文章编号: 1004-0609(2007)05-0732-05

1.55 μm 波长 InGaAsP 微盘半导体激光器的室温激射性质

伍冠洪¹, J. G. McInerney²

(1. 长沙理工大学 物理与电子科学学院,长沙 410076;
2. 爱尔兰国立科克大学 物理系,科克,爱尔兰)

摘 要:经过外延生长和腐蚀分离后,直径为 1~10 μm 的独立微盘激光器件分别被粘附在多模光纤的端面上。在 室温条件下采用光学泵浦,对该类器件均实现了脉冲和连续激射,输出波长在 1.5~1.525 μm 之间,在脉冲和连续 输出下阈值泵浦能量分别为 64 和 109 μW,激射波长随着热效应增加而呈现红移现象。该类器件在未来全光网络 和集成光路中具有良好的应用前景。

关键词: InGaAsP; 微盘激光器; 多模光纤; 光学泵浦; 集成光路 中图分类号: TN 248.4 文献标识码: A

Room temperature lasing properties of 1.55 µm InGaAsP microdisk semiconductor lasers

WU Guan-hong¹, J. G. McInerney²

School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410076, China;
Department of Physics, National University of Ireland, Cork, Ireland)

Abstract: Separate microdisk laser with diameters of $1-10 \mu m$ were attached at the facet of multi-mode fiber after epitaxial growth and etching. They were all lasing under both pulsed and countinuous wave (CW) optical pumping. The lasing wavelengths were between 1.5 and 1.525 μm . The threshold pump powers were 64 μW in pulsed operation and 109 μW in CW operation separately. Lasing wavelength shows red shift with increasing thermal effect. This device has exciting applications in future all optical networks and integrated optical circuits.

Key words: InGaAsP; micordisk lasers; multi-mode fiber; optical pumping; integrated circuits

半导体微盘光电器件自 1992 年诞生以来^[1],由于 体积小、阈值低、功耗低和品质因数高,因而迅速在 高集成度光学互联系统中作为有源和无源器件得到广 泛应用,如光通信系统中的频道增减过滤器、信号开 关、多路信号分离器等^[2-5],是未来全光网络和集成光 路中的重要组件之一。迄今为止,微盘激光器已经在 0.5~16 μm 波长范围之内实现了室温激射^[6-8],其中以 波长 1.3 和 1.55 μm 最为引人注目,这是光纤通信系 统中两个主要的工作波长。

半导体微盘光电器件作为未来全光网络和集成光

路中的重要有源器件之一,光学泵浦下的激射模式特 性是构成其工作性能的重要部分。与电流泵浦方式相 比,光学泵浦具有装置简单、增益分布均匀等优点, 但也面临着如何提高泵浦效率、减少发热量等问题^[9]。 通常的微盘激光器都带有一个支柱,将微盘与衬底连 接起来,既支撑了微盘本身又具有将激光器工作期间 产生的热量发散出去的作用。但是,在光学泵浦下这 样的结构加大了定位泵浦光束和采集探头的难度,难 以对激光器的激射性质进行彻底研究;而且由于支柱 直径细小(约为 1~2 μm),散热作用亦非常有限;若加

基金项目:爱尔兰企业署资助项目(SC/98/750)

收稿日期: 2007-02-05; 修订日期: 2007-04-17

通讯作者: 伍冠洪, 博士; 电话: 0731-5553022; E-mail: ghwu@csust.edu.cn

大支柱的尺寸,则会对输出模式产生散射损耗^[10]。因此,人们目前已开发出一些新工艺,如将微盘与衬底 剥离后附着在其他低折射率材料上^[11-12],这样既能够 对单独的微盘器件进行光学泵浦,方便泵浦光的定位 与激射谱的采集,而且由于器件与依附材料全面接触, 增强其散热性能,有利于降低微盘器件的激射阈值, 提高工作稳定性。今后还由此发展出其他形状的微腔 激光器件,如微环激光器等。本实验中,独立的微盘 激光器首次被附着在直径 50 µm 的多模光纤端面上, 并对此类器件在光学泵浦下的室温激射性质进行了全 面研究。

1 微腔激光器

微腔激光器指的是激光器的谐振腔至少有一维 方向的尺寸达到光在半导体介质中的波长量级,在如 此小的空间中,光场出现量子化效应;微腔内自发辐 射分布由无限多个连续模式变成趋于量子化的少数几 个模式,这些模式与介质的增益相耦合,某个模式因 获得高增益而由自发辐射转化为激射模式。因此其激 射模式间隔较宽,很容易实现单模输出。由于腔内自 发辐射能够更多地耦合进激射模式中,微腔激光器因 而具有更低的阈值,甚至可以实现零阈值激射^[13]。

在微腔激光器中,微盘器件是其中颇具前途的一 种类型。它由一个圆盘形半导体材料与上下包围的低 折射率介质(或空气)组成,圆盘的直径一般在 0.1~10 µm、厚度在 0.05~0.15 µm 之间,其主要部分即半导体 激光器的核心——有源区,当该圆盘被一定外加能量 泵浦时将会产生激射输出。由于腔体形状的特殊性和 腔体内外较大的折射率差异,其腔内模式是由沿着圆 型腔体内侧界面经多次全反射而传播的电磁场构成, 这些模式十分类似于沿着圆型墙壁传播的声波,因此 也被称为"回声模"^[14]。这类激射模式在圆盘平面内 沿着径向输出,光场极大值位于与圆盘平面成 30°方 向上。每个模式由径向模数(*N*)和角向模数(*M*)来描述, 沿微盘圆周共有 2*M* 个模式。在"回声模"近似下, 模式波长为:

$$\lambda = \frac{2\pi R n_{\rm eff}}{M} \tag{1}$$

式中 λ为激射模式波长, *R*为微盘直径, *n*_{eff}为微盘 腔体的有效折射率, *M*是角向模数, 它可按下面公式 计算:

$$M \approx \frac{\lambda}{\delta \lambda} \tag{2}$$

式中 δλ 为模式间距。对于一定的 *M* 值,沿径向分布 着具有不同频率的模式,且频率呈递增分布,最靠近 圆盘边界的径向模式具有最低的频率,该模式的径向 模数为 *N*=1(见图 1)。

Fig.1 Schematic diagram of modes in microdisk lasers

2 微盘激光器的制作

本研究中微盘激光器的结构如图 2 所示。

图 2 1.55 µm InGaAsP 微盘激光器结构

Fig.2 Structure of 1.55 µm InGaAsP microdisk lasers

首先采用金属有机化学气相沉积法(MOCVD)在 InP 衬底上生长出与常见 1.55 μm 分离限制异质结构 相同的外延层,即从上至下为: InGaAs 接触层、p型 掺杂的 InGaAsP 覆盖层、未掺杂的有源区、n型掺杂 的 InGaAsP 覆盖层和 InP 衬底。其有源区包含由4个 宽为 5 nm 的 InGaAsP 量子阱与 3 层宽为 10 nm 的 InGaAsP 势垒层交替排列,覆盖层厚为 180 nm,所有 外延层的总厚度为 410 nm。用光刻方式在其上制作出 直径从 1 至 10 μm 的圆盘,采用非晶有机混合溶剂 HBr+H₃PO₄+K₂CrO₇腐蚀出深约 1 μm 的台阶,然后将 台阶用蜡全部覆盖,放入浓盐酸中腐蚀移去 InP 衬底, 得到一组直径不同的微盘器件,最后将蜡去除即可得 到各自独立的微盘器件。在本研究中,借助水的范德 华力将单个微盘器件粘附在直径为 50 μm 的多模光纤 端面上(见图 3)。

图 3 多模光纤端面上的微盘激光器

Fig.3 Microdisk lasers on end facet of multi-mode fiber (with diameter of $4 \mu m$)

3 实验

泵浦光源采用波长为 980 nm、输出功率 50 mW 的激光二极管,其输出光斑大小为 5 μm×1 μm,足以 覆盖每个微盘器件。为了泵浦直径较大的微盘,实验 中将此光斑散焦以扩大覆盖面。为了更全面地研究微 盘激光器的激射性质,实验中采用两种泵浦方式,其 一是泵浦激光从附有微盘器件的光纤另一端耦合进 入,通过光纤传输后均匀照射在微盘上;其二是泵浦 激光直接照射在微盘器件上。由于微盘器件的平面激 射特点,用另一根多模光纤在与微盘平面成 30°的位 置采集微盘激射光谱,并输入至光谱分析仪以及相连 的计算机处理结果。对于第一种泵浦方式,在微盘器 件后设置光能量计测量通过的泵浦能量,根据微盘器 件与光纤内核的面积之比即可计算出照射在微盘器件 上的泵浦能量,由此可估算出该器件的激射阈值。相 应实验装置见图 4。

4 结果与分析

研究中制作了直径分别为 1.5、3、4、6、8 和 10 μm 的微盘激光器样品,它们在脉冲和连续光泵浦方式下 均实现了室温激射。图 5 所示为直径 4 μm 的微盘激 光器在脉冲和连续光泵浦下的激射光谱。

在泵浦脉冲宽度为 50 μs、脉冲周期为 1 000 μs 时,得到两个波长分别在 1 495 nm 和 1 532 nm 的输 出模式,其间距为 37 nm。这两个模式符合该类激光 器中回声波的特征,为两个相邻模式。根据式(2)计算 可得波长 1 495 nm 的模式模数为 41,波长 1 532 nm 的模式模数为 40。经过测量,该器件在脉冲泵浦下的 阈值峰值泵浦能量为 10 mW,考虑到器件表面的散射 损耗和吸收率,实际阈值约为 64 μW,远远低于将微 盘激光器附着在其他低折射率材料上所获得的激射阈 值^[12]。在连续泵浦条件下两个输出模式分别为 1 497 和 1 534 nm,其间距仍为 37 nm;它们的模数与脉冲 泵浦下相同,只是由于连续泵浦产生的热效应使有源 层的折射率提高,从而使波长增加了 2 nm。经测量阈 值泵浦能量为 17 mW,根据同样方法可得到该器件在 连续泵浦下的阈值能量为 109 μW。

在连续泵浦条件下,改变泵浦能量得到的一系列

图5 直径4 μm 的微盘激光器在脉冲和连续光泵浦条件下 的激射光谱

Fig.5 Lasing spectra of microdisk laser with diameter of 4 μ m under pulsed(a) and CW pumping condition(b) (Resolution of OSA is 0.2 nm)

输出光谱如图 6 所示,图中 4 条谱线所对应的泵浦能 量分别为(从下至上): 114、132、155 和 186 µW。从 图中可以看到,泵浦能量较低时,波长为 1 497 nm 的 模式首先激射,其强度随着泵浦能量的增加而增加; 当泵浦能量超过 114 µW 时,波长为 1 534 nm 的第二 个模式开始激射并以更快的幅度增长,此时第一个模 式停止增加强度。这样的模式行为是因为两个模式中, 波长短的具有较高的模数,该模式更加靠近腔体边缘, 因此与腔内的增益分布重叠更好,更容易达到阈值从 而激射。另外还可以看到,两个模式均因热效应而有 红移现象且模式变宽,但幅度都很小。这是由于多模 光纤的石英内核提供了效果更好的散热机制,降低了 热效应对模式的影响。

为了考察微盘激光器在整个泵浦范围内激射性质 的变化,分别从低到高给予不同的泵浦能量使样品从 阈值激射直到激射模式退化,得到对应不同泵浦能量 的激射光谱,将每个光谱中两个模式下的区域积分作 为该模式的总输出能量,就可以得到该器件的激射特 性曲线。图7所示为样品激光器分别在脉冲泵浦和连

图6 直径4 μm 的微盘激光器在连续泵浦下激射模式随泵 浦能量的变化

Fig.6 Evolution of lasing spectra from microdisk with diameter of 4 μ m under various CW pumping conditions

图 7 直径 4 µm 的微盘激光器在脉冲泵浦(a)和连续泵浦(b) 条件下的激射特性曲线

Fig.7 Lasing characteristic curve of microdisk with diameter of 4 µm under pulsed(a) and CW pumping condition(b)

续泵浦条件下的激射特性曲线。从图可以看出,在脉 冲泵浦下的特性曲线几乎是线性的,而在连续泵浦下 的特性曲线则出现饱和现象。这是由于在连续泵浦下 腔内产生的热量无法及时散去,因而具有更强的热效 应所导致,而在脉冲泵浦下产生的热效应则很小。

其他尺寸的微盘激光器呈现出相似的激射特性, 只是激射模式波长随直径增加而有所增大,这从式(1) 可以看出来。图 8 所示为直径 6 µm 的微盘器件在连 续光泵浦下的激射谱,两个模式的波长分别为 1 503 和 1 513 nm。

图 8 直径 6 μm 的微盘器件在连续光泵浦条件下的激射光谱 **Fig.8** Lasing spectra of micordisk with diameter of 6 μm under CW pumping condition (Resolution of SOA is 0.2 nm)

5 结论

利用范德华力首次将微盘半导体激光器件粘附 在多模光纤的端面上,并实现室温下脉冲和连续光泵 浦激射输出,输出模式均为径向模,符合微腔器件特 有的回声波模式特性;输出特性如激射阈值等明显优 于将微盘半导体激光器附着在其他低折射率材料上 的器件。这样的装配机制不仅有利于全面研究微盘激 光器的输出光谱性质,而且在未来的全光网络和高集 成度光路系统中具有极其良好的应用前景。

REFERENCES

[1] McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A.

Whispering-gallery mode microdisk lasers[J]. Appl Phys Lett, 1992, 60: 289-291.

- [2] Li C, Ma N, Poon A W. Waveguide-coupled octagonal microdisk channel add-drop filters[J]. Optics Lett, 2004, 25(9): 471–473.
- [3] Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters[J]. J Lightwave Technol, 1997, 15: 998–1005.
- [4] Hryniewicz J V, Absil P P, Little B E, Ho P T. Higher order filter response in coupled microring resonators[J]. IEEE Photonics Tech Lett, 2000, 12: 320–322.
- [5] Little B E, Chu S T, Hryniewicz J V, Absil P P. Filter synthesis for response in coupled microring resonators[J]. Opt Lett, 2000, 25: 344–346.
- [6] Hovinen M, Ding J, Nurmikko A V, Grillo D C, Han J, He L, Gunshor R L. Blue-green laser emission from ZnSe quantum-well microresonators[J]. Appl Phys Lett, 1993, 63: 3128–3130.
- [7] Fujita M, Teshima K, Baba T. Low-threshold continuous-wave lasing in potopumped GaInAsP microdisk lasers[J]. Jpn J Appl Phys, 2001, 40: L875–877.
- [8] Tredicucci A, Gmachl C, Capasso C, Sivco D L, Chu S N G, Hutchinson A L. Very long wavelength (λ=16 μm) whispering gallery mode microdisk lasers[J]. Electron Lett, 1999, 36: 328–329.
- [9] Barbay S, Menesguen Y, Sagnes I, Kuszelewicz R. Cavity optimization of optically pumped broad-area microcavity lasers[J]. Appl Phys Lett, 2005, 86(15): 151119.
- [10] Baba T, Fujita M, Sakai A, Kihara M, Watanabe R, Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2–10 μm[J]. IEEE Photonics Technol Lett, 1997, 9(7): 878–880.
- [11] Corbett B, Justice J, Considine L, Walsh S, Kelly W M. Low-threshold lasing in novel micordisk geometries[J]. IEEE Photo Tech Lett, 1996, 8(7): 855–857.
- [12] Thiyagarajan S M K, Levi A F J, Lin C K, Dapkus P D, Pearton S J. Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers[J]. IEE Electron Lett, 1998, 34: 2333–2334.
- [13] Yokoyama H. Physics and device applications of optical microcavities[J]. Science, 1992, 256: 66.
- [14] Rayleigh L. The problem of the whispering gallery[D]. Cambridge: Cambridge University, 1912, 5: 617–620.

(编辑 龙怀中)