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We introduce new quantile estimators with adaptive importance
sampling. The adaptive estimators are based on weighted samples
that are neither independent nor identically distributed. Using a
new law of iterated logarithm for martingales, we prove the con-
vergence of the adaptive quantile estimators for general distributions
with nonunique quantiles thereby extending the work of Feldman and
Tucker [Ann. Math. Statist. 37 (1996) 451–457]. We illustrate the al-
gorithm with an example from credit portfolio risk analysis.

1. Introduction. We introduce a new sample-based quantile estimators
with adaptive importance sampling. Importance sampling is a widely used
technique for variance reduction to improve the statistical efficiency of Monte
Carlo simulations. It reduces the number of samples required for a given level
of accuracy. The basic idea is to change the sampling distribution so that
a greater concentration of samples are generated in a region of the sam-
ple space which has a dominant impact on the calculations. The change of
distribution is then compensated by weighting the samples using the Radon–
Nikodym derivative of the original measure with respect to the new measure.
However, in a multivariate setting, it is far from obvious how such a change
of measure should be obtained.

Given its importance for practical applications, especially for risk man-
agement in the finance industry, the literature on sample-based quantile
estimation with variance reduction is rather sparse.1 The focus of variance
reduction schemes is almost exclusively geared towards the estimation of
expected values. The reason might lie in the additional intricateness that
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sample-based quantile estimators exhibit. The quantile function, viewed as
a map on the space of distribution functions, generally fails to be differen-
tiable in the sense of Hadamard. For certain distributions, the quantile may
be nonunique. If the lower and upper quantiles of a random variable Y for
a probability level α ∈ (0,1), defined as

qα(Y ) = inf{y | P(Y ≤ y)≥ α},
qα(Y ) = sup{y | P(Y ≤ y)≤ α},

are distinct, then the ordinary quantile estimator Y⌊nα⌋,n based on the order
statistics Y1,n, . . . , Yn,n of samples Y1, . . . , Yn is not consistent anymore. For
the special case of independent and identically distributed (i.i.d.) samples
Y1, . . . , Yn, Feldman and Tucker [12] prove that Y⌊nα⌋,n oscillates across the
interval [qα(Y ), qα(Y )] infinitely often. Using the classical law of iterated
logarithm for sequences of i.i.d. random variables, they also show that con-
sistency can be retained for the modified estimator Yν(n),n if the function
ν(n) ∈N satisfies

(1 + k)
√

2n log logn≤ ⌊nα⌋ − ν(n)≤Kn1/2+γ(1.1)

for some positive constants γ, k,K.
For the estimation of expected values with importance sampling, a com-

mon procedure is to apply the change of measure suggested by a large devi-
ation upper bound. Although this approach often leads to an asymptotically
optimal sampling estimator, it can also fail completely, as shown in Glasser-
man and Wang [14].

Our method for quantile estimation does not rely on large deviation prin-
ciples. Instead, it is adaptive. Adaptive algorithms, but only for expected
values and not for quantiles, are introduced in the work of [2] and [3]. They
apply the truncated Robbins–Monro algorithm of Chen, Guo and Gao in [7]
for pricing financial options under different assumptions on the underlying
process. Robbins–Monro methods and stochastic approximation date back
to the historical work of Robbins and Monro [30] and Kiefer and Wolfowitz
[21]. See also [23] and the more recent references [5, 24] and [25].

Using an adaptive strategy to obtain a quantile estimator means that
every new sample is used to improve the parameters of the importance sam-
pling density. Therefore, we cannot rely on the results of Feldman and Tucker
[12]. Our quantile estimators, derived from weighted samples, are neither
independent nor identically distributed. However, we derive a new law of it-
erated logarithms for martingales which allows us to prove the convergence
of the adaptive quantile estimators for distributions with nondifferentiable
and nonunique quantiles without requiring the i.i.d. assumption thereby ex-
tending the result of Feldman and Tucker.
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Our paper is structured as follows. In Section 2, we present the general
setup and we introduce the notation. Section 3 gives a brief review of adap-
tive importance sampling for estimating the mean. In Section 4, we start
with the discussion of the metric structure underlying our adaptive algo-
rithm. We then derive two theorems, Theorems 4.1 and 4.2, which extend
Feldman and Tucker [12]. The proof of the theorems build on a new result
for the law of iterated logarithms for martingales which we present in Theo-
rem 4.4. Finally, in Section 5 we provide an application of our new quantile
estimator which we borrow from credit risk management. All proofs are
delegated to the Appendix.

2. Setup and notation. Let ϕθ(x) be a probability density depending on
a parameter θ of a random variable X relative to some reference measure
λ, defined on a measurable space (X ,F) with a countably generated σ-field
F . We assume that the parameters θ take their values in a metric space
(Θ, d) for some fixed metric d and equip it with the Borel σ-algebra B(Θ).
For now, we do not have to further distinguish the parameter space Θ and
the set of densities {ϕθ(x) | θ ∈Θ}. For the expectation, under the measure
ϕθ dλ, we write

Eθ[f(X)] =

∫

X

f(x)ϕθ(x)dλ(x)(2.1)

and we define for all p, 1≤ p≤∞,

Lp(θ) = {f :X →R | f is F-measurable,‖f‖pθ,p = Eθ[|f(X)|p]<∞}.

Let ϕθ0(x) be our reference or sample density. We assume that all densities
in Θ are absolutely continuous with respect to the reference density ϕθ0(x)
and we denote by

wx(θ) =
ϕθ0(x)

ϕθ(x)
(2.2)

the likelihood ratio or Radon–Nikodym derivative. In particular, wx :x 7→
wx(θ) is measurable for all θ ∈Θ. If f ∈L1(θ0), we have

Eθ[wX(θ)f(X)] = Eθ0 [f(X)] ∀θ ∈Θ.(2.3)

For p≥ 1, we introduce the (weighted) moments

mf,p(θ) = Eθ[|wX(θ)f(X)|p] = Eθ0 [wX(θ)p−1|f(X)|p].(2.4)

We use the abbreviation mf (θ) =mf,2(θ) for the second moment and

σ2
f (θ) = Varθ[wX(θ)f(X)] =mf (θ)−Eθ0 [f(X)]2(2.5)

for the variance.
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3. Review: Adaptive importance sampling for estimation of means. Be-
fore we derive our adaptive quantile estimators, we start this section with a
brief review of adaptive importance sampling for the estimation of means.
Consider a function f ∈ L1(θ0). Static importance sampling estimates the
expectation Eθ0 [f(X)] by the weighted sample average

ês(n, f) =
1

n

n
∑

i=1

wXi(θ)f(Xi)(3.1)

with Xi ∼ ϕθ dλ i.i.d. The usual error estimates based on the central limit
theorem indicate that the most advantageous choice for θ would be the
variance minimizer

θ∗ = argmin
θ∈Θ

σ2
f (θ) = argmin

θ∈Θ
mf (θ).(3.2)

Unfortunately, in most cases (3.2) cannot be solved explicitly. An alternative
to the approach on the basis of large deviation upper bounds is an adaptive
strategy. The solution θ∗ is estimated by a sequence (θn)n≥0, generated,
for instance, by a stochastic approximation algorithm of Kiefer–Wolfowitz
or Robbins–Monro type. Replacing the fixed parameter θ in (3.1) by the
sequentially generated parameters (θn)n≥0 leads to the adaptive importance
sampling estimator

êa(n, f) =
1

n

n
∑

i=1

wXi(θi−1)f(Xi),(3.3)

where Xn ∼ ϕθn−1(x)dλ(x) is simulated from the importance sampling dis-
tribution determined from the parameter θn−1. In contrast to static impor-
tance sampling, the random variables wXn(θn−1) and f(Xn) in (3.3) are
neither independent nor identically distributed. However, we still obtain a
martingale.

Lemma 3.1. Let θn be a sequence of parameters and Xn ∼ ϕθn−1 dλ.
Define Fn = σ(θ0, . . . , θn,X1, . . . ,Xn). Then, for f ∈L1(θ0),

Mn =

n
∑

i=1

(wXi(θi−1)f(Xi)−Eθ0 [f(X)])(3.4)

is a martingale with respect to the filtration F= (Fn)n≥0.

Proof. If (Zn)n≥0 is a sequence of integrable random variables, then

Mn =
n
∑

i=1

(Zi − E[Zi | Z1, . . . ,Zi−1])(3.5)
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is a martingale. The integrability of wXi(θi−1)f(Xi) and the martingale
property for (3.4) follow from

E[wXi(θi−1)f(Xi) | Fi−1] = Eθi−1
[wXi(θi−1)f(Xi)] = Eθ0 [f(X)],(3.6)

where the second equality is a consequence of (2.3). �

A strong law of large numbers and a central limit theorem for (3.3) has
been obtained in [2] by applying classical martingale convergence results for
which we refer to [17] and [15]. For a proof of the theorem below, we refer
to [2].

Theorem 3.1. Let θn, Xn, and F= (Fn)n≥0 be as in Lemma 3.1. As-
sume that θn → θ∗ ∈Θ converges almost surely and that there exists a > 1
such that for all θ ∈Θ

Eθ[|wX(θ)f(X)|2a]<∞,(3.7)

the function mf,2a : θ 7→mf,2a(θ) is continuous in θ∗, and

E[mf,2a(θn)]<∞ ∀n≥ 0.(3.8)

Then

lim
n→∞

1

n

n
∑

i=1

wXi(θi−1)f(Xi) = Eθ0 [f(X)] almost surely,(3.9)

and

√
n

(

1

n

n
∑

i=1

wXi(θi−1)f(Xi)−Eθ0 [f(X)]

)

d→N(0, σ2
f (θ
∗)),(3.10)

where
d→ denotes convergence in distribution.

4. Adaptive importance sampling for quantile estimation. Having re-
viewed the estimation of the mean with adaptive importance sampling in
the previous section, we introduce now the metric structure and the algo-
rithm that underlies our new adaptive quantile estimation.

4.1. Riemannian structure for parameter tuning. The procedure to esti-
mate the variance optimal parameter (3.2) crucially depends on the metric
structure of the parameter space Θ. The metric is not only important if
it comes to the actual numerical implementation, but is also material to
determine existence and uniqueness of a solution.

Let the parameter space Θ be a smooth manifold. It is known that the
canonical metric on a family of densities {ϕθ(x) | θ ∈Θ} is induced by the
Riemannian structure given by the Fisher information metric

g = Eθ[dlX ⊗ dlX ].(4.1)
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Here, lx(θ) = logϕθ(x) is the log-likelihood function with differential

dlx :Θ→ T ∗Θ,(4.2)

considered as a one-form on Θ and with T ∗Θ, the co-tangent space of the
manifold Θ. In particular, (4.1) defines a nondegenerate symmetric bilinear
form on the tangent space TΘ, hence a Riemannian metric.2

Having equipped the parameter space Θ with a Riemannian metric, we
can formulate the first order condition for (3.2) in terms of the Riemannian
gradient ∇ as

∇mf (θ) = 0.(4.3)

Under suitable assumptions on X and the likelihood ratio wx(θ), we can
exchange integration and differentiation to arrive at

∇mf (θ) =−Eθ0 [f(X)2wX(θ)∇lX(θ)] =−Eθ[f(X)2wX(θ)2∇lX(θ)](4.4)

with ∇lx(θ) the Riemannian gradient of the log-likelihood. To approximate
a solution ∇mf (θ

∗) = 0, we can now use the representation (4.4) and a
stochastic approximation scheme

θn+1 = θn + γn+1H(Xn+1, θn), Xn+1 ∼ ϕθn dλ,(4.5)

with average descent direction

H(X,θ) =−f(X)2wX(θ)2∇lX(θ).(4.6)

In this paper, we want to keep the focus on adaptive importance sampling
for quantile estimation and we therefore restrict ourselves to vector spaces.
An example with a flat metric is provided by the Gaussian densities

Θ= {N(θ,Σ) | θ ∈R
k}(4.7)

with fixed covariance structure Σ.3 The first and second order differentials
of the likelihood lx(θ) are

dlx(θ) = Σ−1(x− θ), d2lx(θ) =−Σ−1.(4.10)

2For the basic concepts of Riemannian geometry, we refer to [20, 22] and the references
therein. The usage of the Riemannian metric based on the Fisher information goes back
to [28].

3A well-known example of a nonflat Riemannian structure on a space of distributions
is the Fisher information metric of a location scale family of densities

Θ=

{

ϕ(µ,σ)(x) =
1

σ
ϕ

(

x− µ

σ

)

∣

∣

∣
(µ,σ) ∈R×R

+

}

.(4.8)

A second example is given by the space of all multivariate normal distributions

Θ= {N(θ,Σ) | θ ∈R
k,Σ ∈ S+(k)}(4.9)

which is not flat anymore.
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Hence, the Fisher metric on Θ is

gΣ(u, v) =−Eθ[d
2lX(θ)(u, v)] = u⊤Σ−1v.(4.11)

Because

gΣ(∇lx(θ), u) =∇lx(θ)
⊤Σ−1u= dlx(θ)(u) = (x− θ)⊤Σ−1u,(4.12)

the gradient of the likelihood with respect to the metric (4.11) is

∇lx(θ) = (x− θ).(4.13)

Note that the gradient ∇ of the Fisher metric defers by a factor of Σ−1 from
the gradient induced by the standard Euclidian metric.

4.2. Parameter tuning with adaptive truncation. In practical applica-
tions, the parameter space Θ is often noncompact or it is difficult to a
priori identify a bounded region to which the optimal parameter must be-
long. We therefore suppose that the parameter sequence (θn)n≥0 is generated
by an algorithm that enforces recurrence and boundedness of the sequence
θn by adaptive truncation. A series of work [6–10] shows that stochastic ap-
proximation algorithms with adaptive truncation behave numerically more
smoothly and converge under weaker hypotheses. No restrictive conditions
on the mean field or a-priori boundedness assumptions have to be imposed.
We follow Andrieu, Moulines and Priouret [1] who analyze the convergence of
stochastic approximation algorithms with more flexible truncation schemes
and Markov state-dependent noise. To specify the algorithm, we let (Kj)j∈N
be an increasing compact covering of Θ satisfying

Θ=

∞
⋃

j=1

Kj,Kj ⊂ int(Kj+1)(4.14)

and

γ = (γn)n∈N, ǫ= (ǫn)n∈N,(4.15)

two monotonically decreasing sequences. We introduce the counting vari-
ables

(κn, νn, ζn)n∈N ∈N×N×N,(4.16)

where κn records the active truncation set in the compact covering, νn counts
the number of iterations since the last re-initialization (truncation) and ζn is
the index in the sequences γ, ǫ introduced in (4.15). If νn 6= 0, the algorithm
operates in the active truncation set Kκn so that

θj ∈Kκn ∀j ≤ n with νj 6= 0.(4.17)
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If νn = 0, the update at iteration n caused a jump outside of the active
truncation set Kκn and triggers a re-initialization at the next iteration n+1.
We assume that a stochastic vector field is generated from a measurable map

H :X ×Θ→Θ,(4.18)

where X and Θ are both equipped with countably generated σ-fields B(X )
and B(Θ), respectively. We also suppose that Θ is an open subset of some
Euclidian vector space.

To handle jumps outside the parameter space Θ, we introduce an isolated
point θc taking the role of a cemetery point. Let Θ̄ = Θ ∪ {θc}. For an

arbitrary γ ≥ 0, we define a kernel Qγ on X × Θ̄ by

Qγ(x, θ;A×B) =

∫

A
Pθ(dy)1{θ+γH(y,θ)∈B}

(4.19)

+ 1{θc∈B}

∫

A
Pθ(dy)1{θ+γH(y,θ)/∈B},

where (x, θ) ∈X ×Θ and A ∈ B(X ), B ∈ B(Θ̄), and Pθ(dx) is a measure on
X parameterized by θ. For a sequence of step sizes γ, we define the process
(Xn, θn) by

(Xn+1, θn+1)∼Qγn+1(Xn, θn; ·)(4.20)

unless θn = θc, in which case we stop the process and set θn+1 = θc, Xn+1 =
Xn. The law of the nonhomogeneous Markov process (4.20) with initial
conditions (x, θ), represented on the product space (X × Θ̄)N, is denoted by
P
γ

x,θ. Let X0 ⊂X be a compact subset

Φ :X ×Θ→X0 ×K0,(4.21)

be a measurable map and φ :N→ Z with φ(n)>−n.

Algorithm 4.1. The stochastic approximation algorithm with adap-
tive truncation is the homogeneous Markov chain defined by the following
transition law from step n to n+ 1:

(i) If νn = 0, then we perform a reset operation which starts in X0 ×K0

and draws

(Xn+1, θn+1)∼Qγζn
(Φ(Xn, θn);dx× dθ).

Otherwise, we simulate

(Xn+1, θn+1)∼Qγζn
(Xn, θn;dx× dθ).
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(ii) If ‖θn+1 − θn‖ ≤ ǫζn and θn+1 ∈Kκn , then we update

νn+1 = νn +1, ζn+1 = ζn + 1, κn+1 = κn;

else we prepare for a reset operation in the next iteration by setting

νn+1 = 0, ζn+1 = φ(ζn), κn+1 = κn +1.

The convergence of Algorithm 4.1 under suitable conditions on the mea-
sure Pθ(dx), the mean field h defined as

h(θ) =

∫

X

H(x, θ)Pθ(dx)(4.22)

and the sequences γ, ǫ are established in [1].4

4.3. Quantile estimation. After having introduced the metric structure
and the parameter tuning in the previous sections, we can now turn our
focus to the estimation of quantiles of a real-valued random variable

Y =Ψ(X), Ψ:X →R,

defined in terms of an F -measurable function Ψ. We denote by

qα = qα(Y ) = inf{y | P(Y ≤ y)≥ α}, 0< α< 1,

the lower α-quantile of Y . Furthermore, let (θn)n≥0 be a sequence of tuning
parameters. In favor of a more compact notation, we introduce the abbrevi-
ations

wn =wXn(θn−1), Yn =Ψ(Xn), n≥ 1.(4.23)

We recall that, under the assumptions of Theorem 3.1, the weights wn satisfy

E[wn | Fn−1] = Eθn−1 [wn] = 1,
1

n

n
∑

i=1

wi → 1 almost surely.(4.24)

We first consider generalizations of the empirical distribution function to
weighted samples. Because the sum of the weights

∑n
i=1wi is not neces-

sarily normalized to one, we introduce the renormalized weighted empirical
distribution function

Fn,w(y) =
1

∑n
i=1wi

n
∑

i=1

wi1{Yi≤y}(4.25)

4In fact, [1] treat the more general case of state dependent noise where the measure
Pθ(dy) takes the form of a Markov kernel Pθ(x,dy).
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and set

Fn,w,ν(y) =
1

ν(n)
Fn,w(y),(4.26)

where ν :N→ R
+ is a normalization function, which we determine later to

prevent the oscillation of the quantile estimators. We can use the increasing
function Fn,w,ν to define the quantile estimator

qn,w,ν(α) = F←n,w,ν(α) = inf{y | Fn,w,ν(y)≥ α},(4.27)

where F←n,w,ν is the generalized inverse of Fn,w,ν . Besides the re-normalized
weighted empirical distribution function (4.25), there are alternative ways
to generalize the empirical distribution function to weighted samples. For
example,

F l
n,w,ν(y) =

1

ν(n)

n
∑

i=1

wi1{Yi≤y}(4.28)

puts the emphasis on the left tail of the distribution. However, if the concern
is on the right tail, then

F r
n,w,ν(y) =

1

ν(n)

n
∑

i=1

wi1{Yi≤y} +

(

1− 1

ν(n)

n
∑

i=1

wi

)

(4.29)

= 1− 1

ν(n)

n
∑

i=1

wi1{Yi>y}

is the proper choice. We denote the corresponding quantile estimators by

qln,w,ν(α) = F l←
n,w,ν(α), qrn,w,ν(α) = F r←

n,w,ν(α).(4.30)

The functions (4.26), (4.28) and (4.29) are no longer genuine empirical distri-
bution functions because conditions limx→−∞F (x) = 0 and limx→∞F (x) =
1 may be violated. However, we still have

lim
y→−∞

Fn,w,ν(y) = 0, lim
y→−∞

F l
n,w,ν(y) = 0, lim

y→∞
F r
n,w,ν(y) = 1.

For studying the convergence of the weighted quantile estimators, we as-
sume that the sequence (θn)n≥0 is generated by any adaptive algorithm as
described in Section 4.2 which converges to some limit value θ∗. We would
like to point out that it is not required that θ∗ is the solution of a vari-
ance minimization problem such as given by (3.2). Later, we will propose a
specific tuning algorithm and state verifiable conditions that guarantee its
convergence.
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Assumption 4.1. (Kj)j∈N is a compact exhaustion of the parameter
space as in (4.14). The sequence (θn)n≥0 satisfies

θn → θ∗ ∈Θ almost surely.(4.31)

For any ρ ∈ (0,1), there exists a constant C(ρ) such that

P

(

sup
n≥1

κn ≥ j
)

≤C(ρ)ρj ,(4.32)

where κn is the counter of the active truncation set of (θn)n≥0 defined in
such a way that (4.17) holds. For some p∗ > 1, there exists W ∈Lp∗(θ0) such
that for any compact set K⊂Θ,

1{θ∈K}wx(θ)≤Cp∗(diam(K))W (x),(4.33)

where Cp∗(diam(K)) is a constant only depending on p∗ and the diameter
of K. The compact covering (4.14) is selected such that

Cp∗(diam(Kj))≤ ekp∗+mp∗j(4.34)

for some positive constants kp∗ , mp∗ .

Because of (4.32), the number of truncations remains almost surely finite
and every path of θn remains in a compact subset of Θ. However, this
does not imply that there exists a compact set K∗ such that θn ∈K∗ almost
surely for all n.5 Condition (4.33) guarantees the continuity of moments as a
function of the parameters θ. Condition (4.34) provides a growth restriction
on the compact exhaustion (4.14).

We first address convergence when quantiles are unique but without im-
posing differentiability of the distribution function at the quantiles.

Theorem 4.1. Assume that the distribution function F (y) = P(Y ≤ y)
is strictly increasing at qα. Under Assumption 4.1,

qn,w,ν(α)→ qα almost surely (n→∞),

for the normalization function ν(n)≡ 1, and

qrn,w,ν(α)→ qα, q
l
n,w,ν(α)→ qα almost surely (n→∞),

for ν(n) = n.

If the quantiles are not unique, a proper choice of the normalization func-
tion ν(n) eliminates the oscillatory behavior and leads to consistent estima-
tors. For notational convenience, let

v = σ2
1(θ
∗) and vα = σ2

1(−∞,qα]◦Ψ(θ
∗) = σ2

1(qα,∞)◦Ψ(θ
∗).(4.35)

5We would like to thank the anonymous referee for pointing this out to us.
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Theorem 4.2. Suppose the conditions in Assumption 4.1 are satisfied.
If there exists η > 0, k > 0, and 0< γ < 1

2 such that

n− kn1/2+γ

n− (1 + η)
√

2nv log log(nv)
(4.36)

≤ ν(n)≤ n− (1 + η)/α
√

2nvα log log(nvα)

n+ (1+ η)
√

2nv log log(nv)
,

then

qn,w,ν(α)→ qα almost surely (n→∞).(4.37)

If there exists η > 0, k > 0, and 0< γ < 1
2 such that

n+
1+ η

1−α

√

2nvα log log(nvα)≤ ν(n)≤ n+ kn1/2+γ ,(4.38)

then

qrn,w,ν(α)→ qα almost surely (n→∞).(4.39)

If there exist η > 0, k > 0, and 0< γ < 1
2 such that

n− kn1/2+γ ≤ ν(n)≤ n− 1 + η

α

√

2nvα log log(nvα),(4.40)

then

qln,w,ν(α)→ qα almost surely (n→∞).(4.41)

The proofs of Theorems 4.1 and 4.2 are given in Section 6. They rely on a
law of iterated logarithm for martingales which we present in a later section
(Section 4.6).

The normalization functions used in Theorem 4.2 are difficult to imple-
ment, because vα depends on the unknown quantile qα and the unknown
limit parameter θ∗. In this regard, the following corollary is helpful.

Corollary 4.1. If θ∗ = argminθ σ
2
1(qα,∞)◦Ψ(θ), then

vα = σ2
1(qα,∞)◦Ψ(θ

∗)

≤ σ2
1(qα,∞)◦Ψ(θ0) = Pθ0(Ψ(X)> qα)− Pθ0(Ψ(X)> qα)

2 ≤ 1
4 .

Therefore, the conclusions of Theorem 4.2 hold, if vα in conditions (4.36),
(4.38), and (4.40) is replaced by 1

4 .
To compare Theorem 4.2 with Theorem 4 of Feldman and Tucker in [12],

we state here a refined version of their result.
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Theorem 4.3. Let Y1,n, . . . , Yn,n be the order statistics of i.i.d. samples
Y1, . . . , Yn of a random variable Y . Let

wα = P(Y ≤ qα(Y ))− P(Y ≤ qα(Y ))2.(4.42)

If the normalization function ν(n) ∈N satisfies

(1 + k)
√

2wαn log logn≤ ⌊nα⌋ − ν(n)≤Kn1/2+γ(4.43)

with γ, k,K positive constants, then Yν(n),n → qα(Y ) almost surely.

We omit the proof, as it is similar to the proof of Theorem 4.2. Condition
(4.43) is now expressed in a way that allows a direct comparison with (4.38).
We recall the original condition in Theorem 4 of Feldman and Tucker,

(1 + k)
√

2n log logn≤ ⌊nα⌋ − ν(n)≤Kn1/2+γ ,(4.44)

which apparently does not depend on the variance of the tail probabilities.
However, because wα ≤ 1

4 we see that (4.43) is indeed a weaker assumption
than (4.44) used in [12].

4.4. Sequential parameter tuning for quantile estimation. We still have
to provide a strategy to determine the limit parameter θ∗ and the construc-
tion of an approximation sequence θn converging to θ∗ almost surely. For the
estimation of the expected value E[f(X)], Theorem 3.1 suggests that the op-
timal parameter θ∗ is the variance minimizer θ∗ = argminθ σ

2
f (θ) which can

be estimated by a stochastic approximation algorithm. However, for quan-
tile estimation, the choice of an optimal parameter θ∗ is less obvious. If the
distribution function F of the random variable Y =Ψ(X) is differentiable in
a neighborhood of qα, the functional delta-method applied to the empirical
process (see, e.g., Corollary 21.5 of [33]) suggests to minimize the variance
of the weighted tail event wX(θ)1{Ψ(X)>qα} such that

θ∗ = argmin
θ

m1(qα,∞)◦Ψ(θ).(4.45)

Instead of arguing with the delta-method as above, we can also use The-
orem 4.2 to motivate the choice (4.45) even in the most general situation, in
which quantiles may not be unique. For instance, let us consider the quan-
tile estimator qrn,w,ν. The bounds for ν(n) in (4.38) lead to a bias for qrn,w,ν.
To minimize this bias, we must ensure that ν(n) is as close as possible to
n while, at the same time, satisfying condition (4.38). This means that we
must select vα such that the term

√

2nvα log log(nvα) becomes as small as
possible. From the definition of vα in (4.35), we see that the parameter θ∗

satisfying (4.45) provides the smallest value for vα. The same arguments
hold for qln,w,ν.
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For the estimator qn,w,ν(α) defined in (4.27), we must keep ν(n) as close as
possible to 1 in order to minimize the bias. From condition (4.36), we see that
we must not only minimize

√

2nvα log log(nvα), but also
√

2nv log log(nv).
Hence, for qn,w,ν(α) we have to choose θ to make both the variance of the
weighted tail event wX(θ)1{Ψ(X)>qα} and the variance of the weights wX(θ)
as small as possible.

Unfortunately (4.45) is not constructive either because the quantile qα is
not yet known and must be replaced by a suitable estimator. Suppose now
that we could find a rough estimate q̂α for the quantile qα; then the scheme
(4.5) based on the stochastic gradient,

Hq̂α(Xn+1, θn), Xn+1 ∼ ϕθn dλ(4.46)

with

Hq(x, θ) =−1{Ψ(x)>q}wx(θ)
2∇lx(θ)(4.47)

could be used to generate a sequence (θn)n≥0 approximating the solution
θ∗ for the first order condition ∇m1(qα,∞)◦Ψ(θ

∗) = 0. However, if qα is an

extreme quantile, the simulated values for the stochastic gradient (4.46)
would be mostly zero for parameter values θn close to the starting value θ0.
Even worse, if the simulation produces a nonvanishing stochastic gradient,
it is generally very inaccurate and could drive the parameter values to a
wrong region of the parameter space. As a consequence, the convergence
rate of the algorithm is very poor. It freezes at an early stage and one
might be tempted to use a sufficiently large step size. However, in practical
applications, compensating an erratic stochastic gradient with a large step
size is not a solution, as it increases the risk that the algorithm fails to
converge.

A simple and practically very efficient approach is to gradually bridge
from a moderate tail event to an extreme tail event during the simulation.
More precisely, let

Mq1,q2(θ) = b(n)m1(q1,∞)◦Ψ(θ) + (1− b(n))m1(q2,∞)◦Ψ(θ)(4.48)

with b(n) weighting functions depending on the sample index n. The val-
ues qi are selected such that qα ∈ [q1, q2]. We choose q1 such that {Ψ(X)>
q1} is a moderate tail event. Hence, the corresponding stochastic gradient
Hq1(Xn+1, θn) can be estimated with sufficient accuracy for θn in a neigh-
borhood of θ0. The value q2 is selected in the range of qα or even larger.
A preliminary simulation or some initial samples can be used to obtain a
crude estimate for qα, including a confidence interval. The function b(n)
is assumed to converge to zero as n→∞. A suitable choice would be, for
example, b(n) = 1/ log(n + 1) which decays sufficiently slow such that the
component (4.46) of the stochastic gradient from q1 drives θn towards a
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solution for the extreme tail event. Stochastic approximation with adap-
tive truncation can then be used to generate a sequence of parameters θn
converging to

θ∗ = argmin
θ

Mq1,q2(θ)(4.49)

as we will see below.6

4.5. Verifiable convergence criteria. Each of the above criterion is based
on a stochastic vector field generated by a map H(x, θ). For instance, in case
of (4.48), we have

H(x, θ) = b(n)Hq1(x, θ) + (1− b(n))Hq2(x, θ).(4.50)

We provide verifiable conditions onH(x, θ), its mean field, and the sequences
γ, ǫ, which imply the convergence of Algorithm 4.1 for state independent
transition kernels. To this end, we introduce for any compact set K⊂Θ the
partial sum

Sl,n(γ,ǫ,K) = 1{σ(K,ǫ)≥n}

n
∑

k=l

γk(H(Xk, θk−1)− h(θk−1)),

(4.51)
1≤ l≤ n,

where σ(K,ǫ) = σ(K) ∧ ν(ǫ) and σ(K) and ν(ǫ) are the stopping times

σ(K) = inf{k ≥ 1 | θk /∈K},(4.52)

ν(ǫ) = inf{k ≥ 1 | |θk − θk−1| ≥ ǫk}.(4.53)

If a= (al)l∈N is a sequence, we write

a
←k = (al+k)l∈N

for the sequence shifted by the offset k.

Assumption 4.2. The parameter set Θ is an open subset of Rd. For
some p > 1, there exists a function W ∈ Lp(θ0) such that for every compact
set K⊂Θ,

sup
x∈X

sup
θ∈K

‖H(x, θ)‖p
wx(θ)W (x)p

≤CK <∞(4.54)

6Yet another approach is to sequentially update an estimator q̂α for the quantile along
the simulation as well to improve the upper value q2 in (4.49), leading to a coupled stochas-
tic approximation scheme for the parameters (θn, q̂n). A sequential quantile estimator has
been proposed in [32] (see also [31]). Because the quantile estimator does interfere with
the update scheme for the tuning parameter θn, the convergence of the joint parameter
set is more subtle.
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with CK a constant only depending on K. The mean field

h(θ) = Eθ[H(X,θ)](4.55)

is continuous and there exists a C1 Lyapunov function w :Θ→ [0,∞) satis-
fying the following conditions:

(i) There exists 0<M0 <∞ such that

L≡ {θ ∈Θ | 〈h(θ),∇w(θ)〉= 0} ⊂ {θ ∈Θ |w(θ)<M0}.
(ii) ForM > 0, letWM = {θ ∈Θ |w(θ)≤M}. There existsM1 ∈ (M0,∞]

such that WM1 is a compact subset of Θ.
(iii) For any θ ∈Θ \ L it holds that 〈h(θ),∇w(θ)〉< 0.
(iv) The closure of w(L) has empty interior.

The sequences γ, ǫ are nonincreasing, positive, and satisfy ǫn → 0,

∞
∑

n=0

γn =∞,

∞
∑

n=0

(

γ2n +

(

γn
ǫn

)p)

<∞.(4.56)

The existence of a Lyapunov function in (i) simplifies, if h = ∇m is a
gradient field of a continuously differentiable function m. In this case, we can
choose w=m. The next result is along the lines of Proposition 5.2 in [1]. Its
proof is similar to the proof of [1], Proposition 5.2, but less involved because
we consider only state-independent transition probabilities. Therefore, we
do not need to consider the existence and regularity of the solution of the
Poisson equation. The convergence of the algorithm is then a consequence
of [1], Theorem 5.5.

Proposition 4.1. Let

A(δ,M,γ,ǫ) = sup
(x,θ)∈X0×K0

{

P
γ

Φ(x,θ)

(

sup
n≥1

‖S1,n(γ,ǫ,WM )‖> δ
)

(4.57)

+ P
γ

Φ(x,θ)(ν(ǫ)<WM)
}

.

If K0 ⊂ WM0 , then for every M ∈ [M0,M1) there exist n0, δ0 > 0, and a
constant C > 0 such that for all j > n0,

P

(

sup
k≥1

κk ≥ j
)

≤C
(

sup
k≥n

A(δ0,M,γ←k,ǫ←k)
)j

.(4.58)

Under Assumption 4.2, we have for every M ∈ [M0,M1) and δ > 0,

lim
k→∞

A(δ,M,γ←k,ǫ←k) = 0.(4.59)

In particular, the key requirements, (4.31) and (4.32), of Assumption 4.1
are satisfied.
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To completely specify the stochastic approximation algorithm, we first
have to make some selections for the initial parameter θ0. Because our target
criterion puts more emphasis on a moderate tail event at the beginning of
the simulation, it is sensible to start with the reference density. Alternatively,
we can start with a large deviation approximation.

The performance of a stochastic approximation algorithm usually depends
strongly on an appropriate selection of the step size sequence. However, with
the bridging strategy in (4.48), our algorithm is considerably less sensitive
to the choice of the step size parameters. Since the sequence of step size
parameters γn must satisfy condition (4.56), we simply set

γn =
a

n+ 1
(4.60)

and select ǫn accordingly to satisfy the second condition in (4.56). The pa-
rameter a serves as a tuning parameter. A practical approach is to follow
a greedy strategy which starts with a large value for a and reduces it after
each re-initialization. Alternatively we can determine a by some step size
selection criteria based, for example, on an approximation of the Hessian of
the target criterion.

The algorithm can be further robustified by Polyak’s averaging principle.
The idea is to use a large step size γn of the order n−2/3 which converges
much slower to zero than n−1 but is still fast enough to ensure convergence.
The larger step size prevents the algorithm from freezing at an early stage
of the algorithm far off the local minimum. Polyak and Juditsky show in
[27] that the averaged parameters converge at an optimal rate.

4.6. Law of iterated logarithm for martingales. Before we discuss an ap-
plication for our adaptive quantile estimator, we present the law of iter-
ated logarithm for the sequence of martingale differences wXn(θn−1)f(Xn)−
E[f(X)] which we require as an ingredient for the proofs of Theorems 4.1
and 4.2. We state the main result below and present the proof in Section
6. We use the following notation. If Mn is a square integrable martingale
adapted to a filtration (Fn)n≥0 with ∆Mi =Mi−Mi−1, then we denote the
predictable quadratic variation by

〈M〉0 = 0, 〈M〉n =

n
∑

i=1

E[∆M2
i | Fi−1], n≥ 1,(4.61)

the total quadratic variation by

[M ]0 = 0, [M ]n =
n
∑

i=1

∆M2
i , n≥ 1,(4.62)

and by s2n =
∑n

i=1E[∆M2
i ] the total variance.
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Theorem 4.4. Suppose the conditions in Assumption 4.1 are satisfied,
and let f :X →R be a measurable function in Lp(θ0). Assume that

p(p∗ + 1)

p+ p∗
> 4,(4.63)

where p∗ is from condition (4.33). Let

wx : θ 7→wx(θ)(4.64)

be continuous in θ∗ for almost all x ∈ X . Define

ξn =wXn(θn−1)f(Xn)−E[f(X)].(4.65)

Then Mn =
∑n

i=1 ξi is a square integrable martingale and

lim
n→∞

[M ]n
〈M〉n

= 1,(4.66)

lim
n→∞

s2n
n

= (mf (θ
∗)− E[f(X)]2) = σ2

f (θ
∗).(4.67)

Moreover, if we let φ(t) =
√

2t log log(t), then

lim sup
n→∞

φ(Wn)
−1Mn =+1,(4.68)

lim inf
n→∞

φ(Wn)
−1Mn =−1,(4.69)

almost surely, where the weighting sequence Wn is given by either Wn =
[M ]n, Wn = 〈M〉n, or Wn = s2n.

5. Applications. We next provide an explicit example for our adaptive
quantile estimator and compare it to crude Monte Carlo simulation. We
borrow our application from the financial industry, more precisely from
portfolio credit risk. The so-called Value at Risk (VaR) is by far the most
widely adopted measure of risk and represents the maximum level of losses
that can be exceeded only with a small probability. This quantile-based risk
measure is of particular importance to market participants and supervisors.
For credit risk, supervisors require banks to calculate the credit VaR as the
99.9% quantile of the loss distribution.

5.1. Importance sampling for portfolio credit risk. The aim of portfolio
credit risk analysis is to provide a distribution of future credit losses for
a portfolio of obligers based on historically observed losses and possibly
combined with market views. In a simplified setting, the outstanding credit
amount for each obligor i= 1, . . . ,m is aggregated to a net credit exposure
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ci. Defaults are tracked over a single period. At the end of the period, the
portfolio loss is

L=
m
∑

i=1

ciYi,(5.1)

where Yi ∼ Ber(pi) are the default indicators. For portfolios of illiquid com-
mercial loans or corporate credits, the exposures ci are generally assumed
to be constant which gives rise to a discrete loss distribution. The quan-
tiles are nondifferentiable and not unique. Hence, to construct an adaptive
importance sampling algorithm, we can rely on the results of the previous
sections.

For our application, we start from a Gaussian copula framework (see, e.g.,
[11]), in which the default indicators are modeled as

Yi = 1{Ai∈(−∞,θi]}.(5.2)

The credit quality variable Ai is given by

Ai =
√

1− v2s(i)Xs(i) + vs(i)ǫi, i= 1, . . . ,m,(5.3)

for some classification function s :{1, . . . ,m}→ {1, . . . , k}. Usually in credit
risk management, the m obligors are classified into k industry sectors. The
default thresholds θi are calibrated to match the obligors’ default proba-
bilities. The common factors X = (Xs)s=1,...,k ∼ N(0,Σ) are multivariate
Gaussian. The idiosyncratic part ǫ= (ǫi)i=1,...,m ∼N(0,1m) is independent
from X . We restrict ourselves to the adjustment of the mean of the common
factors X and keep the covariance structure Σ fixed. We note that impor-
tance sampling on the common factors can also be combined seamlessly with
importance sampling on the idiosyncratic variables ǫ= (ǫi)i=1,...,m.7

Given the above setup, we are in the setting of Section 4.3 with Y = L=
Ψ(X) and Ψ :Rk →R given as8

Ψ(x) =

m
∑

i=1

ci1{
√

1−v2
s(i)

xs(i)+vs(i)ǫi≤θi}
.(5.4)

For the implementation of the adaptive importance sampling scheme, we
use the criterion (4.48) and determine the values for q1, q2 as described
in Section 4.4, that is, we start with a moderate q1 and choose q2 by an
educated guess in the region of interest.

7For instance, [13] and [26] apply an exponential twist to the conditional default indi-

cators Yi |X ∼ Ber(pi(X)) where pi(x) = Φ((θi −
√

1− v2s(i)xs(i))/vs(i)), is the conditional

default probability.
8For notational convenience, we drop the dependency of Ψ on ǫ as it is not affected by

the importance sampling scheme.
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5.2. Verifying convergence criteria for Gaussian distributions. For our
credit risk application, assume a fixed covariance structure, and endow the
Gaussian distributions (4.9) with the Fisher information metric gΣ in (4.11).
Before we can proceed, we need to make sure that Assumptions 4.1 and
4.2 hold in our setup. The noncompactness of the parameter space and
exponentially unbounded likelihood ratios call for adaptive truncation and
make it a challenging test case, even though the Gaussian distributions have
many special analytical properties. From the expression

wx(θ) = exp(−gΣ(x, θ) +
1
2gΣ(θ, θ))

for the likelihood ratio, it follows that

wx(θ)≤ exp

(

h+2

4
gΣ(θ, θ)

)

exp

(

1

h
gΣ(x,x)

)

∀h≥ 1.(5.5)

The verification of Assumptions 4.1 and 4.2 for the Gaussian distributions
is now a straightforward consequence of (5.5) and Hölder’s inequality.

Lemma 5.1. If ‖f‖θ0,h <∞ for some h > 2, we can exchange differen-
tiation and integration to obtain ∇mf (θ) = Eθ[H(X,θ)] with

H(x, θ) = (θ − x)f(x)2wx(θ)
2.

The Hessian with respect to the Fisher information metric gΣ, given by

∇2mf (θ) = Eθ[(idk+(θ−X)(θ −X)⊤)f(X)2wX(θ)2],(5.6)

is positive definite. If P(f(X)> 0)> 0, then mf (θ)→∞ for gΣ(θ, θ)→∞.
In particular, there is a unique minimizer

θ∗ = argmin
θ

mf (θ) ∈R
k.(5.7)

Moreover, for some p > 1 there exists W ∈ Lp(θ0) satisfying (4.33) and
(4.54).

The parametrization (4.9) works rather well if the ratio of the largest and
smallest eigenvalue of Σ is not too far away from one and the dimension of Σ
is not too large. For many practical applications, the correlation ellipsoid is
very skewed. The first few principal components explain most of the variance
and the last few are negligibly small. Even though the metric defined in
(4.11) properly respects the covariance structure, and we use the gradient
relative to this metric, we require a suitable dimension reduction. Therefore,
we translate the mean in the span of the eigenvalues of the first few principal
components. Let Σ =UΛUT where U is the orthogonal matrix with columns
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given by the eigenvectors, and Λ is the diagonal matrix of eigenvalues. We
write

Jl :R
l →R

k(5.8)

for the embedding of Rl into R
k; that is, Jl sets the last k − l coordinates

to zero with corresponding projection J⊤l :Rk →R
l. Let

Θl = {N(UJl(a),Σ) | a ∈R
l}.(5.9)

The first and second order differential of the likelihood lx(a) is

dlx(a) = J⊤l Λ−1(U⊤x− Jla), d2lx(a) =−J⊤Λ−1J.(5.10)

Hence, the Fisher metric on Θl is

ga(u, v) =−Ea[d
2lX(a)(u, v)] = u⊤J⊤Λ−1Jv.(5.11)

Because

ga(∇lx(a), u) =∇lx(a)
⊤J⊤l Λ−1Jlu= dlx(a)(u) = (x⊤U − a⊤J⊤l )Λ−1Jlu

and x⊤UΛ−1Jlu= x⊤UJlJ
⊤
l Λ−1Jlu, the gradient of the likelihood with re-

spect to the metric (4.11) is

∇lx(a) = (J⊤l U⊤x− a).(5.12)

We adapt Lemma 5.1 to the parametrization given in (5.9).

Lemma 5.2. If ‖f‖θ0,q <∞ for some q > 2, we can exchange differenti-
ation and integration to obtain ∇mf(a) = Eθ(a)[H(X,a)] with

H(x,a) = (a− J⊤l U⊤x)f(x)2wx(θ(a))
2

and θ(a) = UJl(a). The Hessian with respect to the Fisher information met-
ric ga, given by

∇2mf (θ) = Eθ[(idl+(a− J⊤l U⊤X)(a− J⊤l U⊤X)⊤)f(X)2wX(θ(a))2],

is positive definite. If P(f(X)> 0)> 0, then mf (a)→∞ for ga(a, a)→∞.
In particular, there is a unique minimizer

a∗ = argmin
a

mf (a) ∈R
l.(5.13)

Moreover, for some p > 1 there exists W ∈ Lp(θ0) satisfying (4.33) and
(4.54).
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5.3. Numerical example. We consider a set of 2000 obligors with default
probabilities comparable to a typical loan portfolio. We assume that the
portfolio risk is driven by m= 14 industry factors, but restrict our analysis
using only the first two principal components which already explain 84% of
total variance. In the current regulatory framework as promoted by Basel II,
credit risk (as well as operational risk) needs to be calculated at the 99.9%
quantile of the loss distribution. Performing a crude Monte Carlo (MC) sim-
ulation, we see that the loss (expressed in percentage numbers) at the 99.9%
quantile lies somewhere around 0.2. This crude estimate allows us to make
an educated guess for the parameters q1 and q2 required for our adaptive
importance sampling (AIS) estimator. We set q1 = 0.1 and q2 = 0.23. Instead
of using the MC estimate as a starting point, we could also first do an AIS
simulation with some arbitrarily set q1 and q2 to find some more appropriate
numbers in a second simulation. Our numerical experiments indicated that
the algorithm is not very sensitive to these approximate choices. Indeed, we
just have to guarantee that we choose q1 small so that the initial step sizes
are large enough. To clarify this point with an example, we find that we
get almost identical results for q1 = 0.01. More precisely, with a fixed seed
for the random number generator we get an estimate for 99.9%-quantile of
0.2271 with q1 = 0.1 and 0.2276 with q1 = 0.01.

Based on a sample of 10,000 draws, Figure 1 shows the convergence of
the mean shifts for our AIS algorithm. The solid line represents the path for
the step size of order n−2/3. The dashed line represents the averaged values
based on Polyak’s averaging principle. We observe that the shift in the first
principal component, which explains 75% of total variance, is substantial.
The shift in the second component, which explains an additional 9%, is only
very small.

Figure 2 plots the cumulative distribution function for the right tail of
the distribution. In contrast to standard MC simulation, our AIS algorithm
provides a very smooth distribution function. Therefore, we can expect a
considerable reduction for the variance of our quantile estimators. To sub-
stantiate this conjecture, we additionally perform 1000 independent quantile
estimations. In Table 1, we report the results for the standard Monte Carlo
simulations to calculate F←n,1(α) and for our AIS algorithm using the quan-
tile definition in (4.30) which is based on the weighted empirical distribution
F r
n,w,ν(y). The first column shows the different loss levels at which we sim-

ulate the quantiles. The next two columns report the mean values for the
estimations F←n,1(α) and F r,←

n,w,ν(α), respectively. The final row reports the
variance ratio defined as the variance from the MC simulation divided by
the variance of the AIS estimator. When we compare the variances of the
estimators, we observe that for the region of interest, that is, around the
99.9% quantile, our AIS estimator outperforms the result from the MC sim-
ulation by a factor of around 20. This number increases further to more than
112 when we look at the 99.99% quantile.
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Fig. 1. Parameter convergence from Polyak’s averaging principle. The graph illustrates

the convergence of the means of the first two principal components. The solid line represents

the convergence for step size of order n−2/3. The dashed line represents the averaged values.

Panel B zooms in the rectangle area marked in panel A.

6. Proofs. For the proofs for Theorems 4.1, 4.2 and 4.4 we start with
collecting the basic properties of the generalized inverse of an increasing
function.9

Lemma 6.1. Let F be a right continuous increasing function. Then, the
generalized inverse

F←(α) = inf{x | F (x)≥ α}(6.1)

is increasing and left continuous, and we have

F (x)≥ α ⇔ F←(α)≤ x;

F (x)< α ⇔ F←(α)>x;

F (x1)< α≤ F (x2) ⇔ x1 <F←(α)≤ x2;

9See for instance [29], Section 0.2.
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Fig. 2. Cumulative distribution function of Monte Carlo and AIS simulation. The graph

plots the cumulative distribution function using a Monte Carlo simulation and the AIS

algorithm based on 10,000 samples. Our area of interest, the 99.9% quantile, is marked

with a dotted line.

F (F←(α)) ≥ α, with equality for F continuous;

F←(F (x))≤ x, with equality for F← increasing;

F continuous ⇔ F← increasing;

F increasing ⇔ F← continuous.

6.1. Proof of Theorem 4.4 (iterated law of logarithm). Let κn denote the
active truncation set for θn and

κ∞ = lim
n→∞

κn,(6.2)

which exists because of assumption (4.32). We have

θi ∈Kκn ∀i≤ n with νi 6= 0.

To get rid of the condition νi 6= 0, we decompose Mn into

Mn =
n
∑

i=1

ξi1{νi 6=0} +
n
∑

i=1

ξi1{νi=0}.(6.3)
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Table 1

Quantile estimates for standard MC and AIS simulation at different loss levels based on

1000 simulations. Quantiles are expressed in percentage numbers, and the variance ratio

is defined as the variance of F←n,1(α) divided by the variance of F r,←
n,w,ν (α)

Mean (in %)

Loss level λ F
r,←

n,w,ν(α) F
←

n,1(α) Variance ratio

0.1000 98.2449 98.2217 1.7988
0.1100 98.6193 98.6011 2.0759
0.1200 98.9099 98.8943 2.6251
0.1300 99.1366 99.1238 3.0764
0.1400 99.3162 99.3053 3.7290
0.1500 99.4577 99.4488 4.6726
0.1600 99.5701 99.5638 5.9360
0.1700 99.6596 99.6559 6.0449
0.1800 99.7309 99.7287 7.3198
0.1900 99.7877 99.7851 9.7769
0.2000 99.8322 99.8305 12.0368
0.2100 99.8677 99.8663 14.3319
0.2200 99.8955 99.8946 17.5088
0.2300 99.9173 99.9167 21.1197
0.2400 99.9344 99.9340 25.3890
0.2500 99.9477 99.9474 29.9903
0.2600 99.9581 99.9578 35.6695
0.2700 99.9662 99.9658 40.5849
0.2800 99.9726 99.9724 45.6628
0.2900 99.9776 99.9776 49.8262
0.3000 99.9816 99.9817 61.3741
0.3100 99.9849 99.9852 73.4072
0.3200 99.9875 99.9878 87.6728
0.3300 99.9897 99.9899 112.9891
0.3400 99.9914 99.9917 121.8812
0.3500 99.9929 99.9932 134.6083

The second term satisfies
n
∑

i=1

ξi1{νi=0} ≤
κ∞
∑

i=1

ξi1{νi=0} <∞,(6.4)

almost surely, because the number of reinitialization remains finite and con-
verges to zero if normalized by φ(Wn). We can therefore just drop the second
term in (6.3) and assume that

θn ∈Kκn

regardless whether νn 6= 0 holds or not. Let K be an arbitrary compact set.
Assumption (4.33) implies

wx(θn−1)
q−1|f(x)|q1{θ∈K} ≤C(diam(K))q−1W (x)q−1|f(x)|q.(6.5)
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By Hölder’s inequality, we have for q < p and all θ ∈K,

mq,f(θ)1{θ∈K} = Eθ0 [wX(θ)q−1|f(X)|q1{θ∈K}]

≤ ‖f‖qθ0,pC(diam(K))q−1Eθ0 [W (X)p(q−1)/(p−q)](p−q)/q(6.6)

<∞
as long as q satisfies the condition

q <
p(p∗ +1)

p+ p∗
.(6.7)

Note that (6.7) implies also q < p because p(p∗+1)
p+p∗ ≤ p for p ≥ 1. Condition

(4.63) implies

mq,f (θ)<∞ ∀1≤ q ≤ 4.(6.8)

Let K be a compact neighborhood of θ∗. Lebesgue’s theorem together with
the continuity condition (4.64) and the upper bound (6.5), which is inte-
grable by (6.6), shows that

mf,q : θ 7→mf,q(θ)(6.9)

is continuous for q ≤ 4. Without loss of generality, we assume from now on
that E[f(X)] = 0. By assumptions (4.33) and (4.34), we have for q < p and
a > 1

E[wXn(θn−1)
q|f(Xn)|q1{κ∞=j} | Fi−1]

= Eθ0 [wXn(θn−1)
q−1|f(Xn)|q1{κ∞=j}]

≤ ‖f‖qθ0,pEθ0 [wXn(θn−1)
p(q−1)/(p−q)

1{κ∞=j}]
(p−q)/p

≤ ‖f‖qθ0,pP(κ∞ = j)(p−q)/p1/a,

Eθ0 [wXn(θn−1)
p(q−1)/(p−q)a/(a−1)

1{κ∞=j}]
(p−q)/p(a−1)/a

≤ ‖f‖qθ0,pC(ρ)(p−q)/p1/aekp∗(p−q)/p1/a

× (ρ(p−q)/p1/a+p(q−1)/(p−q)mp∗ logρ(e))j‖W‖q−1θ0,q1
<∞,

if q1 ≤ p∗ holds for

q1 =
p(q− 1)

p− q

a

a− 1
.(6.10)

We may choose a arbitrarily large at the expense of increasing the constant
in the above estimate. Therefore, q1 ≤ p∗ holds if

p(q − 1)

p− q
< p∗(6.11)
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which is equivalent to (6.7). Next, we choose

ρ < e−amp∗p(q−1)/(p−q),(6.12)

such that we can sum over j = 1, . . . ,∞ to obtain

mf,q(θn−1) = E[wXn(θn−1)
q|f(Xn)|q | Fn−1]

=
∞
∑

j=1

E[wXn(θn−1)
q|f(Xn)|q1{κ∞=j} | Fn−1]

<C(ρ, a, p, p∗, q,‖f‖θ0,p,‖W‖θ0,p∗)

with an upper bound independent of n. Assumption (4.63) implies that

sup
n

E[mf,q(θn−1)]<∞ ∀1≤ q ≤ 4.(6.13)

We have

〈M〉n =

n
∑

i=1

(mf,2(θi−1)−E[f(X)]2).(6.14)

Because θ 7→ mf,2(θ) is continuous at θ∗ and θi−1 → θ∗ almost surely, we
obtain from Cesaro’s lemma that

〈M〉n
n

=
1

n

n
∑

i=1

(mf,2(θi−1)−E[f(X)]2) → mf,2(θ
∗)−E[f(X)]2 = σ2

f (θ
∗),

almost surely. By (6.13) and Lebesgue’s dominated convergence theorem,

s2n
n

=
E[〈M〉n]

n
→ σ2

f (θ
∗).(6.15)

Set

M̄n =
n
∑

i=1

(ξ2i − E[ξ2i | Fi−1]).

By (6.13) M̄n is a square integrable martingale because

E[∆M̄2
i | Fi−1] = E[(ξ2i − E[ξ2i | Fi−1])

2 | Fi−1]

≤ 8(mf,4(θi−1) +E[f(X)]4).

More precisely,

E[∆M̄2
i | Fi−1] =mf,4(θi−1)−mf,2(θi−1)

2 − 4mf,3(θi−1)E[f(X)]

+ 8mf,2(θi−1)E[f(X)]2 − 4E[f(X)]4.
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The continuity of θ 7→mf,p(θ) in θ∗ for 1≤ p≤ 4 and Cesaro’s lemma imply

1

n

n
∑

i=1

E[∆M̄2
i | Fi−1]

→mf,4(θ
∗)−mf,2(θ

∗)2 − 4mf,3(θ
∗)E[f(X)](6.16)

+ 8mf,2(θ
∗)E[f(X)]2 − 4E[f(X)]4,

almost surely, which together with (6.15) implies

lim
n→∞

s−2n

n
∑

i=1

(ξ2i − E[ξ2i | Fi−1]) = lim
n→∞

1

n

n
∑

i=1

(ξ2i − E[ξ2i | Fi−1]) = 0,(6.17)

almost surely. Therefore,

lim
n→∞

[M ]n
〈M〉n

= 1+ lim
n→∞

(〈M〉n
n

)−1 1
n

n
∑

i=1

(ξ2i −E[ξ2i | Fi−1]) = 1,(6.18)

almost surely. To apply Corollary 4.2 in [15], we need to verify the three
conditions:

s−2n [M ]n → η2 > 0 almost surely;(6.19)

∀ε > 0

∞
∑

n=1

s−1n E[|ξn|1{|ξn|>εsn}]<∞;(6.20)

∃δ > 0
∞
∑

n=1

s−4n E[|ξn|41{|ξn|≤δsn}]<∞.(6.21)

Condition (6.19) holds because

lim
n→∞

[M ]n
s2n

= lim
n→∞

(

s2n
n

)−1 〈M〉n
n

+ lim
n→∞

s−2n

n
∑

i=1

(ξ2i −E[ξ2i | Fi−1])(6.22)

= 1,

almost surely, as a consequence of (6.15) and (6.17). By (6.15), we may
replace s2n by n for the verification of conditions (6.20) and (6.21).

Let 1< a < 2. We first approach (6.20). From Hölder’s and Chebyshev’s
inequalities, we have

√
n
−1

E[|ξn|1{|ξn|>ε
√
n}]

≤
√
n
−1

E[|ξn|2a]1/(2a)P(|ξn|> ε
√
n)1−1/(2a)
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(6.23)

≤
√
n
−1

E[|ξn|2a]1/(2a)E[|ξn|2a]1−1/(2a)
(

1

ε
√
n

)2a−1

≤ ε1−2aE[|ξn|2a]n−a

for every fixed ε > 0. Therefore,

∞
∑

n=1

√
n
−1

E[|ξn|1{|ξn|>ε
√
n}]≤ ε1−2a

∞
∑

n=1

E[|ξn|2a]n−a <∞.(6.24)

This last equation implies condition (6.20). To check condition (6.21), note
that

∞
∑

n=1

n−2E[|ξn|41{|ξn|≤δ√n}]≤
∞
∑

n=1

n−2E[(δ
√
n)4−2a|ξn|2a1{|ξn|≤δ√n}]

(6.25)

≤ δ4−2a
∞
∑

n=1

n−aE[|ξn|2a]<∞.

The sums (6.24) and (6.25) are finite because

E[|ξn|2a | Fn−1]≤ 22a−1(mf,2a(θn) +E[f(X)]2a),(6.26)

and supnE[mf,2a(θn)]<∞, as shown in (6.13).

6.2. Proof of Theorem 4.2. Under the assumptions of Theorem 4.2, the
boundedness of the functions

fy = 1(−∞,y] ◦Ψ, 1− fy, y ∈R(6.27)

allows us to apply the law of iterated logarithm (Theorem 4.4). We verify
the convergence statement by proving that

P(qn,w,ν(α)≤ qα − δ i.o.) = 0 ∀δ > 0,(6.28)

and

P(qn,w,ν(α)> qα i.o.) = 0,(6.29)

where i.o. stands for infinitely often and is defined as

An i.o. = limsup
n

An =
∞
⋂

n=1

∞
⋃

k=n

Ak.(6.30)

Let F (y) = P(Y ≤ y) denote the distribution function of Y =Ψ(X). We first
analyze the estimator qn,w,ν(α). Define

An(δ) = {qn,w,ν(α)≤ qα − δ}.(6.31)
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It follows from (4.26) and Lemma 6.1 that

An(δ) =

{

1

ν(n)
∑

iwi

∑

i

wi1{Yi≤qα−δ} ≥ α

}

(6.32)

=

{

∑

i

(wi1{Yi≤qα−δ} −F (qα − δ))≥ ν(n)α
∑

i

wi − nF (qα − δ)

}

.

Let

Wn(η) =

{
∣

∣

∣

∣

∑

i

(wi − 1)

∣

∣

∣

∣

≤ (1 + η)φ(nv)

}

.(6.33)

We consider

An(δ)⊂An(δ) ∩Wn(η) ∪ ∁Wn(η).(6.34)

Then

An(δ) ∩Wn(η)

⊂
{

∑

i

(wi1{Yi≤qα−δ} − F (qα − δ))(6.35)

≥ ν(n)α(n− (1 + η)φ(nv))− nF (qα − δ)

}

.

Similarly, we have

Bn = {qn,w,ν(α)> qα}
(6.36)

=

{

∑

i

(wi1{Yi≤qα} −F (qα))< ν(n)α
∑

i

wi − nF (qα)

}

and

Bn ∩Wn(η)

⊂
{

∑

i

(wi1{Yi≤qα} −F (qα))(6.37)

< ν(n)α(n+ (1 + η)φ(nv))− nF (qα)

}

.

For arbitrary η > 0, let

ALIL
n (δ, η) =

{

∑

i

(wi1{Yi≤qα−δ} −F (qα − δ))≥ (1 + η)φ(nvqα−δ)

}

(6.38)
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and

BLIL
n (η) =

{

∑

i

(wi1{Yi≤qα} −F (qα))≤−(1 + η)φ(nvα)

}

.(6.39)

Then
1+ η

α
φ(nvqα−δ) +

F (qα − δ)

α
n≤ ν(n)(n− (1 + η)φ(nv))

(6.40)
=⇒ An(δ) ∩Wn(η)⊂ALIL

n (δ, η)

and

ν(n)(n+ (1 + η)φ(nv))≤ F (qα)

α
n− 1 + η

α
φ(nvα)

(6.41)
=⇒ Bn ∩Wn(η)⊂BLIL

n (δ, η).

Recall that

lim sup
n

(An ∪Bn) = limsup
n

An ∪ lim sup
n

Bn.(6.42)

Hence, if (6.40) is satisfied, we have

P(An(δ) i.o.)≤ P(An(δ) ∩Wn(η) i.o.) + P(∁Wn(η) i.o.)
(6.43)

≤ P(ALIL
n (δ, η) i.o.) + P(∁Wn(η) i.o.).

From the law of iterated logarithm in Theorem 4.4, we know that

P(ALIL
n (δ, η) i.o.) = 0, P(∁Wn(η) i.o.) = 0.(6.44)

Therefore, P(An(δ) i.o.) = 0 for all δ > 0. In the same way, we obtain

P(Bn i.o.) = 0.(6.45)

To verify that condition (4.36) implies (6.41) and (6.41), it is sufficient to
note that F (qα)≥ α. Because F (qα − δ)<α, it follows that

1 + η

α
φ(nvqα−δ) +

F (qα − δ)

α
n≤ n− kn1/2+γ

for n large enough and for all δ > 0.
The convergence proof for qrn,w,ν(α) is slightly simpler. From (4.29) and

Lemma 6.1, we get

Ar
n(δ) = {qrn,w,ν(α)≤ qα − δ}

=

{

1− 1

ν(n)

∑

i

wi1{Yi>qα−δ} ≥ α

}

(6.46)

=

{

∑

i

(wi1{Yi>qα−δ} − (1− F (qα − δ)))

≤ ν(n)(1−α)− n(1−F (qα − δ))

}
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and

Br
n = {qrn,w,ν(α)> qα}

=

{

∑

i

(wi1{Yi>qα} − (1−F (qα)))(6.47)

> ν(n)(1−α)− n(1− F (qα))

}

.

For arbitrary η > 0, let

Ar,LIL
n (δ, η) =

{

∑

i

(wi1{Yi>qα−δ} − (1− F (qα − δ)))

(6.48)

≤−(1 + η)φ(nvqα−δ)

}

and

Br,LIL
n (η) =

{

∑

i

(wi1{Yi>qα} − (1− F (qα)))≥ (1 + η)φ(nvα)

}

.(6.49)

We have

ν(n)≤ 1− F (qα − δ)

1−α
n− 1 + η

1−α
φ(nvqα−δ)

(6.50)
=⇒ Ar

n(δ)⊂Ar,LIL
n (δ, η),

and

1+ η

1− α
φ(nvα) +

1− F (qα)

1−α
n≤ ν(n) =⇒ Br

n ⊂Br,LIL
n (η).(6.51)

By the law of iterated logarithm (Theorem 4.4), we obtain

P(Ar,LIL
n (δ, η) i.o.) = 0,P(Br,LIL

n (η) i.o.) = 0.(6.52)

Therefore, conditions (6.50) and (6.51) are sufficient to guarantee (6.28) and
(6.29) for qrn,w,ν. Because 1− F (qα)≤ 1− α and 1− F (qα − δ) > 1− α for
all δ > 0, condition (4.38) is sufficient for (6.50) and (6.51).

In a completely analogous manner, we obtain

Al
n(δ) = {qln,w,ν(α)≤ qα − δ}

(6.53)

=

{

∑

i

(wi1{Yi≤qα−δ} − F (qα − δ))≥ ν(n)α− nF (qα − δ)

}
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and

Bl
n = {qln,w,ν(α)> qα}

(6.54)

=

{

∑

i

(wi1{Yi≤qα} −F (qα))< ν(n)α− nF (qα)

}

.

This time, let, for η > 0,

Al,LIL
n (δ, η) =

{

∑

i

(wi1{Yi≤qα−δ} −F (qα − δ))≥ (1 + η)φ(nvqα−δ)

}

(6.55)

and

Bl,LIL
n (η) =

{

∑

i

(wi1{Yi≤qα} − F (qα))≤−(1 + η)φ(nvα)

}

.(6.56)

We have

1 + η

α
φ(nvqα−δ) +

F (qα − δ)

α
n≤ ν(n) =⇒ Al

n(δ)⊂Al,LIL
n (δ, η)(6.57)

and

ν(n)≤ F (qα)

α
n− 1 + η

α
φ(nvα) =⇒ Bl

n ⊂Bl,LIL
n (η).(6.58)

By the law of iterated logarithm, equations (6.57) and (6.58) are a sufficient
condition to guarantee (6.28) and (6.29) for qln,w,ν. Similarly as above, (4.40)
is sufficient for (6.57) and (6.58). This proves Theorem 4.2.

6.3. Proof of Theorem 4.1. We again apply the law of iterated logarithm
4.4. We only prove the result for qn,w,ν(α). The other estimators are treated
analogously. Because F is increasing in qα, it follows that F

← is continuous
in α. It is sufficient to prove for any δ > 0 that

P(qn,w,ν(α)≤ qα − δ i.o.) = 0(6.59)

and

P(qn,w,ν(α)> qα + δ i.o.) = 0.(6.60)

For ν(n)≡ 1, we obtain from (6.40),

1 + η

α
φ(nvqα−δ) +

F (qα − δ)

α
n+ (1 + η)φ(nv)≤ n

(6.61)
=⇒ An(δ) ∩Wn(η)⊂ALIL

n (δ, η).
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If we define

Bn(δ) = {qn,w,ν(α)> qα + δ}
(6.62)

=

{

∑

i

(wi1{Yi≤qα+δ} −F (qα + δ))<α
∑

i

wi − nF (qα + δ)

}

,

we deduce

n≤ F (qα + δ)

α
n− (1 + η)φ(nv)− 1 + η

α
φ(nvqα+δ)

(6.63)
=⇒ Bn(δ) ∩Wn(η)⊂BLIL

n (δ, η).

For any δ > 0, F (qα − δ) < α and F (qα + δ) > α. Therefore, if n is large
enough, conditions (6.61) and (6.63) are satisfied. We conclude as in the
proof of Theorem 4.2.

6.4. Proof of Proposition 4.1. Let K be a compact subset ofW . We apply
Markov’s and Burkholder’s inequality,

P

(

max
k≤n

‖S1,k(γ,ǫ,K)‖> δ
)

≤ Bp

δp
E

[(

1{n≤σ(K,ǫ)}

n
∑

k=1

γ2k‖H(Xk, θk−1)− h(θk−1)‖2
)p/2]

≤ 2pBp

δp

(

n
∑

k=1

γ2kE[1{k−1≤n≤σ(K,ǫ)}(‖H(Xk, θk−1)‖p

+ ‖h(θk−1)‖p)]2/p
)p/2

,

where Bp is a universal constant only depending on p. To estimate

E[1{k−1≤n≤σ(K,ǫ)}(‖H(Xk, θk−1)‖p)]2/p,

note that by our assumptions

E[1{k−1≤n≤σ(K,ǫ)}‖H(Xk, θk−1)‖p]2/p

= E[1{k−1≤σ(K,ǫ)}Eθk−1
[‖H(Xk, θk−1)‖p]]2/p

= E

[

1{k−1≤σ(K,ǫ)}Eθ0

[ ‖H(Xk, θk−1)‖p
wθk−1

(Xk)W p(Xk)
W p(Xk)

]]2/p

=C2
KE[1{k−1≤σ(K,ǫ)}Eθ0 [W

p(Xk)]]
2/p ≤C2

K‖W‖2θ0,p ,
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where the constant CK comes from assumption (4.54). Because h is contin-
uous and K compact, 1{k−1≤σ(K,ǫ)}‖h(θk−1)‖ is bounded as well. Therefore,
we arrive at the estimate

P

(

max
k≤n

‖S1,k(γ,ǫ,K)‖> δ
)

≤C
1

δp

(

n
∑

k=1

γ2k

)p/2

.

The bound

P
γ

Φ(x,θ)(ν(ǫ)<K)≤C

n
∑

k=1

(

γk
ǫk

)p

is derived similarly as in the proof of Proposition 5.2 in [1] .
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