively generated, we know that U ∼= U(P (U)).

Remark 3.1 If H is any bialgebra, we have a left H-module action of H on
H∗ defined by h⇀p(k) = p(kh) for p ∈ H∗, h, k ∈ H , and a right H-module
action of H on H∗ defined by p ↼ h(k) = p(hk) for p ∈ H∗, h, k ∈ H .

The following definition is from [2].

Definition 3.2 We say that the simple formal learning series p ∈ U∗ has

finite Lie rank if dim P (U) ⇀ p is finite.

Let R be a commutative algebra with augmentation ǫ, and let f ∈ R. We

say that p ∈ U∗ is differentially produced by the pair (R, f) if

1. there is right U-module algebra structure · on R;

2. p(u) = ǫ(f · u) for u ∈ U .

A basic theorem on the existence of a state space is the following, which
is a generalization of Theorem 1.1 in [2]. In this theorem, the state space is
a vector space with basis {x1, . . . , xn}.

Theorem 3.3 Let p1, . . . , pr ∈ U∗. Then the following are equivalent:

1. pk has finite Lie rank for k = 1, . . . , r;

2. there is an augmented algebra R for which dim (Ker ǫ)/(Ker ǫ)2 is finite,

and for all k, there is fk ∈ R such that pk is differentially produced by

the pair (R, fk);

3. there is a subalgebra R of U∗ which is isomorphic to k[[x1, . . . , xn]], the

algebra of formal power series in n variables, and for all k, there is

fk ∈ R such that pk is differentially produced by the pair (R, fk).
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Proof: We first prove that part (1) of Theorem 3.3 implies part (3). Given
p1, . . . , pr ∈ U∗, we define three basic objects:

L = { u ∈ P (U) | u ⇀ pk = 0, for all k, }

J = UL

J⊥ = { q ∈ U∗ | q(j) = 0 for all j ∈ J}.

Since L ⊆ P (U), it follows that J is a coideal, that is, that ∆(J) ⊆ J ⊗ U +
U ⊗ J . Therefore J⊥ ∼= (U/J)∗ is a subalgebra of U∗. We will show that J⊥

is isomorphic to a formal power series algebra.

Lemma 3.4 If dim
∑

k P (U) ⇀ pk = n, then J⊥ is a subalgebra of U∗ satis-

fying

J⊥ ∼= k[[x1, . . . , xn]].

Proof: Note that L is the kernel of the map

P (U) −→
⊕

k

P (U) ⇀ pk, u 7→
⊕

k

u ⇀ pk.

and L has finite codimension n. Choose a basis {e1, e2, . . .} of P (U) such
that {en+1, en+2, . . .} is a basis of L. Note that if ēi is the image of ei under
the quotient map P (U) → P (U)/L, then {ē1, . . . , ēn} is a basis for P (U)/L.

By the Poincaré-Birkhoff-Witt Theorem, U has a basis of the form

{ e
αi1

i1
· · · e

αik

ik
| i1 < · · · < ik and 0 < αir }.

Since the basis {ei} of P (U) has been chosen so that ei ∈ L for i > n, it
follows that the monomials { eα1

1 · · · eαn

n | αk ≥ 0 } are a basis for a vector
space complement to J . It follows that

{ ēα1

1 · · · ēαn

n | α1, . . . , αn ≥ 0 }

is a basis for U/J . It now follows that the elements

xα =
xα

α!
=

xα1

1 · · ·xαn

n

α1! · · ·αn!

are in J⊥ ⊆ U∗, where xi ∈ U∗ is defined by

xi(e
αi1

i1
· · · e

αik

ik
) =

{
1 if e

αi1

i1
· · · e

αi
k

ik
= ei,

0 otherwise.
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The subalgebra J⊥ consists precisely of the closure in U∗ of the span of these
elements. In other words,

J⊥ ∼= k[[x1, . . . , xn]],

completing the proof.

We will use the following facts from the proof of Lemma 3.4: suppose
that {e1, . . . , en, . . .} is a basis for P (U) such that {en+1, . . . } is a basis for
L. Let {eα} be the corresponding Poincaré-Birkhoff-Witt basis. Denote J⊥

by R. Then R ∼= k[[x1, . . . , xn]], and xα1

1 · · ·xαn

n /α1! · · ·αn! is the element of
the dual (topological) basis of U∗ to the Poincaré-Birkhoff-Witt basis {eα}
of U , corresponding to the basis element eα1

1 · · · eαn

n .
We now collect some properties of the ring of formal power series R which

will be necessary for the proof of Theorem 3.3.

Lemma 3.5 Assume p ∈ U∗ has finite Lie rank, and let R ⊆ U∗, eα ∈ U ,

and xα ∈ R be as in Lemma 3.4. Define

f =
∑

α=(α1,...,αn)

cαxα ∈ R,

where cα =
p(eα)
α!

. Then

1. U measures R to itself via ↼;

2. p(u) = ǫ(f ↼ u) for all u ∈ U .

Proof: We begin with the proof of part (1). Since U measures U∗ to itself
and R ⊆ U∗, we need show only that R ↼ U ⊆ R. Take r ∈ R, u ∈ U
and j ∈ J . We have (r ↼ u)(j) = r(uj). Since J is a left ideal, uj ∈ J , so
r(uj) = 0, so r ↼ u ∈ J⊥ = R. This proves part (1).

We now prove part (2). Let eα = e
αi1

i1
· · · e

αik

ik
be a Poincaré-Birkhoff-

Witt basis element of U . Since eα ∈ J unless {i1, . . . , ik} ⊆ {1, . . . , n},
p(eα) = 0 unless {i1, . . . , ik} ⊆ {1, . . . , n}. Also ǫ(f ↼ eα) = f ↼ eα(1) =
f(eα1) = f(eα) = 0 unless {i1, . . . , ik} ⊆ {1, . . . , n}. Now suppose {i1,
. . . , ik} ⊆ {1, . . . , n}. We have in this case that p(eα) = α!cα = f(eα) =
f ↼ eα(1) = ǫ(f ↼ eα). Since {eα} is a basis for U , this completes the proof
of part (2) of the lemma.
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Corollary 3.6 Under the assumptions of Lemma 3.5, f = p.

Lemmas 3.4 and 3.5 yield that part (1) implies part (3) in Theorem 3.3.
It is immediate that part (3) implies part (2).

We now complete the proof of Theorem 3.3 by proving that part (2)
implies part (1).

Let x1, . . . , xn ∈ Ker ǫ be chosen so that {x̄1, . . . , x̄n} is a basis for
(Ker ǫ)/(Ker ǫ)2. If f ∈ R and u ∈ U , then

f · u = q0(u)1 +

n∑

i=1

qi(u)xi + g(u),

where qi ∈ U∗ and g(u) ∈ (Ker ǫ)2. Let ℓ ∈ P (U). Since U measures R to
itself and ∆(ℓ) = 1 ⊗ ℓ + ℓ ⊗ 1, the map f 7→ f · ℓ is a derivation of R.

Now let fk ∈ R be the element such that

pk(u) = ǫ(fk · u).

Then

fk · ul = (fk · u) · ℓ

= qk,0(u)1 · l +

n∑

j=1

qk,j(u)xj · l + gk(u) · l.

Since the map f 7→ f · ℓ is a derivation, 1 · ℓ = 0, and since gα(u) ∈ (Ker ǫ)2,
gα(u) · ℓ ∈ Ker ǫ. It follows that

ℓ ⇀ pk(u) = pk(uℓ)

= ǫ(fk · uℓ)

=

n∑

j=1

qk,j(u)ǫ(xj · ℓ).

Therefore P (U) ⇀ pk ⊆
∑n

j=1 kqj , so pk has finite Lie rank. This completes
the proof of Theorem 3.3

Definition 3.7 A series p ∈ H for which the set

{ p(i,ℓ) = π(i,ℓ)(p) | ℓ ∈ L, i ∈ I }

satisfies the conditions of Theorem 3.3 is called regular.
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We have shown how to construct a state space X and a right U -module
algebra R of observations for a regular series.

Although the R we have constructed is a power series algebra, for appli-
cations we will often use some other right U -module algebra of functions on
X. We will assume that we have an action of S on X which induces the
action of U on R, that is, that R is a U -module algebra.

4 Learning sets of profiles and realizations

Let I be a finite set of PIDs, and let L be a finite set of labels. Let H and U
be the bialgebras described in Section 2, X be the corresponding state space
as described in Section 3, and R be a right U -module algebra of functions
from X to k.

Definition 4.1 A classifier is a function f : X −→ L. A learning set of
profiles is a function χ : I −→ L × X, that is, a finite set {(ℓj, xj)}, where

ℓj ∈ L, xj ∈ X, and j ∈ I.

Note that a classifier is a model as defined in Section 1. We denote the set
of classifiers by F and the set of learning sets of profiles by C. W(D) acts on
C as follows. If d = (i, l, s) ∈ D and χ = {(lj , xj)}, define χ ·d = {(ℓj , xj) ·d},
where

(ℓj , xj) · d =

{
(ℓ, xj · s) if i = j
(lj , xj) otherwise.

That is, the event d = (i, ℓ, s) acts on the learning set of profiles χ = {(lj, xj)}
by acting on the individual points (ℓj, xj) as follows: if j 6= i the point is
unchanged; if j = i the point xj is moved to xj · s and the label is changed
to ℓ.

A pairing ≪f, χ≫ between classifiers and learning sets of profiles can be
given as follows. Let f : X −→ L be a classifier, and χ = {(ℓi, xi)} be a
learning set of profiles. Then

≪f, χ≫ =
|{ i ∈ I | f(xi) = ℓi }|

|I|
. (1)

Note that 0 ≤ ≪f, χ≫ ≤ 1. This pairing is a measure of how well the
classifier f predicts the actual data represented by χ.

We define the notion of realization as follows.

11



Definition 4.2 Let

f : X −→ L

be a classifier, let

χ : I −→ L× X

be a learning set of profiles, and let ≪−,−≫ be a pairing. We say that the

triple (X, f, χ) is a realization of the series p ∈ H if

ph = ≪f, χ · h≫.

Note that the classifier ≪f, χ · h≫ defined in Equation (1) is bounded,
in fact

0 ≤ ≪f, χ · h≫ ≤ 1.

Recall that p =
∑

h∈W(D) phh is the formal series of which we are studying
realizations.

Lemma 4.3 Fix a finite learning set χ, and fix A ⊆ R
n. Suppose that there

is a map M : A −→ F such that ≪M(a), χ · h≫ is a bounded function of

a ∈ A, and p ∈ H for which there is a state space X and a ring of functions

R as described in section 3. Assume that ph, h ∈ W(D), is bounded. Let

M̃(a) = sup
h∈W(D)

|ph −≪M(a), χ · h≫|,

Then for all ǫ > 0 there exists a0 ∈ A such that |M̃(a0) − infa∈A M̃(a)| < ǫ.

Note that the hypothesis on M includes models which are polynomials, tree
classifiers, neural nets, and splines.

Proof:

Since everything in its definition is bounded, M̃(a) exists and is bounded.
If P : A −→ R is any bounded function, then there is a0 ∈ A such that P (a0)
is within ǫ of infa∈A P (a).

Note that for any realization M(a) of p, we have that

M̃(a) = sup
h∈W(D)

|ph −≪M(a), χ · h≫|

measures how well M(a) realizes p. so that infa∈A M̃(a) is the lower bound
for the “goodness” of any realization. The lemma says that this lower bound
can be approximated arbitrarily closely.

12



Theorem 4.4 Let p : kW(D) −→ k be such that ph is bounded, and let

M : A −→ F be a parametrized classifier such that ≪M(a), χ≫ is a bounded

function of a. Then for all ǫ > 0 there is a realization p0 = M(a0) of p such

that the “goodness” of the realization afforded by p0 is within ǫ of the lower

bound, that is, |M̃(a0) − infa∈A M̃(a)| < ǫ.

Proof:

Theorem 4.4 follows immediately from Corollary 4.3.

5 Parametrized realizations

In this section we consider an event space D, a realizable labeled learning
series p, a state space X, and an algebra of functions R from the state space
X to k.

Denote by C learning sets of profiles and denote by F the set of functions
from X to the finite set of labels L. Fix a vector space of parameters A, and
a map

M : A −→ F

giving a parametrized family of models.
In this section we study parametrized realizations of formal series p ∈ H

of learning sets.
Compare Definition 5.1 to Definition 4.2 in which realizations are defined.

Definition 5.1 A parametrized realization of a bounded function p ∈ H is:

1. A vector space of parameters A.

2. A parametrized family of models M : A −→ F .

If A is a finite dimensional vector space, we say that the realization is A-
finite.

Theorem 5.2 below gives a finiteness condition on the action of A on
p ∈ H which gives an A-finite realization.

For f = M(a) ∈ S and ℓ ∈ L, let fℓ be defined by

fℓ(x) =

{
l if f(x) = ℓ,
⋆ otherwise,

13



where ⋆ is unequal to any label ℓ ∈ L. Let pℓ(h) be defined by

pℓ(h) = ≪fℓ, χ · h≫.

Theorem 5.2 Let p ∈ H∗ be a formal sum of learning sets and M : A −→ F
a family of labeled models parametrized by A. Assume:

1. there exists f ∈ Im M such that

p(h) = ≪f, χ · h≫,

2. { β ∈ A∗ | β ⇀ pℓ = 0 } is a subspace of A∗ of finite codimension which

is closed in the compact open topology for all ℓ ∈ L.

Then there exists an A-finite realization of p.

Note that Theorem 4.4 gives the existence of a realization which approx-
imates the desired one.

Proof: We define three basic objects:

Lℓ = { β ∈ A∗ | β ⇀ pℓ = 0 }

Jℓ = k[A∗]Lℓ

J⊥

ℓ = { q ∈ k[A∗]∗ | q(j) = 0 for all j ∈ Jℓ }.

We have that Jℓ is a coideal in the Hopf algebra k[A∗] generated by primitive
elements in A∗, that is, that ∆(Jℓ) ⊆ Jℓ⊗k[A∗]+k[A∗]⊗Jℓ. Therefore J⊥

ℓ
∼=

(k[A∗]/Jℓ)
∗ is a subalgebra of k[A∗]∗. We will show that J⊥

ℓ is isomorphic to
a formal power series algebra in finitely many variables.

From hypothesis (2) we have that L⊥
ℓ = (A∗/Lℓ)

∗ is finite dimensional
subspace of A.

Lemma 5.3 If dim L⊥
ℓ = nℓ, then J⊥

l is a subalgebra of k[A∗]∗ satisfying

J⊥

l
∼= k[[a1, . . . , anℓ

]],

where {a1, . . . , anℓ
} is a basis for L⊥

ℓ .
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Proof: The subspace Lℓ is a closed subspace of A∗ of finite codimension n,
so that (A∗/Lℓ)

∗ = L⊥
ℓ is a finite dimensional subspace of A. Let (A∗/Lℓ)

∗

have basis {a1, . . . , anℓ
}. Choose βai

∈ A∗ with βai
(aj) = δij . Now choose a

basis B of A∗ such that B ⊇ {βa1
, . . .βan

} and B′ = B \ {βa1
, βa2

, . . . , βan
ℓ
}

is a basis of Lℓ. We have that k[A∗] has a basis

{ β
αi1

i1
· · ·β

αik

ik
| βk ∈ B, i1 < · · · < ik, and 0 < αir }.

By the choice of the basis of A∗, Jℓ will have a basis of the form

β
αi1

i1
· · ·β

αik

ik

with at least one βk ∈ B′. It follows that

{ βα1

a1
· · ·β

αn
ℓ

anℓ
| α1, . . . , αnℓ

≥ 0 },

where we denote by βak
the image of that element in k[A∗]/Jℓ, is a basis for

k[A∗]/Jℓ. It now follows that elements of the form

aα = a
αi1

i1
· · ·a

αin
ℓ

in
ℓ

are in J⊥
l ⊆ U∗. and that J⊥

l consists precisely of the closure in k[A∗]∗ of the
span of such elements. In other words,

J⊥

ℓ
∼= k[[a1, . . . , anℓ

]],

completing the proof.

By Lemma 5.3 each pℓ depends on a finite dimensional space of parameters
A(ℓ). Let A0 be the finite dimensional subspace which is the spanned by the
union of these finite dimensional subspaces. Since p(h) =

∑
ℓ∈L pℓ(h), p(h)

depends only on parameters in A0.
Now ≪f, χ · h≫ depends only on parameters in A0. We may choose

the other parameters which are linearly independent from A0 arbitrarily. In
other words we may choose f0 so that it depends only on the parameters in
A0.

This completes the proof of Theorem 5.2.
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