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Abstract:

A framework of generalized linear point process models (glppm) much akin to glm for regression is
developed where the intensity depends upon a linear predictor process through a known function.
In the general framework the parameter space is a Banach space. Of particular interest is when
the intensity depends on the history of the point process itself and possibly additional processes
through a linear filter, and where the filter is parametrized by functions in a Sobolev space. We
show two main results. First we show that for a special class of models the penalized maximum
likelihood estimate is in a finite dimensional subspace of the parameter space – if it exists. In
practice we can find the estimate using a finite dimensional glppm framework. Second, for the
general class of models we develop a descent algorithm in the Sobolev space. We conclude the
paper by a discussion of additive model specifications.

1 Introduction

Statistics for point process models is by now a vast and mature subject with a range of
applications. Survival analysis or more generally event history analysis is perhaps the most
notable area of application of one-dimensional point processes – or in the one-dimensional
case we could equivalently say counting processes – with a large body of well developed
theory. An authoritative treatment is Andersen et al. (1993). Other classical references
include Fleming & Harrington (1991) and Karr (1991). The setup for statistical analysis of
event history models is characterized by observing the occurrence of events – or transitions
between states – for a collection of individuals. The modeling is based on intensities and it
is paramount to incorporate covariate effects and be able to handle censoring mechanisms.

Many other important applications of one-dimensional point processes exist such as queu-
ing and telecommunication systems, Asmussen (2003), insurance mathematics, Mikosch
(2004), earthquakes, Ogata & Katsura (1986), Ogata et al. (2003), neuronal activity,
Brillinger (1992), Paninski (2004), Pillow et al. (2008), and high-frequency financial mod-
eling Hautsch (2004), just to mention some.

A major motivation for the present paper comes from yet another application. With the
sequencing of the human genome and the subsequent sequencing of many other genomes
the ground has been laid for analyzing and interpreting the blueprints of life. We analyze
the static genomes that consist of long DNA sequences and try to identify the collection of
functional elements that are written is this DNA code. We find the protein coding genes
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but also a myriad of other important features such as regulatory elements, Maston et al.
(2006). In the analysis of the genomic data a typical question is whether the occurrence
of a given feature or sequence motif is entirely random as opposed to being organized in
some non-random way. The traditional use of point processes in this area is mostly limited
to specifying a null or reference distribution for randomness – a common choice is here
the homogeneous Poisson point process. Deviations for the data from the null distribution
is taken as evidence for the existence of an organizational structure in the data of some
biological significance.

One attempt to go beyond the Poisson process null model and actually model the occur-
rences of certain motifs in the DNA-sequences is found in Gusto & Schbath (2005), which
was also an important inspiration for our further work. The linear Hawkes processes, as
used in Gusto & Schbath (2005), and the general class of multivariate, non-linear Hawkes
processes, as treated in Brémaud & Massoulié (1996), were considered in our further devel-
opment of models appropriate for genomic organization. We noted a structural similarity
of the models to the generalized linear models, and this has played a role in the imple-
mentation, Carstensen et al. (2010). The similarity, which we for sure are not the first
to observe, is implicitly present in several of the popular models for survival analysis,
such as Cox’s regression model and Aalens additive model, where the intensity is specified
through a fixed function of a linear combination of covariates. A more direct relation to
the log-linear Poisson model is illustrated in Example VI.1.3 in Andersen et al. (1993). See
also Whitehead (1980) and Aitkin et al. (2005). The terminology of a generalized linear
point process model has, furthermore, been used recently for various Hawkes-type models
of spike trains for neurons, Paninski (2004), Pillow et al. (2008), Toyoizumi et al. (2009).
The models considered in Pillow et al. (2008) for multivariate spike trains share many
components with our models of the occurrences of multiple transcription regulatory ele-
ments. In particular, the use of basis expansions for estimation of functional components,
which may be combined with regularization in terms of penalized maximum-likelihood
estimation. In Pillow et al. (2008) the basis functions chosen were raised cosines with a
log-time transformation, whereas we used B-splines in Carstensen et al. (2010).

Motivated by the different applications described above we ask if there are theoretical
results supporting any particular choice of basis functions. Or phrased differently, if we
can understand a particular choice of basis functions as the solution of a more abstractly
formulated problem. Clearly we have the classical result on smoothing splines in mind,
which shows that splines appear as the solution of a particular penalized least squares
problem, Theorem 2.4 in Green & Silverman (1994). To proceed we first develop a formal
and abstract framework of generalized linear point process models (glppm) parametrized
by a Banach space, and then we show two main results for a general class of models that
includes the Hawkes processes as a special case. The first result we show is similar to the
result on smoothing splines, and it states that the penalized maximum-likelihood estimator
for a specific model is found in a finite-dimensional space spanned by an explicit set of basis
functions. For the linear Hawkes process the solution is a spline. The second result is dif-
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ferent. For the general model class considered we do not find an explicit finite-dimensional
basis. In the alternative we derive an infinite-dimensional gradient, which suggest an itera-
tive algorithm, and we establish a convergence result for this algorithm. The interpretation
of the algorithm is as a sequence of finite-dimensional subspace approximations.

The purpose of the present paper is to provide the theoretical framework for the com-
putation of penalized maximum-likelihood estimators for functional parameters in a one-
dimensional point process setup. For a treatment of properties of penalized maximum-
likelihood estimators we refer to Cox & O’Sullivan (1990). The focus is here on the repre-
sentation and computation.

2 Setup

We consider a filtered probability space – a stochastic basis – (Ω,F ,Ft, P ) were the fil-
tration is assumed to be right continuous. We will, in addition, assume that (Nt)t≥0 is an
adapted counting process, which, under P , is a homogeneous Poisson process with rate 1.

If (λt)t≥0 is a positive, predictable process we can define the positive process, known as
the likelihood process, by

Lt = exp

(
t+

∫ t

0
log λsN(ds)− Λt

)
, Λt =

∫ t

0
λsds. (1)

We will assume that Λt <∞ P -a.s., in which case (Lt)t≥0 in general is a P -local martingale
and a P -supermartingale with EP (Lt) ≤ 1 for all t ≥ 0, Theorem VI.T2, Brémaud (1981).
If EP (Lt) = 1 we can define a probability measure Qt on F by taking Lt to be the
Radon-Nikodym derivative of Qt w.r.t. P . That is,

Qt = Lt · P. (2)

We note that EP (Lt) = 1 if and only if (Ls)0≤s≤t is a true P -martingale. If EP (Lt) < 1 we
can not define a probability measure Qt on the abstract space (Ω,F) by (2). With a more
explicit, canonical choice of Ω it is possible always to construct a measure Qt such that

Qt = Lt · P +Q⊥t

where Q⊥t (Nt <∞) = 0, see Jacod (1975) or Theorem 5.2.1(ii), Jacobsen (2006).

Throughout we will fix an observation window [0, t]. The process (λs)0≤s≤t is called the
(predictable) intensity process for the counting process (Ns)0≤s≤t under Qt. The integrated
intensity, (Λs)0≤s≤t, is the compensator, and if EP (Lt) = 1 the process Ms = Ns − Λs for
s ∈ [0, t] is a Qt-martingale, Theorem VI.T3, Brémaud (1981).

From a model building perspective the direct specification of the intensity process is nat-
ural as well as practical. Practical because the construction of probability models for a
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parametrized family of intensity processes, (λt(β))t≥0, for β ∈ Θ, through the likelihood
process construction above immediately yields the likelihood function Lt(β) for subsequent
statistical inference. There is one small caveat though. For the specification of the prob-
ability models to lead to a statistical model dominated by P all the likelihood processes
need to be true P -martingales. At least on [0, t], which is equivalent to EP (Lt(β)) = 1 for
all β ∈ Θ. This is a technical obstacle, and it does not seem to be easy to formulate a sim-
ple, general criteria. The problem is equivalent to checking whether the intensities specify
non-exploding point processes on canonical spaces. When there is positive probability of
explosion for some measures, and the model is thus not dominated by P , it is anyway

sensible to compare two models, Qβt and Qβ
′

t , in terms of the Radon-Nikodym derivatives

dQβt

d(Qβt +Qβ
′

t )
and

dQβ
′

t

d(Qβt +Qβ
′

t )
,

see page 893, Kiefer & Wolfowitz (1956). If we have non-exploding data on [0, t], this
comparison is equivalent to comparing Lt(β) with Lt(β′), and though Lt(β) is not nec-
essarily a true likelihood function it provides a sensible relative measure of the models
parametrized by β – but only for non-exploding data. It seems that we do not need to
check if EP (Lt(β)) = 1, but this is a delusion. If the process we observe is not explod-
ing on [0, t] – and there may often be subject matter reasons it is not – all models with
EP (Lt(β)) < 1 are misspecified in a fundamental way. Arguably, the models specified by

Q̃βt = L̃t(β) · P with

L̃t(β) =
Lt(β)

EP (Lt(β))

are more appropriate, which is equivalent to conditioning on non-explosion. However,
(λt(β))0≤s≤t is no longer the intensity process under Q̃βt and the likelihood, L̃t(β), is only
known up to a normalizing constant, which in general is complicated to compute. We will
not pursue this direction any further.

We proceed with the general setup and let V denote a separable Banach space with the
norm || · ||, and V ∗ is its dual space of continuous linear functionals equipped with the
dual norm. The dual norm is also denoted || · ||, which turns V ∗ into a Banach space as
well. Due to separability of V the dual space V ∗ is separable and second countable in
the weak∗-topology (see e.g. Exercise E.2.5.3, Pedersen (1989)). We equip V ∗ with the
weak∗ Borel σ-algebra, which then coincides with the σ-algebra generated by the linear
functionals

x 7→ xβ

for β ∈ V . We then consider an adapted, norm-càdlàg stochastic process (Xs)0≤s≤t with
values in V ∗. That is, Xs is an Fs-measurable, random variable with values in V ∗ and we
assume that the sample path of the process is càdlàg in the norm topology so that for all
ω it holds that

lim
ε→0+

||Xs+ε(ω)−Xs(ω)|| = 0,
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and there is an Xs−(ω) ∈ V ∗ such that

lim
ε→0+

||Xs−ε(ω)−Xs−(ω)|| = 0.

For any β ∈ V the real valued process (Xsβ)0≤s≤t is then adapted and càdlàg, and
(Xs−β)0≤s≤t is predictable, cf. Proposition 2.6 in Jacod & Shiryaev (2003). We call
(Xs−β)0≤s≤t the linear predictor process. If D ⊆ R we introduce the set

Θ(D) = {β ∈ V | Xs−β ∈ D for all s ∈ [0, t] P -a.s.}.

Definition 2.1. Assume that ϕ : D → [0,∞) and assume in addition that (Ys)0≤s≤t
is a predictable, càdlàg process with values in [0,∞). We define a generalized linear point
process model on [0, t] to be the statistical model for a point process on [0, t] with parameter
space Θ(D) such that for β ∈ Θ(D) the point process has intensity

λs = Ysϕ(Xs−β)

for s ∈ [0, t].

For β ∈ Θ(D) we have the likelihood process Lt(β) given by (1) in terms of the intensity
defined above. For the general definition we do not require it to be a martingale, and it plays
no role for the results and computations in the present paper. However, for interpretations
and to obtain sensible models via penalized maximum-likelihood estimation we certainly
need to be able to verify if the process is a martingale. We discuss some possibilities below.

The Y -process in the definition serves the same purpose as in survival analysis, that is,
it can be a simple at risk indicator process, but we keep it in the definition as a general,
predictable, non-negative process. Note that if ϕ is one-to-one with inverse m = ϕ−1 :
ϕ(D)→ D then in the absence of the Y -process we have

Xsβ = m(λs).

Drawing an analogy to ordinary generalized linear models it seems natural at this point
to call m the link function – it transforms the intensity process into a process that is
linear in the parameter β. With this terminology we would call ϕ the inverse link function.
However, in general there is no reason to require ϕ to be one-to-one, and we will not use
the terminology.

Whether the intensity in Definition 2.1 gives rise to a likelihood process, which is a true
martingale, can depend quite heavily on the choice of ϕ. If ϕ is bounded the martin-
gale condition is easy to verify, cf. Theorem VI.T4 in Brémaud (1981). If, on the other
hand, (Xs)0≤s≤t is independent of (Ns)0≤s≤t under P and (Ys)0≤s≤t is bounded, say, then
EP (Lt) = 1 disregarding the choice of ϕ. To give one additional criteria we assume for
simplicity that Ys = 1 and Ω is the canonical space of counting processes. Then we can,
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as mentioned above, construct a measure Q such that λs = ϕ(Xs−β) is the intensity for
the counting process under Q. If ||Xs−|| ≤ CNs− +D and ϕ(x) ≤ c|x|+ d it follows that

λs ≤ αNs− + γ.

According to Example 4.4.5 in Jacobsen (2006) the counting process is not exploding under
Q and by Theorem 5.2.1(ii) in Jacobsen (2006) the likelihood process is a true martingale.
A more refined treatment for the class of non-linear Hawkes processes focusing on stability
in the sense of (asymptotic) stationarity is found in Brémaud & Massoulié (1996).

When the likelihood process is a martingale it is evident from (1) that as a statistical
model with parameter space Θ(D) ⊆ V the minus-log-likelihood function for observing
(Ns)0≤s≤t is

lt(β) =

∫ t

0
Ysϕ(Xs−β)ds−

∫ t

0
log(Ysϕ(Xs−β))N(ds) (3)

for β ∈ Θ(D). Note that if ∆Ns = 1 but Ys = 0 then lt(β) ≡ ∞, which simply tells us
that the model as formulated is inappropriate for the data. In the following we therefore
assume that this is not the case, that is, Ys > 0 for all s with ∆Ns = 1.

For practical applications – even when V is finite dimensional – the maximum-likelihood
estimator may not be well defined. One solution is to introduce a penalty function J :
Θ(D)→ R and then to minimize the function

lt(β) + J(β)

instead. We provide examples below.

The minus-log-likelihood function is simple as a function of β and if ϕ is convex and log-
concave we see that lt is convex as well. The penalty function is typically also chosen to
be convex.

The generalized linear models for point processes have value even when V is finite dimen-
sional, but we emphasize that models of considerably greater generality fit into the model
class above for a suitable choice of X-process. This is at least true from a practical point
of view where finite basis expansions can be used to approximate non-parametric com-
ponents, and we also show one result in Section 3 where penalized maximum-likelihood
estimation in an infinite dimensional function space reduces to penalized maximum likeli-
hood estimation for a generalized linear model with a finite dimensional parameter space.
Here we give a simple but well known example of how Cox’s regression model fits into the
framework.

Example 2.2. The Cox proportional hazards model can be (re)formulated as a generalized
linear point process model. We take Xs ∈ Rd to be an adapted, d-dimensional càdlàg
process, which is independent of (Ns)0≤s≤t under P . Then XT

s is a process in (Rd)∗ and
the Cox model is specified by the intensity

λs = exp(XT
s−β)α(s)
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where α(s) is the baseline intensity and β ∈ Rd. If

logα(s) = Bs−βα

where Bs ∈ V ∗ is a known, adapted, norm-càdlàg process with values in the dual of V and
βα ∈ V we can rewrite the intensity as

λs = exp

(
(XT

s− Bs−)

(
β
βα

))
= exp(XT

t−β +Bs−βα) = exp(XT
s−β) exp(Bs−βα),

which is a generalized linear point process model with ϕ = exp, with domain D = R, and
with parameter space Rd × V .

It is hardly conceivable that we can estimate the parameters in a sensible way for a single
observation of the counting process, and in practice we will use the model with independent
replications and corresponding intensities, λ1, . . . , λn, possibly even multiplied by an at
risk indicator processes. Even so, it may still be desirable to penalize the βα parameter to
obtain a smooth fit of α, and a possible choice of penalty function is

J(β) = λ||βα||

for λ > 0. In practice we may have V = Rd′ and Bt = (Bt,1, . . . , Bt,d′) where Bt,1, . . . , Bt,d′

are known (deterministic) basis functions. If the basis functions are C2 in t a natural norm
on Rd′ is given by the quadratic form K where

Ki,j =

∫ t

0
B′′s,iB

′′
s,jds.

In this case,

J(β) = λβTαKβα = λ

∫ t

0

(
[logα(s)]′′

)2
ds,

which is a popular choice of penalty term that we will consider below.

Before turning to more concrete models we make one general observation about the deriva-
tives of the minus-log-likelihood under the assumption that ϕ is differentiable.

Proposition 2.3. If D ⊆ R is open and if ϕ is C1 on D then lt is Gâteaux differentiable
in β ∈ Θ(D)◦ if lt(β) <∞ with derivative

Dlt(β) =

∫ t

0
Ysϕ

′(Xs−β)Xs−ds−
∫ t

0

ϕ′(Xs−β)

ϕ(Xs−β)
Xs−N(ds). (4)

Moreover, if ϕ is C2 the second Gâteaux derivative is

D2lt(β) =

∫ t

0
Ysϕ

′′(Xs−β)Xs− ⊗Xs−ds

−
∫ t

0

ϕ′′(Xs−β)ϕ(Xs−β)− ϕ′(XT
s−β)2

ϕ(Xs−β)2
Xs− ⊗Xs−N(ds) (5)
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If J is Gâteaux differentiable the penalized maximum likelihood estimator in Θ(D)◦, if it
exists, is then a solution to the equation Dlt(β) + λDJ(β) = 0.

One way to interpret the process (Xs−β)0≤s≤t is as a predictable, linear filter of the Banach
space valued process (Xs)0≤s≤t. The possible linear filters are parametrized by β ∈ Θ(D),
and the objective from a statistical point of view is the estimation of β.

In Section 3 below we restrict our attention to stochastic processes with values in a repro-
ducing kernel Hilbert space (RKHS), which are given through stochastic integration w.r.t.
an ordinary real valued stochastic process. In Section 4 we generalize the class of mod-
els to an additive model framework, where the parameter space is a product of RKHSs.
The product space can be equipped with an inner product that turns it into a Hilbert
space, but it can also be equipped with a 1-norm, which turns the product space into a
Banach space. In the latter case we discuss how the natural penalization lead to an infinite
dimensional version of a lasso estimator.

3 Linear filters from stochastic integration

Let g : [0,∞)→ R be a measurable function and (Zs)0≤s≤t a càdlàg semi-martingale. If g
is e.g. locally bounded (which is sufficient for our purposes) the stochastic process∫ s

0
g(s− u)dZu

is a well defined càdlàg process. The process is sometimes called a homogeneous linear
filter or a moving average.

The parameter space we will consider is V = Wm,2([0, t]), that is, V is the Sobolev space
of functions that are m times weakly differentiable with the m’th derivative in L2([0, t]).
For this concrete parameter space we will use g for the generic parameter – in contrast to
the abstract notation where we use β.

We will need to interpret the stochastic integral above as a stochastic process with values
in V ∗. Since the stochastic integral is not defined pathwise in general, it is in fact not
obvious that

g 7→ Xsg :=

∫ s

0
g(s− u)dZu

for a fixed sample path is even a well defined linear functional – let alone continuous.
For the pathwise definition of the stochastic integral as a linear functional we note that
functions in Wm,2([0, t]) for m ≥ 1 are weakly differentiable with L2-derivatives. Hence by
integration by parts, see e.g. Definition 4.45 and Proposition 4.49(b) in Jacod & Shiryaev
(2003), we have that∫ s

0
h(u)dZu = h(s)Zs − h(0)Z0 −

∫ s

0
Zu−h

′(s)du (6)
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for h ∈Wm,2([0, t]). This equality is in general valid up to evanescence. The right hand side
is pathwise well defined, thus we simply use the version of the stochastic integral defined
by the right hand side above. The integral then obviously becomes a linear functional in h
for a concrete realization of the Z-process. Combined with Corollary A.2 this shows that
we can regard (Xs)0≤s≤t as a stochastic process with values in V ∗. Lemma A.3 shows,
moreover, that (Xs)0≤s≤t is norm-càdlàg with Xs− obviously given as

Xs−g =

∫ s−

0
g(s− u)dZu.

If the function ϕ : D → [0,∞) is given we find that Θ(D) consists of those g such that∫ s−

0
g(s− u)dZu ∈ D for all s ∈ [0, t] P -a.s. (7)

The Sobolev space Wm,2([0, t]) can be equipped with several inner products that give rise
to equivalent norms and turn the space into a RKHS, Wahba (1990), Berlinet & Thomas-
Agnan (2004). For each inner product there is an associated kernel, the reproducing kernel,
and we assume here that one inner product is chosen with the corresponding norm denoted
|| · || and corresponding kernel denoted R : [0, t]× [0, t]→ R. Moreover, we fix ϕ1, . . . , ϕl ∈
Wm,2([0, t]) and denote by P the orthogonal projection onto span{ϕ1, . . . , ϕl}⊥. One of
the defining properties of the kernel R is that for fixed s ∈ [0, t], R(s, ·) ∈ Wm,2([0, t]),
hence PR(s, ·) is a well defined function. This give rise to the projected kernel, which we
denote R1 = PR. With this setup the penalty function we choose is J(g) = λ||Pg||2 for
λ > 0, and the penalized minus-log-likelihood function reads

lt(g) + λ||Pg||2 (8)

for g ∈ Θ(D) where

lt(g) =

∫ t

0
Ysϕ

(∫ s−

0
g(s− u)dZu

)
ds−

∫ t

0
log(Ysϕ

(∫ s−

0
g(s− u)dZu

)
)N(ds).

With τ1, . . . , τNt denoting the jump times for the counting process (Ns)0≤s≤t we can state
one of the main theorems.

Theorem 3.1. If ϕ(x) = x + d with domain D = [−d,∞) then a minimizer of (8) over
Θ(D) ⊆ Wm,2([0, t]), m ≥ 1, belongs to the finite dimensional subspace of Wm,2([0, t])
spanned by the functions ϕ1, . . . , ϕl, the functions

hi(r) =

∫ τi−

0
R1(τi − u, r)dZu

for i = 1, . . . , Nt together with the function

f(r) =

∫ t

0
Ys

∫ s−

0
R1(s− u, r) dZuds.
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Remark 3.2. A practical consequence of Theorem 3.1 is that by collecting ϕ1(r), . . . , ϕl(r),
f(r) and hi(r), i = 1, . . . , Nt, in an l+ 1 +Nt dimensional vector we reduce the estimation
problem to a finite dimensional optimization problem. For the concrete realization we may
of course choose whichever basis that is most convenient for this function space. For the
practical computation of f we note that by Lemma A.5 we can interchange the order of
the integrations so that

f(r) =

∫ t

0

∫ t

u
YsR

1(s− u, r) dsdZu. (9)

Remark 3.3. It is a common trick to construct a model conditionally on the entire
outcome of a process (Zs)0≤s≤t by assuring that Zs is F0-measurable for all s ∈ [0, t]. In
this case the process ∫ t

0
g(|s− u|)dZu

for s ∈ [0, t] is obviously predictable. Theorem 3.1 still holds with the modification that

hi(r) =

∫ t

0
R1(|τi − u|, r)dZu

for i = 1, . . . , Nt and

f(r) =

∫ t

0
Ys

∫ t

0
R1(|s− u|, r)dZuds.

When we model events that happen in time it is most natural that the intensity at a
given time t only depends on the behavior of the Z-process up to just before t. This
corresponds to the formulation chosen in Theorem 3.1. However, if we model events in a
one-dimensional space it is often more natural to take the approach in this remark.

One useful choice of inner product on Wm,2([0, t]) is given as follows. Take

H1 = {f ∈Wm,2([0, t]) | f(0) = Df(0) = . . . = Dm−1f(0) = 0},

which we equip with the inner product

< f, g >=

∫ t

0
Dmf(s)Dmg(s)ds.

This turns H1 into a reproducing kernel Hilbert space for m ≥ 1 with reproducing kernel
R1 : [0, t]× [0, t]→ R given as

R1(s, r) =

∫ s∧r

0

(s− u)m−1(r − u)m−1

((m− 1)!)2
du,

see Wahba (1990). Furthermore, define ϕk(t) = tk−1/(k − 1)! for k = 1, . . . ,m and

H0 = span{ϕ1, . . . , ϕm},
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which we equip with the inner product

<
∑
i

aiϕi,
∑
j

bjϕj >=
∑
i,j

aibj ,

so that ϕ1, . . . , ϕm is an orthonormal basis for H0. Then H0 is also a reproducing kernel
Hilbert space with reproducing kernel R0 : [0, t]× [0, t]→ R defined by

R0(s, r) =

m∑
k=1

ϕk(s)ϕk(r).

Then the Sobolev space Wm,2([0, t]) = H0⊕H1 is a reproducing kernel Hilbert space with
reproducing kernel R(s, r) = R0(s, r) + R1(s, r), H0 ⊥ H1, and with P the orthogonal
projection onto H1, PR = R1 and

J(g) =

∫ t

0
(Dmg(s))2ds.

It follows by the definition of R that R1(s, ·) for fixed s is a piecewise polynomial of degree
2m− 1 with continuous derivatives of order 2m− 2, that is, R(s, ·) is an order 2m spline.
We find that e.g. the hi-functions for the basis in Theorem 3.1 are given as stochastic
integrals of order 2m splines.

Example 3.4. If (Zs)0≤s≤t itself is a counting process and ϕ(x) = x + d as in Theorem
3.1 we can give a more detailed description of the minimizer of (8) over Θ(D). We will
also assume that the Y -process is identically 1. If σ1, . . . , σZt denote the jump times for
(Zs)0≤s≤t we find that

hi(r) =
∑

j:σj<τi

R1(τi − σj , r).

Collectively, the hi basis functions are order 2m splines with knots in

{τi − σj | i = 1, . . . , Nt, j : σj < τi}.

Due to (9) the last basis function, f , is seen to be an order 2m+ 1 spline with knots in

{t− σj | i = 1, . . . , Zt}.

The cubic splines, m = 2, are the splines mostly used in practice. Here

R(s, r) =

∫ s∧r

0
(s− u)(r − u)du = sr(s ∧ r)− (s+ r)(s ∧ r)2

2
+

(s ∧ r)3

3

and we can compute the integrated functions that enter in f as follows. If t− u < r∫ t

u
R(s− u, r)ds =

∫ t−u

0
R(s, r)ds =

r(t− u)3

6
− (t− u)4

24
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and if t− u ≥ s∫ t

u
R(s− u, r)ds =

∫ t−u

0
R(s, r)ds =

3r4

24
+

∫ t−u

r
R(s, r)dr

=
r4

24
+
r2(t− u)2

4
− r3(t− u)

6
.

Thus the function f is a sum of functions, the j’th function being a degree 4 polynomial
on [0, t− σj ] and an affine function on (t− σj , t].
If Zs = Ns the process (Ns)0≤s≤t is under Qt known as a linear Hawkes process, in which
case the set of knots for the hi-functions equals the collection of interdistances between
the points.

Proposition 3.5. If ϕ is continuously differentiable and g ∈ Θ(D)◦ we define ηi for
i = 1, . . . , Nt as

ηi(r) =

∫ τi−

0
R(τi − u, r)dZu

and

fg(r) =

∫ t

0

∫ t

u
Ysϕ

′
(∫ s−

0
g(s− u)dZu

)
R(s− u, r)dsdZu.

Then the gradient of lt in g is

∇lt(g) = fg −
Nt∑
i=1

ϕ′
(∫ τi−

0 g(τi − u)dZu

)
ϕ
(∫ τi−

0 g(τi − u)dZu

) ηi.
The explicit derivation of the gradient above has several interesting consequences. First, a
necessary condition for g ∈ Θ(D)◦ to be a minimizer of the penalized minus-log-likelihood
function is that g solves ∇lt(g) + 2λPg = 0, which yields an integral equation in g. The
integral equation is hardly solvable in any generality, but for ϕ(x) = x+ d it does provide
the same information as Theorem 3.1 for interior minimizers – that is, a minimizer must
belong to the given finite dimensional subspace of Wm

2 ([0, t]). The gradient can be used for
descent algorithms. Inspired by the gradient expression we propose a generic algorithm,
Algorithm 3.6, for subspace approximations. We consider here only the case where D = R
so that Θ(D) = Wm,2([0, t]). The objective function that we attempt to minimize with
Algorithm 3.6 is

Λ(g) = lt(g) + λ||Pg||2

with gradient ∇Λ(g) = ∇lt(g) + 2λPg. We assume here that ϕ is continuously differen-
tiable. To show a convergence result we need to introduce a condition on the steps of the
algorithm, and for this purpose we introduce for 0 < c1 < c2 < 1 and δ ∈ (0, 1) fixed and
g ∈Wm,2([0, t]) the subset

W (g) =

g̃ ∈Wm,2([0, t])

∣∣∣∣∣∣
Λ(g̃) ≤ Λ(g) + c1 < ∇Λ(g), g̃ − g >

< ∇Λ(g̃), g̃ − g > ≥ c2 < ∇Λ(g), g̃ − g >
− < ∇Λ(g), g̃ − g > ≥ δ||∇Λ(g)|| ||g̃ − g||
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The two first conditions determining W (g) above are known as the Wolfe conditions in
the literature on numerical optimization, Nocedal & Wright (2006). The third is an angle
condition, which is automatically fulfilled if g̃ − g = −α∇Λ(g) for α > 0. In Algorithm
3.6 we need to iteratively choose ĝh, and we show that if ∇Λ(ĝh−1) 6= 0 then under the
assumptions in Theorem 3.7 below

W (ĝh−1) ∩ span{ĝh−1,∇Λ(ĝh−1)} 6= ∅, (10)

which makes the iterative choices possible.

Algorithm 3.6. Initialize; fix c1, c2 with 0 < c1 < c2 < 1 and δ ∈ (0, 1), set

f0(r) =

∫ t

0

∫ t

u
YsR

1(s− u, r)dsdZu,

let ĝ0 ∈ span{η1, . . . , ηNt , f0} and set h = 1.

1. Stop if ∇Λ(ĝh−1) = 0. Otherwise choose

ĝh ∈W (gh−1) ∩ span{η1, . . . , ηNt , f0, . . . , fh−1}

where W (gh−1) as defined above depends on c1, c2 and δ.

2. Compute

fh(r) =

∫ t

0

∫ t

u
Ysϕ

′
(∫ s−

0
ĝh(s− u)dZu

)
R1(s− u, r)dsdZu.

3. Set h = h+ 1 and return to 1.

Note that the computation of fh is just as in (9) except that the Y -process is
iteratively updated.

Theorem 3.7. If D = R, if ϕ is strictly positive, twice continuously differentiable and if
the sublevel set

S = {g ∈ Θ(D) | Λ(g) ≤ Λ(ĝ0)}

is bounded then Algorithm 3.6 is globally convergent in the sense that

||∇Λ(ĝh)|| → 0

for h→∞.
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If we for instance have strict convexity of Λ then under the assumptions in Theorem 3.7 we
have a unique minimizer in S. Then we can strengthen the conclusion about convergence
and get weak convergence of ĝh towards the minimizer. In particular, we have the following
corollary.

Corollary 3.8. If there is a unique minimizer, ĝ, of Λ in S then under the assumptions
in Theorem 3.7

ĝh(s)→ ĝ(s)

for h→∞ for all s ∈ [0, t].

4 Additive models

We give in this section a brief treatment of how the setup in the previous section extends
to the setup where the intensity is given in terms of a sum of linear filters. We restrict
the discussion to the situation where V = Wm,2([0, t])d and (Zs)0≤s≤t is a d-dimensional
semi-martingale. Perceiving g ∈ V as a function g : [0, 1]→ Rd with coordinate functions
in Wm,2([0, t]) we write

∫ s

0
g(s− u)dZu =

d∑
j=1

∫ s

0
gj(s− u)dZj,u

and just as above, by Corollary A.2,

g 7→ Xsg :=

∫ s

0
g(s− u)dZu

is a continuous linear function on V when equipped with the product topology. The in-
ner product < g, h >=

∑d
j=1 < gi, hi > with corresponding norm ||g||2 =

∑d
j=1 ||gi||2

obviously turns V into a Hilbert space.

The minus-log-likelihood function is given just as in the previous section, but we will
consider the more general penalization term

J(g) = λr(||Pg1||2, . . . , ||Pgd||2)

where λ > 0, P is the orthogonal projection on span{ϕ1, . . . , ϕl}⊥ and r : [0,∞)d →
[0,∞) is coordinate-wise increasing. Theorem 3.1 easily generalizes with the following
modification. If ϕ(x) = x+ d then with

hi,j(r) =

∫ τi−

0
R1(τi − u, r)dZj,u
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for i = 1, . . . , Nt and j = 1, . . . , d a minimizer of the penalized minus-log-likelihood func-
tions has j’th coordinate in the space spanned by ϕ1, . . . , ϕl together with h1,j , . . . , hNt,j

and f given by

f(r) =

∫ t

0
Ys

d∑
j=1

∫ s−

0
R1(s− u, r)dZj,uds =

d∑
j=1

∫ t

0

∫ t

u
YsR

1(s− u, r)dsdZj,u.

Theorem 3.5 also generalizes similarly and if r is smooth, for instance if r(x1, . . . , xd) =∑d
j=1 xj , Algorithm 3.6 generalizes as well.

In the alternative, we can choose r(x1, . . . , xd) =
∑d

j=1
√
xj leading to the penalty term

J(g) = λ
d∑
j

||Pg||,

which gives an infinite dimensional version of grouped lasso. Since r is not differentiable,
Algorithm 3.6 does not work directly. However, a cyclical descent algorithm may be sug-
gested, where we cyclically decide if the coordinate function gj should be equal to 0 or
should be updated to decrement the objective function. The idea is then to initialize the
algorithm with a large λ and all gj-functions equal to 0, and then in an outer loop decrease
λ in small steps and for each choice of λ provide a warm start for the descent algorithm by
using the previously estimated g. This strategy has been investigated thoroughly in Fried-
man et al. (2010) for the ordinary lasso and its generalizations showing very promising
performance results.

5 Discussion

The problem that initially motivated the present work was the estimation of the linear
filter functions entering in the specification of a non-linear Hawkes model with an intensity
specified as

ϕ

 d∑
j=1

∫ s−

0
gj(s− u)Nj(du)


where Nj for j = 1, . . . , d are counting processes, Brémaud & Massoulié (1996). We have
provided structural and algorithmic results for the penalized maximum-likelihood estima-
tor of gj in a Sobolev space and we have showed that these results can be established in
a generality where the stochastic integrals are with respect to any semi-martingale. The
representations of basis functions and the gradient are useful for specific examples such as
counting processes, but of little analytic value for general semi-martingales. In practice we
can only expect to observe a general semi-martingale discretely and numerical approxima-
tions to the integral representations and thus the minus-log-likelihood function must be
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used. If the semi-martingale is coarsely observed it is unknown how reliable the resulting
approximation of the penalized maximum-likelihood estimator is.

For practical applications the R-package ppstat contains an implementation of finite-
dimensional glppm’s with a formula based model specification of additive models. Cur-
rently the implementation only supports a quadratic penalization term, but work is on-
going to support grouped lasso penalization as described above. The package is available
from http://www.math.ku.dk/~richard/ppstat/.

Another point worth mentioning is the similarity between Algorithm 3.6 and the functional
gradient descent algorithm from the boosting literature, Bühlmann & Hothorn (2007). As
in the boosting algorithm the functional estimate is iteratively updated by an additive
component, and in one incarnation of Algorithm 3.6 this component is a scalar multiple
of the gradient. The main difference is that we propose to compute the gradient in the
functional space, which utilizes the inner product in that space, whereas the functional
gradient descent algorithm computes the gradient in an ordinary euclidean space and sub-
sequently computes an approximating functional component by a base procedure. Details
are found in Bühlmann & Hothorn (2007).
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A Proofs

The Sobolev space Wm,2([0, t]) has already been equipped with one inner product denoted
<,> and the corresponding norm || · ||. An alternative useful inner product on Wm,2([0, t])
is

< f, g >m=

m∑
k=0

∫ t

0
Dkf(s)Dkg(s)ds

and the corresponding norm is given by

||f ||2m,2 =< f, f >m=

m∑
k=0

∫ t

0
Dkf(s)2ds.

It is straight forward to show that || · || and || · ||m,2 are equivalent norms. We will
use whichever norm is most convenient in the proofs below. Note that the embedding
Wm,2([0, t]) ↪→ W k,2([0, t]) for m < k is continuous, which is straight forward using the
norms || · ||m,2 and || · ||k,2. The continuity of the embedding holds even when k = 0 where
W 0,2([0, t]) = L2([0, t]), which is not a reproducing kernel Hilbert space.
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We note that the characterizing property of a reproducing kernel Hilbert space is that the
function evaluations are continuous linear functionals. If δs denotes the evaluation in s,
that is, δsf = f(s), then R(s, ·) as a function in Wm,2([0, t]) represents δs by

f(s) =< f,R(s, ·) > .

By Cauchy-Schwarz’ inequality ||δs|| = R(s, s) and since R is a continuous function of
both variables R(s, s) is bounded for s in a compact set.

We have already argued that the stochastic integration of deterministic functions from
Wm,2([0, t]) can be regarded as a pathwise, linear functional defined on Wm,2([0, t]) for
m ≥ 1. The next lemma anc following corollary states the this functional is continuous.

Lemma A.1. Let 0 ≤ s ≤ t. Then the linear functional Xs : W 1,2([0, t])→ R defined by

Xsh =

∫ s

0
h(u)dZu

is continuous. More precisely, we have the bound

||Xs|| ≤ |Zs|(1 + s) + |Z0|+
(∫ s

0
Z2
u−ds

)1/2

<∞.

Proof: Note that for h ∈W 1,2([0, t]) we have

||h||2 = |h(0)|2 + ||h′||22

and in particular
||h′1[0,s]||2 ≤ ||h′||2 ≤ ||h||.

Using (6) and Cauchy-Schwarz’ inequality

|Xsh| ≤ |h(s)Zs|+ |h(0)Z0|+
∫ s

0
|Zu−h′(u)|du

≤ |Zs| |h(s)|+ |Z0| |h(0)|+
(∫ s

0
Z2
u−ds

)1/2

||h′1[0,s]||2

≤

(
|Zs| ||δs||+ |Z0| ||δ0||+

(∫ s

0
Z2
u−ds

)1/2
)
||h||

≤

(
|Zs|(1 + s) + |Z0|+

(∫ s

0
Z2
u−ds

)1/2
)
||h||,

which shows the desired bound. Here we have used that for m = 1 we have R(s, s) = 1 + s
and that Z is càdlàg, hence bounded and hence in L2([0, s]) for any s. �

As the embedding Wm,2([0, t]) ↪→W 1,2([0, t]) is continuous we get the following immediate
corollary.
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Corollary A.2. The linear functional Xs : Wm,2([0, t])→ R defined by

Xsh =

∫ s

0
h(u)dZu

is continuous.

Corollary A.2 shows that Xs ∈ Wm,2([0, t])∗ for s ≥ 0. We now show that it is also
norm-càdlàg.

Lemma A.3. The process (Xs)0≤s≤t is a norm-càdlàg stochastic process.

Proof: For ε > 0

|Xs+εh−Xsh| =
∣∣∣∣∫ s+ε

s+
h(u)dZu

∣∣∣∣ .
Again by integration by parts∫ s+ε

s+
h(u)dZu = h(s+ ε)Zs+ε − h(s)Zs −

∫ s+ε

s+
Zu−h

′(u)du

and arguments similar to those in the proof of Lemma A.1 gives that

|Xs+εh−Xsh| ≤

(
||Zs+εδs+ε − Zsδs||+

(∫ s+ε

s+
Z2
u−du

)1/2
)
||h||.

This shows that

||Xs+ε −Xs|| ≤ ||Zs+εδs+ε − Zsδs||+
(∫ s+ε

s+
Z2
u−du

)1/2

and letting ε→ 0+ the right hand side tends to 0 by an application of dominated conver-
gence and because Zs+ε → Zs and δs+ε → δs. This proves that the process is continuous
from the right in norm.

Defining Xs− by

Xs−h =

∫ s−

0
h(u)dZu

a similar argument shows that ||Xs−ε − Xs−|| → 0 for ε → 0+, which shows that the
process has limits from the left in norm. �

To give the proof of Theorem 3.1 we will use the following general lemma.

Lemma A.4. If (Ht)t≥0 is a norm-càdlàg stochastic process with values in V ∗ then for
t ≥ 0 the integral

∫ t
0 YsHs−ds defined by

β 7→
∫ t

0
YsHs−βds (11)
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is in V ∗ with ∣∣∣∣∣∣∣∣∫ t

0
YsHs−ds

∣∣∣∣∣∣∣∣ ≤ ∫ t

0
|Ys| ||Hs−||ds

Proof: Clearly (11) defines for a fixed t ≥ 0 a linear functional on V . Moreover, since
|Hs−β| ≤ ||Hs−|| ||β|| ∣∣∣∣∫ t

0
YsHs−βds

∣∣∣∣ ≤ ∫ t

0
|YsHs−β|ds

≤
∫ t

0
|Ys| ||Hs−||ds ||β||.

Now as (Ht)t≥0 is assumed norm-càdlàg it follows by continuity of the norm that ||Hs−|| for
s ∈ [0, t] is bounded, and the integral is finite and a bound on the norm of the functional.

�

Proof: (Theorem 3.1) When ϕ(x) = x+ d we have that

lt(g) =

∫ t

0
Ys

∫ s−

0
g(s− u)dZu + dYsds−

∫ t

0
log

(
Ys

∫ s−

0
g(s− u)dZu + dYs

)
N(ds)

=

∫ t

0
Ys

∫ s−

0
g(s− u)dZuds+ d

∫ t

0
Ysds−

Nt∑
i=1

log

(
Yτi

∫ τi−

0
g(τi − u) + dYτi

)
dZu.

It follows from Corollary A.2 that

g 7→
∫ τi−

0
g(τi − u)dZu

are continuous, linear functionals on Wm,2([0, t]). The i’th of these continuous linear func-
tionals is represented by ηi ∈Wm,2([0, t]) given as

ηi(s) =

∫ τi−

0
R(τi − u, s)dZu.

such that

< ηi, g >=

∫ τi−

0
g(τi − u)dZu.

Hence hi = Pηi.

Combining Lemma A.3 and A.4 we conclude that

g 7→
∫ t

0
Ys

∫ s−

0
g(s− u)dZuds

is a continuous linear functional and η is the representer given by

η(r) =

∫ t

0
Ys

∫ s−

0
R(s− u, r)dZuds
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then f = Pη.

Thus lt(g) is a function of a finite number of continuous, linear functionals on Wm,2([0, t]),

lt(g) =< η, g > −
Nt∑
i=1

log(Yτi < ηi, g > +d) +K

where K = d
∫ t
0 Ysds does not depend upon g. Assume that g ∈ Θ(D) ⊆ Wm,2([0, t]) and

write g = g0+ρ where ρ ∈ span{ϕ1, . . . , ϕm, h1, . . . , hNt , f}⊥, then ρ ⊥ ηi for i = 1, . . . , Nt,
ρ ⊥ η, Pρ = ρ and

lt(g) + λ||Pg||2 = < η, g > −
Nt∑
i=1

log(Yτi < ηi, g > +d) +K + λ||Pg||2

= < η, g0 > −
Nt∑
i=1

log(Yτi < ηi, g0 > +d) +K + λ||Pg0||2 + λ||ρ||2

≥ lt(g0) + λ||Pg0||2

with equality if and only if ρ = 0. Thus a minimizer of lt(g) + λ||Pg||2 over Θ(D) must be
in span{ϕ1, . . . , ϕm, h1, . . . , hNt , f}. �

We have used the Fubini theorem below to give an alternative representation of the basis
function f from Theorem 3.1. The result is a consequence of Theorem 45 in Protter (2005).
With the pathwise definition of stochastic integrals, as given by (6), that we have used
throughout, we can give an elementary proof.

Lemma A.5. With (Zs)0≤s≤t a semi-martingale and (Ys)0≤s≤t a predictable, càdlàg pro-
cess then ∫ t

0
Ys

∫ s−

0
g(s− u)dZuds =

∫ t

0

∫ t

u
Ysg(s− u)dsdZu.

Proof: Using (6) and Fubini∫ t

0

Ys

∫ s−

0

g(s− u)dZuds = g(0)

∫ t

0

Zs−Ysds− Z0

∫ t

0

g(s)Ysds+

∫ t

0

Ys

∫ s−

0

Zu−g
′(s− u)duds

= g(0)

∫ t

0

Zs−Ysds− Z0

∫ t

0

g(s)Ysds+

∫ t

0

Zu−

∫ t

u

Ysg
′(s− u)dsdu.

To use (6) for the right hand side above we first need to verify that the integrand is
sufficiently regular. Defining

G(u) =

∫ t

u
Ysg(s− u)ds
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for g ∈W 1,2([0, t]) then G is weakly differentiable with derivative

G′(u) = −
∫ t

u
Ysg
′(s− u)ds− Yug(0),

which is verified simply by checking that G(u) = −
∫ t
u G
′(v)dv. Using this, we get for the

right hand side above that∫ t

0

∫ t

u

Ysg(s− u)ds︸ ︷︷ ︸
G(u)

dZu = G(t)Zt −G(0)Z0 −
∫ t

0

Zu−G
′(u)du

= −G(0)Z0 +

∫ t

0

Zu−

[∫ t

u

Ysg
′(s− u)ds+ Yug(0)

]
du

= g(0)

∫ t

0

Zs−Ysds− Z0

∫ t

0

g(s)Ysds+

∫ t

0

Zu−

∫ t

u

Ysg
′(s− u)dsdu.

�

Proof: (Theorem 3.5) The Gâteaux derivative of lt in the direction of h ∈Wm,2([0, t]) for
g ∈ Θ(D)◦ is by Proposition 2.3

Dlt(g)h =

∫ t

0
Ysϕ

′
(∫ s−

0
g(s− u)dZu

)∫ s−

0
h(s− u)dZuds

−
∫ t

0

ϕ′
(∫ s−

0 g(s− u)dZu

)
ϕ
(∫ s−

0 g(s− u)dZu

) ∫ s−

0
h(s− u)dZuN(ds).

Now just as in the proof of Theorem 3.1 – replacing Ys by Ysϕ
′
(∫ s−

0 g(s− u)dZu

)
– it

follows that the first term above is a continuous, linear functional on Wm,2([0, t]) with
representer fg. Moreover, with ηi as defined in Theorem 3.5 the second term above is seen
to be a continuous, linear functional on Wm,2([0, t]) with representer

ζg =

Nt∑
i=1

ϕ′
(∫ τi−

0 g(τi − u)dZu

)
ϕ
(∫ τi−

0 g(τi − u)dZu

) ηi.
In conclusion, the gradient of lt in g is ∇lt(g) = fg − ζg. �

Lemma A.6. If D = R and ϕ is strictly positive, twice continuously differentiable then
the gradient ∇Λ : Wm,2([0, t])→Wm,2([0, t]) is Lipschitz continuous on any bounded set.

Proof: Let B(0, L) denote the ball with radius L in Wm,2([0, t]). Corollary A.2 shows that
Xs is a continuous functional and g 7→ Xs−g =

∫ s−
0 g(s − u)dZu is likewise continuous.

That is, |Xs−g| ≤ ||Xs−||||g||, and s 7→ ||Xs−|| is, moreover, bounded on [0, t]. This means
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that there is an M > 0 such that Xs−g ∈ [−M,M ] for all g ∈ B(0, L) and s ∈ [0, t]. Since
ϕ is twice continuously differentiable we have that ϕ′ is Lipschitz continuous on [−M,M ]
with Lipschitz constant K, say. With fg for g ∈ Wm,2([0, t]) as in Theorem 3.7 we find
that for g, g′ ∈Wm,2([0, t])

fg − fg′ =

∫ t

0
Ys
(
ϕ′(Xs−g)− ϕ′(Xs−g

′)
) ∫ s−

0
R1(s− u, ·)dZuds

and as above, by the isometric isomorphism that identifies Wm,2[0, t] with its dual, we get
by Lemma A.4 that if also g, g′ ∈ B(0, L) then

||fg − fg′ || ≤
∫ t

0
|Ys| |ϕ′(Xs−g)− ϕ′(Xs−g

′)| ||Xs−P ||ds

≤ K

∫ t

0
|Ys| ||Xs−||2 ||g − g′||ds

≤ K

∫ t

0
|Ys| ||Xs−||2ds︸ ︷︷ ︸

C1

||g − g′||.

Since ϕ is strictly positive – and twice continuously differentiable – x 7→ ϕ′(x)/ϕ(x) is
Lipschitz continuous on [−M,M ] with Lipschitz constant K ′, say. Then for g, g′ ∈ B(0, L)∣∣∣∣∣

∣∣∣∣∣
Nt∑
i=1

ϕ′ (Xτi−g)

ϕ (Xτi−g)
ηi −

Nt∑
i=1

ϕ′ (Xτi−g
′)

ϕ (Xτi−g
′)
ηi

∣∣∣∣∣
∣∣∣∣∣ ≤

Nt∑
i=1

∣∣∣∣ϕ′ (Xτi−g)

ϕ (Xτi−g)
− ϕ′ (Xτi−g

′)

ϕ (Xτi−g
′)

∣∣∣∣ ||ηi||
≤ K ′

Nt∑
i=1

||Xτi−|| ||g − g′|| ||ηi||

≤ K ′
Nt∑
i=1

||Xτi−|| ||ηi||︸ ︷︷ ︸
C2

||g − g′||.

By Proposition 3.5 we have showed that the gradient ∇lt is Lipschitz continuous on the
bounded set B(0, L) with Lipschitz constant C = C1 + C2. Since ∇Λ = ∇lt + 2λP and
2λP is linear this proves that ∇Λ is Lipschitz continuous on bounded sets. �

Proof: (Theorem 3.7) We prove first by induction that it is possible to iteratively choose
ĝh as prescribed in Algorithm 3.6. The induction start is given by assumption.

Assume that ĝh is chosen as in Algorithm 3.6. Since Λ : Wm,2([0, t]) → R is continuous
and

Sh := {g ∈Wm,2([0, t]) | Λ(g) ≤ Λ(ĝh)} ⊆ S
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is bounded by assumption we find that Λ is bounded below along the ray ĝh − α∇Λ(ĝh)
for α > 0. If ∇Λ(ĝh) 6= 0 we can proceed exactly as in the proof of Lemma 3.1 in Nocedal
& Wright (2006), and there exists α > 0 such that

g̃h+1 = ĝh − α∇Λ(ĝh) ∈ Sh

fulfills the two Wolfe conditions;

Λ(g̃h+1) ≤ Λ(ĝh)− c1α||∇Λ(ĝh)||2

< ∇Λ(g̃h+1),∇Λ(ĝh) > ≤ c2||∇Λ(ĝh)||2.

Since ĝh ∈ span{h1, . . . , hNt , f0, . . . , fh−1} and ∇Λ(ĝh) ∈ span{h1, . . . , hNt , f0, . . . , fh} and
since g̃h+1 − ĝh = −α∇Λ(ĝh) we find that

g̃h+1 ∈W (ĝh) ∩ span{h1, . . . , hNt , f0, . . . , fh}

and the set on the right hand side is in particular non-empty. This proves that it is possible
to iteratively choose ĝh as in Algorithm 3.6.

For the entire sequence (ĝh)h≥0 we get from the second Wolfe condition together with the
Cauchy-Schwarz inequality and Lipschitz continuity of ∇Λ on S that

(c2 − 1) < ∇Λ(ĝh), ĝh+1 − ĝh > ≤ < ∇Λ(ĝh+1)−∇Λ(ĝh), ĝh+1 − ĝh >
≤ C||ĝh+1 − ĝh||2,

which implies that

||ĝh+1 − ĝh|| ≥
(c2 − 1)

C

< ∇Λ(ĝh), ĝh+1 − ĝh >
||ĝh+1 − ĝh||

.

Combining the angle condition with the first Wolfe condition gives that

Λ(ĝh+1) ≤ Λ(ĝh) + c1||ĝh+1 − ĝh||
< ∇Λ(ĝh), ĝh+1 − ĝh >

||ĝh+1 − ĝh||

≤ Λ(ĝh)− c1(1− c2)
C

< ∇Λ(ĝh), ĝh+1 − ĝh >2

||∇Λ(ĝh)||2||ĝh+1 − ĝh||2
||∇Λ(ĝh)||2

≤ Λ(ĝh)− c1(1− c2)δ
C

||∇Λ(ĝh)||2.

By induction

Λ(ĝh+1) ≤ Λ(ĝ0)−
c1(1− c2)δ

C

h∑
k=0

||∇Λ(ĝk)||2.

To finish the proof we need to show that Λ is bounded below on S, because then the
inequality above implies that

||∇Λ(ĝh)|| → 0
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for h→∞. To show that Λ is bounded below we observe that

Λ(g) ≥ −
∫ t

0
log(Ysϕ

(∫ s−

0
g(s− u)dZu

)
)N(ds)

= −
Nt∑
i=1

log(Yτiϕ

(∫ s−

0
g(τi − u)dZu

)
)

= −
Nt∑
i=1

log(Yτiϕ(< ηi, g >)).

Since this lower bound as a function of g is weakly continuous and since a bounded set is
weakly compact by reflexivity of a Hilbert space and Banach-Alaoglu’s Theorem we have
proved that Λ is bounded below on the bounded set S. �

For the proof of Corollary 3.8 we need the following lemma.

Lemma A.7. If ϕ is strictly positive and continuously differentiable the map g 7→ ∇Λ(g)
is weak-weak continuous.

Proof: By defition of the weak topology we need to show that

g 7→< ∇Λ(g), h >=< ∇lt(g), h > +2λ < Pg, h >

is weakly continuous for all h ∈ Wm,2([0, t]). Clearly g 7→< Pg, h >=< g, Ph > is weakly
continuous so we can restrict our attention to g 7→< ∇lt(g), h >. We will use Theorem
3.5, and to do so we observe that

g 7→
∫ s−

0
g(s− u)dZu

for fixed s is weakly continuous by the definition of the weak topology and the fact that
we have already shown the map above to be a continuous linear functional. We conclude
directly from this that

g 7→
Nt∑
i=1

ϕ′
(∫ τi−

0 g(τi − u)dZu

)
ϕ
(∫ τi−

0 g(τi − u)dZu

) < ηi, h >

is weakly continuous as ϕ is assumed strictly positive and continuously differentiable. We
finish the proof by showing that g 7→< fg, h > is weakly continuous with fg as in Theorem

3.5. Let gn
w→ g for n→∞ in which case∫ s−

0
gn(s− u)dZu →

∫ s−

0
g(s− u)dZu
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for all s ∈ [0, t]. Since the stochastic integral as a function of s is bounded on [0, t] and ϕ′

is continuous, the pointwise convergence of

Ysϕ
′
(∫ s−

0
gn(s− u)dZu

)
Xsh→ Ysϕ

′
(∫ s−

0
g(s− u)dZu

)
Xsh

for s ∈ [0, t] is dominated by a constant, which is integrable over [0, t]. Hence

< fgn , h > =

∫ t

0
Ysϕ

′
(∫ s−

0
gn(s− u)dZu

)
Xshds

→
∫ t

0
Ysϕ

′
(∫ s−

0
g(s− u)dZu

)
Xshds = < fg, h > .

�

Proof: (Corollary 3.8) By assumption, ĝ is the unique solution to∇Λ(g) = 0. The bounded
set S is weakly compact as argued above and the weak topology is, moreover, metrizable on
S since Wm,2([0, t]) is separable. Therefore any subsequence of (ĝh)h≥0 has a subsequence
that converges weakly in S, necessarily towards a limit with vanishing gradient by Lemma
A.7. Uniqueness of ĝ implies that (ĝh)h≥0 itself is weakly convergent with limit ĝ. The
proof is completed by noting that weak convergence in a reproducing kernel Hilbert space
implies pointwise convergence. �
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