文章编号: 1004-0609(2007)07-1195-06

碳热氯化法回收重选尾矿中的稀土

曾繁武¹,于秀兰¹,刘 嘉¹,张纪谦²,张 鉴³,王之昌¹

(1. 东北大学 理学院, 沈阳 110004;

2. 东北大学 资源与土木工程学院, 沈阳 110004;

3. 包头钢铁公司(集团) 选矿厂, 包头 014010)

摘 要: 采用摇床重选实验方法使尾矿中的稀土元素得到预富集,获得稀土氧化物(REO)品位为 18.02%,粒径小于 74 µm 稀土精矿和稀土氧化物品位为 9.19%,粒径大于 74 µm 稀土精矿,稀土总回收率为 37.26%。采用碳热氯 化法分解,粒径小于 74 µm 的稀土精矿,得到氯化稀土。以 SiCl₄为脱氟剂,C 为还原剂,Cl₂ 为氯化剂,750 ℃ 时氯化反应 2 h,氯化率高达 91.0%。750 ℃氯化产物的酸不溶物的 X 射线衍射结果表明酸不溶物的主要物相为 SiO₂ 及少量没有完全反应的独居石。

关键词:尾矿;稀土;重选;碳热氯化;脱氟剂 中图分类号:TF 845;TD 98 文献标识码:A

Recovery of rare earth from gravity concentrated tailings by carbochlorination

ZENG Fan-wu¹, YU Xiu-lan¹, LIU Jia¹, ZHANG Ji-qian², ZHANG Jian³, WANG Zhi-chang¹

(1. School of Science, Northeastern University, Shenyang 110004, China;

2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China;

3. Ore-dressing Plant, Baotou Steel (Group) Corporation, Baotou 014010, China)

Abstract: Rare earths in tailings from concentrating mill can be concentrated by gravity concentration. The grades of REO of obtained rare earths concentrate are 18.02% ($-74 \mu m$) and 9.19% ($+74 \mu m$), respectively. The total recovery of rare earth is 37.26%. Then the rare earth was decomposed by carbochlorination process and the rare earth chloride can be obtained. The chlorinating rate of rare earth is 91.0% for the carbochlorination process at 750 °C for 2 h with carbon as reductant, chlorine gas as chlorination agent, and SiCl₄ as de-fluorination agent. The XRD analysis result shows that the residues obtained at 750 °C are SiO₂ and monazite.

Key words: tailings; rare earth; gravity-concentration; carbochlorination; de-fluorination agent

白云鄂博共生矿的稀土矿是目前世界上已发现的 最大稀土矿,是我国稀土工业的主要原料基地,其稀 土选矿研究及生产实践将直接影响我国稀土工业的发 展。包钢选矿厂自投产以来,主要回收该矿石中的铁 矿物,其次回收部分稀土矿物。目前选铁后的尾矿中 稀土氧化物(REO)的平均品位在 7%左右,与稀土原矿 品位相当,如何进一步提高其稀土品位对于稀土资源 的充分利用意义非常重大。近几年已有很多科研单位 对包钢尾矿进行了稀土回收实验^[1-6]。朱国才等^[7-8]曾 研究稀土精矿的氯化铵焙烧提取方法。这些工作为包 钢尾矿中稀土的回收利用奠定了基础。

本文作者将摇床重选方法与碳热氯化方法结合,

基金项目: 国家自然科学基金资助项目(50574023); 辽宁省教育厅科学研究资助项目(20040294)

收稿日期: 2006-10-24; 修订日期: 2007-04-18

通讯作者: 曾繁武, 博士研究生; 电话: 024-23526605; E-mail: zengfanwu@gmail.com

分两步分离回收包钢选矿厂尾矿中的稀土。首先通过 摇床重选除去尾矿中萤石、钠闪石等大量脉石矿物, 提高尾矿中稀土含量,使尾矿中的稀土得到一定富集。 为了进一步提取尾矿中的稀土,张丽清等^[9-14]采用碳 热氯化法对重选后的稀土矿物进行稀土回收实验,探 索该重选后的稀土矿在活性脱氟剂 SiCl₄^[15-16]作用下 低温氯化反应的可行性,旨在为包钢选矿厂尾矿中稀 土资源获得充分利用提供科学依据。

1 实验

实验所用的原料为内蒙古包钢选矿厂尾矿。该尾 矿中稀土矿物主要以氟碳铈矿为主,其次为独居石; 铁矿物以赤铁矿、假相赤铁矿为主;含钙的矿物以萤 石为主;脉石矿物主要为钠辉石、钠闪石、石英等。 尾矿的化学成分如表1所示。由表1可以看出,该尾 矿中稀土含量为7.43%(以稀土氧化物计),其它非稀土 元素为 Mn、Ba、Ca、Al、Fe、Mg、K、Na、Th、Ti、 Nb 和 SiO₂等,该矿的主要特点是稀土元素含量较低, 非稀土元素 Mn、Ba、Ca、Al 和 Fe 等含量较高。

表1 尾矿的化学成分

Table 1 Chemical composition of tailings (mass fraction, %)	<i>6</i>)
---	----------	---

TFe	FeO	Sfe	REO	Nb_2O_5	MnO
13.46	3.79	10.51	7.43	0.151	3.13
BaO	CaO	MgO	K ₂ O	Na ₂ O	Al_2O_3
2.33	20.98	5.1	0.89	0.98	0.96
SiO ₂	TiO ₂	ThO ₂	F	S	Р
13.79	0.53	0.071	9.98	1.96	1.56

1.1 摇床重选实验

白云鄂博矿区目前利用较好的元素是铁和稀土。 白云鄂博矿区矿石性质复杂,而尾矿库是选铁和部分 选稀土后的尾矿。尾矿中主要有用矿物为氟碳铈矿和 独居石,主要脉石矿物为钠辉石、钠闪石、萤石、白 云石和重晶石等。尾矿中有用的矿物比重一般在 5.0 以上,而大多数脉石矿物在 3.5 以下,有用矿物与脉 石矿物在密度上存在很大差异,所以可以采用重选的 方法富集有用矿物。

本文中采用摇床重选使稀土得到一定富集。首先 用孔径为 74 µm 的湿式震动筛将尾矿筛分为粒径 >74 µm 和<74 µm 2 部分(分别表示为+74 µm 和 -74 μm)。然后应用泥浆摇床分别对+74 μm 和-74 μm 的尾矿做重选实验,分别得到+74 μm 稀土精矿和 -74 μm 稀土精矿。

1.2 重选精矿的碳热氯化实验

由于+74 µm 稀土精矿中稀土含量相对较低,所以 把-74 µm 稀土精矿作为碳热氯化研究主要对象。以下 实验数据均是以-74 µm 稀土精矿为原料所得。

1.2.1 碳热氯化实验原理

重选精矿在脱氟剂 SiCl₄ 存在下的碳热氯化反应 是多相复杂反应,主要包括精矿中稀土矿物的分解以 及脱氟、氯化等反应:

$REFCO_3(s) = REOF(s) + CO_2(g)$	(1)
$REOF(s)+C(s)+C1_2(g)+(1/4)SiCl_4(g) =$	
$RECl_3(s,1)+(1/4)SiF_4(g)+CO(g)$	(2)
$REOF(s)+(1/2)C(s)+Cl_2(g)+(1/4)SiCl_4(g)=$	
$\text{RECl}_3(s,l)+(1/4)\text{SiF}_4(g)+(1/2)\text{CO}_2(g)$	(3)
(1/3)REPO ₄ (s)+C(s)+Cl ₂ (g)=(1/3)RECl ₃ (s,l)+	
(1/3)POCl ₃ (g)+CO(g)	(4)
(1/3)REPO ₄ (s)+ $(1/2)$ C(s)+Cl ₂ (g)= $(1/3)$ RECl ₃ (s,l)+	
$(1/3)POCl_3(g)+(1/2)CO_2(g)$	(5)
诸多非稀土矿物的氯化反应,如:	
(1/3)Fe ₂ O ₃ (s)+C(s)+Cl ₂ (g)=(2/3) Fe Cl ₃ (g)+CO(g)	(6)
$(1/3)Fe_2O_3(s)+(1/2)C(s)+C1_2(g)=(2/3)FeCl_3(g)+$	
(1/2)CO ₂ (g)	(7)
$BaSO_4(s) + 2C(s) + Cl_2(g) = BaCl_2(s,l) + 2CO(g) + SO_2(g) + CO(g) + SO_2(g) + SO_$)
	(8)
$BaSO_4(s)+C(s)+Cl_2(g) \Longrightarrow BaCl_2(s,l)+CO_2(g)+SO_2(g)$	(9)
$CaF_2+(1/2)SiCl_4(g) = CaCl_2(s,l)+(1/2)SiF_4(g)$	(10)
在没有脱氟剂存在的条件下,反应(2)和(3)被	た 才
代替:	

REOF(s)+C(s)+C1 ₂ (g)=(2/3)RECl ₃ (s,l)+	
(1/3)REF ₃ (s)+CO(g)	(11)

 $\frac{\text{REOF}(s) + (1/2)C(s) + C1_2(g) = (2/3)\text{RECI}_3(s,l) + (1/3)\text{REF}_3(s) + (1/2)CO_2(g)}{(12)}$

其中 RE 表示稀土元素。

由以上方程式可知,在高温和有碳存在条件下, 用氯气分解尾矿时,稀土及其它有价元素同时转变成 氯化物。根据氯化物沸点之间的差异同时得到3种产 物:1)低沸点的氯化产物(FeCl₃、AlCl₃、NbCl₅和POCl₃ 等)以气体状态逸出炉外,经综合回收及净化后排空; 2) 沸点较高的氯化产物(氯化稀土、碱土金属及碱金 属氯化物等)留在反应瓷舟中,用水浸取反应瓷舟中的 产物时,溶于水的氯化产物(氯化稀土、碱土金属及碱 金属氯化物等)被浸出; 3) 反应结束后,用水浸取反 应瓷舟中的产物时,未分解的矿渣与碳渣等高熔点、 难溶于水的成分作为滤渣被滤出。

图 1 所示为尾矿氯化反应 Δ*G*^Θ_m 与温度的关系。图 中曲线 1~7 分别表示反应(10)、(11)、(12)、(2)、(3)、 (9)和(8)的 Δ*G*^Θ_m 随温度的变化值。其它反应方程式中 部分热力学数据不完整,因此无法计算其 Δ*G*^Θ_m 随温度 的变化值。从图 1 可以看出,脱氟剂的加入使得反应 (4)和(5)的标准摩尔 Gibbs 自由能远小于无脱氟剂时反 应(2)和(3)的摩尔 Gibbs 自由能,即反应(4)和(5)在热 力学上比反应(2)和(3)更有利。稀土氟化物不溶于水或

Fig.1 Evolution of standard free energy changes as function of temperature for chlorination and metathesis of some compounds of tailings, taking lanthanum as example of rare earth elements

表2 细筛分级一摇床重选实验结果

Tal	bl	e 2	2	Resu	lts	of	grad	ling	by	fine	sieve	-tab	ling	gravity	separa	ation
-----	----	-----	---	------	-----	----	------	------	----	------	-------	------	------	---------	--------	-------

酸,若按反应(2)和(3)进行,势必会有稀土氟化物生成, 最终导致酸不溶物量增大和稀土氯化率降低。

1.2.2 碳热氯化实验

反应物由精矿和活性炭按照质量比 m(精矿):m(碳) =5:1 混合均匀后置于反应瓷舟中。C和 Cl₂分别作还 原剂和氯化剂,SiCl₄作脱氟剂。实验装置如图 2 所示, 氯化反应实验在管式炉中进行。辅助炉用于产生脱氟 剂 SiCl₄气体,反应管为内径 25 mm、长 1 000 mm 的 高铝管,反应物被置于炉中最高温区。反应物首先在 氩气保护下升温到指定温度,氯化反应 2 h,最后在氩 气气氛下降温至室温,取出瓷舟,用去离子水溶解氯 化产物,用 EDTA 络合滴定法分析稀土离子总量,计 算稀土元素氯化率。用 1.0 mol/L 盐酸溶液溶解水不溶 物,所得的酸不溶物脱碳后进行物相分析。

图 2 氯化反应装置图

Fig. 2 Apparatus used for chlorination

2 结果与讨论

2.1 重选实验

重选实验结果如表 2 所示; 原矿的 X 射线衍射谱 如图 3(a)所示; 重选后-74 μm 及+74 μm 矿物的 X 射 线衍射谱如图 3(b)和 3(c)所示。

Mineral classification		<i>m</i> /g	REO/%	Size yield/%	Size recovery (REO)/%	Total recovery (REO)/%	w(Fe)/%
	Tailings	599	4.68				10.70
+74 μm	Gravity concentrate	196	9.19	32.72	64.20	27.24	11.83
	Tailings	1 380	10.02			37.20	18.20
—74 μm	Gravity concentrate	244	18.02	17.68	31.80		29.93

图3 矿物的 X 射线衍射谱

Fig. 3 X-ray diffraction patterns of minerals: (a) Concentrator tailings; (b) Gravity concentrated tailings (+74 μ m); (c) Gravity concentrated tailings (-74 μ m)

由表 2 可知:采用重选法可使尾矿中的稀土、铁 等密度大的有价元素得到一定的预富集。细筛分级一 摇床重选可获得稀土(REO)品位为 18.02%的-74 µm 的稀土精矿和稀土(REO)品位为 9.19%的+74 µm 稀土 次精矿,稀土总回收率为 37.26%。

由图 3(a)可知,原尾矿粉末主要物相为萤石,其 次为 SiO₂和赤铁矿,稀土矿物以氟碳铈矿为主,其次 为独居石;另外还含有少量的钠闪石等脉石矿物。由 图 3(b) 可知,尾矿经过重选后所得的-74 μm 精矿中 霓石等密度轻的矿物衍射峰已消失。由图 3(c)可知, 尾矿经过重选后所得的+74 μm 精矿中钠闪石和霓石 等密度轻的矿物衍射峰已消失。

2.2 碳热氯化实验

2.2.1 反应时间对稀土氯化率的影响

固定氯化反应温度为 750 ℃,改变反应时间,尾 矿氯化结果如表 3 所示。

表3 750 ℃时反应时间对稀土氯化率的影响

Table 3 Effect of reaction time on RECl₃ yield at 750 °C

Time/h	Chlorinating rate/%
0.5	37.0
1.0	68.5
1.5	84.5
2.0	91.0
2.5	89.2
3.0	88.1

由表3可知:氯化时间为2h时,稀土氯化率最 大。继续增加反应时间时稀土氯化率降低,这可能是 因为产物中有些物质随时间延长而挥发。

2.2.2 反应温度对稀土氯化率的影响

尾矿在不同温度下分别氯化 2 h,氯化率如表 4 所示。由表 4 可知:当温度小于 750 ℃时,稀土氯化 率随温度的升高而升高;750 ℃时氯化率最高,可达 到 91.0%以上;当温度高于 750 ℃时,稀土氯化率随 温度升高而降低,这可能是由于稀土氯化物在高温下 呈液态,可在固体反应物和氯气之间形成一层液体层, 阻碍气体反应物的扩散,使氯化率降低。

表 4	反应2h时反应温度对稀土氯化率的影响
-----	--------------------

Table 4	Effect of rea	ction temperat	ure on RECla	yield for 2 h
---------	---------------	----------------	--------------	---------------

Temperature/°C	Chlorinating rate/%
450	20.7
500	42.5
550	64.8
600	76.7
650	83.7
700	88.6
750	91.0
800	90.2
850	88.1
900	72.6

2.2.3 重选精矿(-74 μm)在 750 ℃氯化 2 h 产物酸不 溶物物相分析

图 4(a)所示为重选精矿(-74 µm)的 X 射线衍射 谱,图 4(b)为重选精矿(-74 µm)在 750 ℃碳热氯化反 应 2 h 酸不溶物的 X 射线衍射谱。由图 4(b)可知,残 留物主要物相为 SiO₂和微量的 CePO₄。对照两图可知, -74 µm 稀土精矿在 750 ℃氯化 2 h 后大部分矿物经过 碳热氯化实验均生成可溶的氯化物。

图4 重选精矿的 X 射线衍射谱

Fig.4 X-ray diffraction patterns of gravity concentration: (a) Gravity concentrated tailings $(-74 \ \mu m)$; (b) Residues obtained at 750 °C for 2 h $(-74 \ \mu m)$

3 结论

1) 采用摇床重选,使尾矿中的稀土得到预富集,获得稀土品位为 18.02%的-74 μm 的稀土精矿和稀土品位为 9.19%的+74 μm 稀土次精矿,稀土总回收率为 37.26%。

2) 以 SiCl₄为脱氟剂,采用碳热氯化法分解重选 后的-74 μm 稀土精矿,制得氯化稀土。750 ℃时氯化 反应 2 h, 氯化率高达 91.0%。

REFERENCES

[1] 方 军, 赵德贵. 包钢选矿厂磁铁矿尾矿选稀土的探讨[J].
 金属矿山, 2003(3): 47-49.

FANG Jun, ZHAO De-gui. Separation of rare-earth from tailings of magnetite separation in Bao Steel's Concentrator[J]. Metal Mine, 2003, 3: 47–49.

- [2] 张文华,郑 煜,秦永启. 包钢选矿厂尾矿的稀土选矿[J]. 湿法治金, 2002, 21(3): 36-38.
 ZHANG Wen-hua, ZHENG Yu, QIN Yong-qi. Concentrating of rare earths in tails from concentrating mill of Baotou Iron and
 - rare earths in tails from concentrating mill of Baotou Iron and Steel Co[J]. Hydrometallurgy of China, 2002, 21(3): 36–38.
- [3] 曾永杰,孙 平,赵德贵. 从白云鄂博磁铁矿石中回收稀土的实践探讨[J]. 包钢科技, 2005, 31(4): 25-27.
 ZENG Yong-jie, SUN Ping, ZHAO De-gui. Experimental study on recycling of the rare earth from the Baiyunebo Magnetite[J].
 Science & Technology of Baotou Steel (Group) Corporation, 2005, 31(4): 25-27.
- [4] 田俊德,刘 跃. 从包钢选矿厂选铁尾矿中回收稀土研究概况与生产实践[J]. 稀土, 1999, 20(5): 54-58.
 TIAN Jun-de, LIU Yue. Study and practice on rare earth mineral retrieving from tailings from iron ore dressing in Baotou Iron and Steel Company[J]. Chinese Rare Earths, 1999, 20(5): 54-58.
- [5] 余永富. 我国稀土矿选矿技术及其发展[J]. 中国矿业大学学报, 2001, 30(6): 537-542.

YU Yong-fu. Dressing technology of REO ore and its development in China[J]. Journal of China University of Mining & Technology, 2001, 30(6): 537–542.

[6] 李英霞. 从包钢强磁尾矿中回收稀土和铌的研究[J]. 广东有 色金属学报, 1999, 9(2): 101-105.

LI Ying-xia. Study on recovering rare earth minerals and niobium mineral from strongly magnetic tailings in Baotou Mineral Processing Plant[J]. Journal of Guangdong Non-Ferrous Metals, 1999, 9(2): 101–105.

- [7] 朱国才,田 君,池汝安,徐盛明. 氟碳铈矿提取稀土的绿色 化学进展[J]. 化学通报, 2000, 63(12): 6-11.
 ZHU Guo-cai, TIAN Jun, CHI Ru-an, XU Sheng-ming. A progress of green chemistry on the decomposition and extraction of rare earth from bastnaesite[J]. Chemistry, 2000, 63(12): 6-11.
- [8] 时文中,王竞研,朱国才. 固氟氯化铵焙烧法从包头稀土矿中回收稀土的动力学[J]. 中国有色金属学报, 2004, 14(7): 1254-1258.

SHI Wen-zhong, WANG Jing-yan, ZHU Guo-cai. Kinetics of chlorinating rare earth of Baotou mixed concentrate after fixed fluorine treatment[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(7): 1254–1258.

[9] WANG Zhi-chang, SUN Yan-hui. A stepwise selective chlorination-chemical vapor transport reaction for rare earth

separation[J]. Chinese Chemical Letters, 1997, 26(11):

1113–1114.

- [10] WANG Zhi-chang, SUN Yan-hui, GUO Lei. A comparative study for stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc₂O₃ to Lu₂O₃ mediated by the vapor complexes LnAl_nCl_{3n+3}[J]. Journal of Alloys and Compounds, 1999, 28(1): 109–113.
- [11] 张丽清, 王 军, 范世华, 雷鹏翔, 王之昌. 氟碳铈矿精矿的 分步氯化-化学气相传输反应[J]. 中国稀土学报, 2001, 19: 217-220.

ZHANG Li-qing, WANG Jun, FAN Shi-hua, LEI Peng-xiang, WANG Zhi-chang. Stepwise chlorination-chemical vapor transport reactions for bastnaesite concentrate[J]. Journal of the Chinese Rare Earth Society, 2001, 19: 217–220.

[12] 张丽清, 王之昌, 尤 健, 迟明玉, 杨冬梅, 雷鹏翔. 氟碳铈 矿-独居石混合精矿碳热氯化反应[J]. 中国稀土学报, 2002, 20: 193-196.
ZHANG Li-qing, WANG Zhi-chang, YOU Jian, CHI Ming-yu, YANG Dong-mei, LEI Peng-xiang. Study on characteristics of

carbochlorination of mixed bastnaesite-monazite concentrate[J]. Journal of the Chinese Rare Earth Society, 2002, 20: 193–196.

[13] WANG Zhi-chang, ZHANG Li-qing, LEI Peng-xiang, CHI Ming-yu. Rare earth extraction and separation from mixed bastnaesite-monazite concentrate by stepwise carbochlorination chemical vapor transport[J]. Metallurgical and Materials Transactions B, 2002, 33: 661–668.

- [14] ZHANG Li-qing, WANG Zhi-chang, TONG Shu-xun, LEI Peng-xiang, ZOU Wei. Rare earth extraction from bastnaesite concentrate by stepwise carbochlorination- chemical vapor transport-oxidation[J]. Metallurgical and Materials Transactions B, 2004, 35: 217–221.
- [15] 张丽清, 雷鹏翔, 尤 健, 杨冬梅, 迟明玉, 王之昌. 氟碳铈 矿精矿在SiCl₄存在时的碳热氯化过程[J]. 中国有色金属学报, 2003, 13(2): 502-505.
 ZHANG Li-qing, LEI Peng-xiang, YOU Jian, YANG Dong-mei, CHI Ming-yu, WANG Zhi-chang. Carbochlorination process for bastnaesite concentrate in presence of SiCl₄[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(2): 502-505.
 [16] 武田志, 工之見, 雪雕短, 沢田工, 花々枝, 気茂枝花, 如尾石,
- [16] 张丽清, 王之昌, 雷鹏翔, 迟明玉, 杨冬梅. 氟碳铈矿-独居石 混合精矿分离提取稀土元素[J]. 过程工程学报, 2005, 5(3): 285-288.

ZHANG Li-qing, WANG Zhi-chang, LEI Peng-xiang, CHI Ming-yu, YANG Dong-mei. Rare earth extraction and separation from bastnaesite-monazite mixed concentrate by chemical vapor transport[J]. The Chinese Journal of Process Engineering, 2005, 5(3): 285–288.

(编辑 李向群)