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Kernel methods and minimum contrast
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Abstract

We survey classical kernel methods for providing nonparametric solu-

tions to problems involving measurement error. In particular we outline

kernel-basedmethodology in this setting, and discuss its basic properties.

Then we point to close connections that exist between kernel methods

and much newer approaches based on minimum contrast techniques. The

connections are through use of the sinc kernel for kernel-based inference.

This ‘infinite order’ kernel is not often used explicitly for kernel-based

deconvolution, although it has received attention in more conventional

problems where measurement error is not an issue. We show that in

a comparison between kernel methods for density deconvolution, and

their counterparts based on minimum contrast, the two approaches give

identical results on a grid which becomes increasingly fine as the band-

width decreases. In consequence, the main numerical differences between

these two techniques are arguably the result of different approaches to

choosing smoothing parameters.
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1 Introduction

1.1 Summary

Our aim in this paper is to give a brief survey of kernel methods for

solving problems involving measurement error, for example problems

involving density deconvolution or regression with errors in variables,

and to relate these ‘classical’ methods (they are now about twenty years

old) to new approaches based on minimum contrast methods. Section 1.1

motivates the treatment of problems involving errors in variables, and

section 1.2 describes conventional kernel methods for problems where the

extent of measurement error is so small as to be ignorable. Section 2.1

shows how those standard techniques can be modified to take account

of measurement errors, and section 2.2 outlines theoretical properties of

the resulting estimators.

In section 3 we show how kernel methods for dealing with measure-

ment error are related to new techniques based on minimum contrast

ideas. For this purpose, in section 3.1 we specialise the work in section 2

to the case of the sinc kernel. That kernel choice is not widely used for

density deconvolution, although it has previously been studied in that

context by Stefanski and Carroll (1990), Diggle and Hall (1993), Barry

and Diggle (1995), Butucea (2004), Meister (2004) and Butucea and

Tsybakov (2007a,b). Section 3.2 outlines some of the properties that are

known of sinc kernel estimators, and section 3 points to the very close

connection between that approach and minimum contrast, or penalised

contrast, methods.

1.2 Errors in variables

Measurement errors arise commonly in practice, although only in a

minority of statistical analyses is a special effort made to accommodate

them. Often they are minor, and ignoring them makes little difference,

but in some problems they are important and significant, and we neglect

them at our peril.

Areas of application of deconvolution, and regression with measure-

ment error, include the analysis of seismological data (e.g. Kragh and

Laws, 2006), financial analysis (e.g. Bonhomme and Robin, 2008), dis-

ease epidemiology (e.g. Brookmeyer and Gail, 1994, Chapter 8), and

nutrition.

The latter topic is of particular interest today, for example in con-

nection with errors-in-variables problems for data gathered in food fre-
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quency questionnaires (FFQs), or dietary questionnaires for epidemi-

ological studies (DQESs). Formally, an FFQ is ‘A method of dietary

assessment in which subjects are asked to recall how frequently certain

foods were consumed during a specified period of time,’ according to the

Nutrition Glossary of the European Food Information Council. An FFQ

seeks detailed information about the nature and quantity of food eaten

by the person filling in the form, and often includes a query such as,

“How many of the above servings are from fast food outlets (McDon-

alds, Taco Bell, etc.)?” (Stanford University, 1994). This may seem a

simple question to answer, but nutritionists interested in our consump-

tion of fat generally find that the quantity of fast food that people admit

to eating is biased downwards from its true value. The significant con-

cerns in Western society about fat intake, and about where we purchase

our oleaginous food, apparently influences our truthfulness when we are

asked probing questions about our eating habits.

Examples of the use of statistical deconvolution in this area include the

work of Stefanski and Carroll (1990) and Delaigle and Gijbels (2004b),

who address nonparametric density deconvolution from measurement-

error data, obtained from FFQs during the second National Health and

Nutrition Examination Survey (1976–1980); Carroll et al. (1997), who

discuss design and analysis aspects of linear measurement-error models

when data come from FFQs; Carroll et al. (2006), who use measurement-

error models, and deconvolution methods, to develop marginal mixed

measurement-error models for each nutrient in a nutrition study, again

when FFQs are used to supply the data; and Staudenmayer et al. (2008),

who employ a dataset from nutritional epidemiology to illustrate the use

of techniques for nonparametric density deconvolution. See Carroll et

al. (2006, p. 7) for further discussion of applications to data on nutrition.

How might we correct for errors in variables? One approach is to

use methods based on deconvolution, as follows. Let us write Q for the

quantity of fast food that a person admits to eating, in a food frequency

questionnaire; let Q0 denote the actual amount of fast food; and put

R = Q/Q0. We expect that the distribution of R will be skewed towards

values greater than 1, and we might even have an idea of the shape of

the distribution responsible for this effect, i.e. the distribution of logR.

Indeed, we typically work with the logarithm of the formula Q = Q0R,

and in that context, writing W = logQ, X = logQ0 and U = logR, the

equation defining the variables of interest is:

W = X + U . (1.1)
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We have data on W , and from that we wish to estimate the distribution

of X , i.e. the distribution of the logarithm of fast-food consumption.

It can readily be seen that this problem is generally not solvable unless

the distribution of U , and the joint distribution of X and U , are known.

In practice we usually take X and U to be independent, and undertake

empirical deconvolution (i.e. estimation of the distribution, or density,

of X from data on W ) for several candidates for the distribution of U .

If we are able to make repeated measurements of X , in particular to

gather data on W (j) = X + U (j) for 1 ≤ j ≤ m, say, then we have an

opportunity to estimate the distribution of U as well.

It is generally reasonable to assume that X , U (1), . . . , U (M) are in-

dependent random variables. The distribution of U can be estimated

whenever m ≥ 2 and the distribution is uniquely determined by |φU |
2,

where φU denotes the characteristic function of U . The simplest example

of this type is arguably that where U has a symmetric distribution for

which the characteristic function does not vanish on the real line. One

example of repeated measurements in the case m = 2 is that where a

food frequency questionnaire asks at one point how many times we vis-

ited a fast food outlet, and on a distant page, how many hamburgers or

servings of fried chicken we have purchased.

The model at (1.1) is simple and interesting, but in examples from

nutrition science, and in many other problems, we generally wish to

estimate the response to an explanatory variable, rather than the dis-

tribution of the explanatory variable. Therefore the proper context for

our food frequency questionnaire example is really regression, not dis-

tribution or density estimation. In regression with errors in variables we

observe data pairs (W,Y ), where

W = X + U , Y = g(X) + V , (1.2)

g(x) = E(Y |X = x), and the random variable V , denoting an ex-

perimental error, has zero mean. In this case the standard regression

problem is altered on account of errors that are incurred when meas-

uring the value of the explanatory variable. In (1.2) the variables U , V

and X are assumed to be independent.

The measurement error U , appearing in (1.1) and (1.2), can be in-

terpreted as the result of a ‘laboratory error’ in determining the ‘dose’

X which is applied to the subject. For example, a laboratory technician

might use the dose X in an experiment, but in attempting to determine

the dose after the experiment they might commit an error U , with the

result that the actual dose is recorded as X + U instead of X . Another
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way of modelling the effect of measurement error is to reverse the roles

of X and W , so that we observe (W,Y ) generated as

X =W + U , Y = g(X) + V . (1.3)

Here a precise dose W is specified, but when measuring it prior to the

experiment our technician commits an error U , with the result that

the actual dose is W + U . In (1.3) it assumed that U , V and W are

independent.

The measurement error model (1.2) is standard. The alternative model

(1.3) is believed to be much less common, although in some circum-

stances it is difficult to determine which of (1.2) and (1.3) is the more

appropriate. The model at (1.3) was first suggested by Berkson (1950),

for whom it is named.

1.3 Kernel methods

If the measurement error U were very small then we could estimate the

density f of X , and the function g in the model (1.2), using standard

kernel methods. For example, given data X1, . . . , Xn on X we could

take

f̂(x) =
1

nh

n
∑

i=1

K
(x−Xi

h

)

(1.4)

to be our estimator of f(x). Here K is a kernel function and h, a positive

quantity, is a bandwidth. Likewise, given data (X1, Y1), . . . , (Xn, Yn) on

(X,Y ) we could take

ĝ(x) =

∑

i YiK{(x−Xi)/h}
∑

i K{(x−Xi)/h}
(1.5)

to be our estimator of g(x), where g is as in the model at (1.2).

The estimator at (1.4) is a standard kernel density estimator, and is

itself a probability density if we take K to be a density. It is consistent

under particularly weak conditions, for example if f is continuous and

h → 0 and nh → ∞ as n increases. Density estimation is discussed at

length by Silverman (1986) and Scott (1992). The estimator ĝ, which we

generally also compute by taking K to be a probability density, is often

referred to as the ‘local constant’ or Nadaraya–Watson estimator of g.

The first of these names follows from the fact that ĝ(x) is the result of



6 Aurore Delaigle and Peter Hall

fitting a constant to the data by local least squares:

ĝ(x) = argmin
c

n
∑

i=1

(Yi − c)2K
(x−Xi

h

)

. (1.6)

The estimator ĝ is also consistent under mild conditions, for example if

the variance of the error, V , in (1.2) is finite, if f and g are continuous, if

f > 0 at the point x where we wish to estimate g, and if h→ 0 and nh→

∞ as n increases. General kernel methods are discussed by Wand and

Jones (1995), and statistical smoothing is addressed by Simonoff (1996).

Local constant estimators have the advantage of being relatively ro-

bust against uneven spacings in the sequence X1, . . . , Xn. For example,

the ratio at (1.5) never equals a nonzero number divided by zero. How-

ever, local constant estimators are particularly susceptible to boundary

bias. In particular, if the density of X is supported and bounded away

from zero on a compact interval, then ĝ, defined by (1.5) or (1.6), is

generally inconsistent at the endpoints of that interval. Issues of this

type have motivated the use of local polynomial estimators, which are

defined by ĝ(x) = ĉ0(x) where, in a generalisation of (1.6),

(ĉ0(x), . . . , ĉp(x)) = argmin
(c0,...,cp)

n
∑

i=1

{

Yi −

p
∑

j=0

cj (x−Xi)
j

}2

K
(x−Xi

h

)

.

(1.7)

See, for example, Fan and Gijbels (1996). In (1.7), p denotes the degree

of the locally fitted polynomial. The estimator ĝ(x) = ĉ0(x), defined

by (1.7), is also consistent under the conditions given earlier for the

estimator defined by (1.5) and (1.6).

In the particular case p = 1 we obtain a local-linear estimator of g(x):

ĝ(x) =
S2(x)T0(x) − S1(x)T1(x)

S0(x)S2(x) − S1(x)2
, (1.8)

where

Sr(x) =
1

nh

n
∑

i=1

(

x−Xi

h

)r

K

(

x−Xi

h

)

,

Tr(x) =
1

nh

n
∑

i=1

Yi

(

x−Xi

h

)r

K

(

x−Xi

h

)

,

(1.9)

h denotes a bandwidth and K is a kernel function.

Estimators of all these types can be quickly extended to cases where

errors in variables are present, for example as in the models at (1.1)

and (1.2), simply by altering the kernel function K so that it acts to
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cancel out the influence of the errors. We shall give details in section 2.

Section 3 will discuss recently introduced methodology which, from some

viewpoints looks quite different from, but is actually almost identical to,

kernel methods.

2 Methodology and theory

2.1 Definitions of estimators

We first discuss a generalisation of the estimator at (1.4) to the case

where there are errors in the observations ofXi, as per the model at (1.1).

In particular, we assume that we observe data W1, . . . , Wn which are

independent and identically distributed as W = X + U , where X and

U are independent and the distribution of U has known characteristic

function φU which does not vanish anywhere on the real line. Let K be

a kernel function, write φK =
∫

eitxK(x) dx for the associated Fourier

transform, and define

KU (x) =
1

2π

∫

e−itx φK(t)

φU (t/h)
dt . (2.1)

Then, to construct an estimator f̂ of the density f = fX of X , when all

we observe are the contaminated data W1, . . . , Wn, we simply replace

K by KU , and Xi by Wi, in the definition of f̂ at (1.4), obtaining the

estimator

f̂decon(x) =
1

nh

n
∑

i=1

KU

(x−Wi

h

)

. (2.2)

Here the subscript ‘decon’ signifies that f̂decon involves empirical decon-

volution. The adjustment to the kernel takes care of the measurement

error, and results in consistency in a wide variety of settings. Likewise,

if data pairs (W1, Y1), . . . , (Wn, Yn) are generated under the model at

(1.2) then, to construct the local constant estimator at (1.5), or the local

linear estimator defined by (1.8) and (1.9), all we do is replace each Xi

by Wi, and K by KU . Other local polynomial estimators can be calcu-

lated using a similar rule, replacing h−r(x −Xi)
rK{(x −Xi)/h} in Sr

and Tr by KU,r{(x−Wi)/h}, where

KU,r(x) =
1

2πir

∫

e−itx φ
(r)
K (t)

φU (t/h)
dt .

The estimator at (2.2) dates from work of Carroll and Hall (1988) and
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Stefanski and Carroll (1990). Deconvolution-kernel regression estimators

in the local-constant case were developed by Fan and Truong (1993), and

extended to the general local polynomial setting by Delaigle et al. (2009).

The kernel KU is deliberately constructed to be the function whose

Fourier transform is φK/φU . This adjustment permits cancellation of the

influence of errors in variables, as discussed at the end of section 1.3. To

simplify calculations, for example computation of the integral in (1.2),

we generally choose K not to be a density function but to be a smooth,

symmetric function for which φK vanishes outside a compact interval.

The commonly-used candidates for φK are proportional to functions that

are used for K, rather than φK , in the case of regular kernel estimation

discussed in section 1.3. For example, kernels K for which φK(t) =

(1−|t|r)s for |t| ≤ 1, and φK(t) = 0 otherwise, are common; here r and s

are integers. Taking r = 2s = 2, r = s = 2 and r = 2
3 s = 2 corresponds

to the Fourier inverses of the biweight, quartic and triweight kernels,

respectively. Taking s = 0 gives the inverse of the uniform kernel, i.e. the

sinc kernel, which we shall meet again in section 3. Further information

about kernel choice is given by Delaigle and Hall (2006).

These kernels, and others, have the property that φK(t) = 1 when t =

0, thereby guaranteeing that
∫

K = 1. The latter condition ensures that

the density estimator, defined at (2.2) and constructed using this kernel,

integrates to 1. (However, the estimator defined by (2.2) will generally

take negative values at some points x.) The normalisation property is not

so important when the kernel is used to construct regression estimators,

where the effects of multiplying K by a constant factor cancel from

the ‘deconvolution’ versions of formulae (1.5) and (1.8), and likewise

vanish for all deconvolution-kernel estimators based on local polynomial

methods.

Note that, as long as φK and φU are supported either on the whole real

line or on a symmetric compact domain, the kernelKU , defined by (2.1),

and its generalised form KU,r, are real-valued. Indeed, using properties

of the complex conjugate of Fourier transforms of real-valued functions,

and the change of variable u = −t, we have, using the notation a(t) for

the complex conjugate of a complex-valued function a of a real variable

t,

KU,r(x) = (−1)−r 1

2πir

∫

eitx
φ
(r)
K (t)

φU (t/h)
dt

= (−1)−r 1

2πir

∫

eitx
(−1)−rφ

(r)
K (−t)

φU (−t/h)
dt
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=
1

2πir

∫

e−iux φ
(r)
K (u)

φU (u/h)
du = KU,r(x).

In practice it is almost always the case that the distribution of U is

symmetric, and in the discussion of variance in section 2.2, below, we

shall make this assumption. We shall also suppose that K is symmetric,

again a condition which holds almost invariably in practice.

The estimators discussed above were based on the assumption that

the characteristic function φU of the errors in variables is known. This

enabled us to compute the deconvolution kernel KU at (2.1). In cases

where the distribution of U is not known, but can be estimated from

replicated data (see section 1.2), we can replace φU by an estimator of it

and, perhaps after a little regularisation, compute an empirical version

of KU . This can give good results, in both theory and practice. In par-

ticular, in many cases the resulting estimator of the density of X , or the

regression mean g, can be shown to have the same first-order properties

as estimators computed under the assumption that the distribution of

U is known. Details are given by Delaigle et al. (2008).

Methods for choosing the smoothing parameter, h, in the estimat-

ors discussed above have been proposed by Hesse (1999), Delaigle and

Gijbels (2004a,b) and Delaigle and Hall (2008).

2.2 Bias and variance

The expected value of the estimator at (2.2) equals

E{f̂decon(x)} =
1

2πh

∫

E
[

e−it{x−W}/h
] φK(t)

φU (t/h)
dt

=
1

2π

∫

e−itxφK(ht)

φU (t)
φX(t)φU (t) dt

=
1

2π

∫

e−itxφK(ht)φX(t) dt =
1

h

∫

K(u/h) f(x− u) du

= E{f̂(x)} , (2.3)

where the first equality uses the definition of KU , and the fourth equal-

ity uses Plancherel’s identity. Therefore the deconvolution estimator

f̂decon(x), calculated from data contaminated by measurement errors,

has exactly the same mean, and therefore the same bias, as f̂(x), which

would be computed using values of Xi observed without measurement

error. This confirms that using the deconvolution kernel estimator does
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indeed allow for cancellation of measurement errors, at least in terms of

their presence in the mean.

Of course, variance is a different matter. Since f̂decon(x) equals a sum

of independent random variables then

var{f̂decon(x)}

=
(

nh2
)−1

var
{

KU

(x−W

h

)}

∼ (nh)−1 fW (x)

∫

K2
U =

fW (x)

2πnh

∫

φK(t)2 |φU (t/h)|
−2 dt . (2.4)

(Here the relation ∼ means that the ratio of the left- and right-hand

sides converges to 1 as h → 0.) Thus it can be seen that the variance

of f̂decon(x) depends intimately on tail behaviour of the characteristic

function φU of the measurement-error distribution.

If φK vanishes outside a compact set, which, as we noted in section 2.1,

is generally the case, and if |φU | is asymptotic to a positive regularly

varying function ψ (see Bingham et al., 1989), in the sense that |φU (t)| ≍

ψ(t) (meaning that the ratio of both sides is bounded away from zero

and infinity as t → ∞), then the integral on the right-hand side of

(2.3) is bounded between two constant multiples of ψ(1/h)−2 as h→ 0.

Therefore by (2.4), provided that fW (x) > 0,

var{f̂decon(x)} ≍ (nh)−1 ψ(1/h)−2 (2.5)

as n increases and h decreases. Recall that we are assuming that fU and

K are both symmetric functions.

If the density f of X has two bounded and continuous derivatives, and

if K is bounded and symmetric and satisfies
∫

x2 |K(x)| dx < ∞, then

the bias of f̂decon can be found from (2.3), using elementary calculus and

arguments familiar in the case of standard kernel estimators:

bias(x) = E{f̂decon(x)} − f(x) = E{f̂(x)} − f(x)

=

∫

K(u) {f(x− hu)− f(x)} du = 1
2 h

2 κ f ′′(x) + o
(

h2
)

(2.6)

as h → 0, where κ =
∫

x2K(x) dx. Therefore, provided that f ′′(x) 6= 0,

the bias of the conventional kernel estimator f̂(x) is exactly of size h2 as

h → 0. Combining this property, (2.3) and (2.5) we deduce a relatively

concise asymptotic formula for the mean squared error of f̂decon(x):

E{f̂decon(x) − f(x)}2 ≍ h4 + (nh)−1 ψ(1/h)−2 . (2.7)

For a given error distribution we can work out the behaviour of ψ(1/h)
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as h → 0, and then from (2.7) we can calculate the optimal bandwidth

and determine the exact rate of convergence of f̂decon(x) to f(x), in mean

square. In many instances this rate is optimal, in a minimax sense; see,

for example, Fan (1991). It is also generally optimal in the case of the

errors-in-variables regression estimators discussed in section 2.1, based

on deconvolution-kernel versions of local polynomial estimators. See Fan

and Truong (1993).

Therefore, despite their almost naive simplicity, deconvolution-kernel

estimators of densities and regression functions have features that can

hardly be bettered by more complex, alternative approaches. The results

derived in the previous paragraph, and their counterparts in the regres-

sion case, imply that the estimators are limited by the extent to which

they can recover from the data. (This is reflected in the fact that the

rate of decay of the tails of φU drives the results on convergence rates.)

However, the fact that the estimators are nevertheless optimal, in terms

of their rates of convergence, implies that this restriction is inherent to

the problem, not just to the estimators; no other estimators would have

a better convergence rate, at least not uniformly in a class of problems.

3 Relationship to minimum contrast methods

3.1 Deconvolution kernel estimators based on the sinc

kernel

The sinc, or Fourier integral, kernel is given by

L(x) =

{

(πx)−1 sin(πx) if x 6= 0

1 if x = 0 .
(3.1)

Its Fourier transform, defined as a Riemann integral, is the ‘boxcar func-

tion’, φL(t) = 1 if |t| ≤ 1 and φL(t) = 0 otherwise. In particular, φL van-

ishes outside a compact set, which property, as we noted in section 2.1,

aids computation. The version of KU , at (2.1), for the sinc kernel is

LU (x) =
1

2π

∫ 1

−1

e−itx φU (t/h)
−1 dt =

1

π

∫ 1

0

cos(tx)φU (t/h)
−1 dt ,

where the second identity holds if the distribution of U is symmetric and

has no zeros on the real line.

The kernel L is sometimes said to be of ‘infinite order’, in the sense

that if a is any function with an infinite number of bounded, integrable
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derivatives then

∫
[
∫

{a(x+ hu)− a(x)}L(u) du

]2

dx = O
(

hr
)

(3.2)

as h ↓ 0, for all r > 0. If K were of finite order then (3.2) would hold

only for a finite range of values of r, no matter how many derivatives

the function a enjoyed. For example, if K were a symmetric function for

which
∫

u2K(u) du 6= 0, and if we were to replace L in (3.2) by K, then

(3.2) would hold only for r ≤ 4, not for all r. In this case we would say

that K was of second order, because
∫

{a(x+ hu)− a(x)}K(u) du = O
(

h2
)

.

If we take a to be the density, f , of the random variableX , and takeK

in the definition of f̂ at (1.4) to be the sinc kernel, L, then (3.2) equals

the integral of the squared bias of f̂ . Therefore, in the case of a very

smooth density, the ‘infinite order’ property of the sinc kernel ensures

particularly small bias, in an average sense.

Properties of conventional kernel density estimators, but founded on

the sinc kernel, for data without measurement errors, have been stud-

ied by, for example, Davis (1975, 1977). Glad et al. (1999)have provided

a good survey of properties of sinc kernel methods for density estima-

tion, and have argued that those estimators have received an unfairly

bad press. Despite criticism of sinc kernel estimators (see e.g. Politis

and Romano, 1999), the approach is “more accurate for quite moderate

values of the sample size, has better asymptotics in non-smooth cases

(the density to be estimated has only first derivative), [and] is more con-

venient for bandwidth selection etc” than its conventional competitors,

suggest Glad et al. (1999).

The property of greater accuracy is borne out in both theoretical and

numerical studies, and derives from the infinite-order property noted

above. Indeed, if f is very smooth then the low level of average squared

bias can be exploited to produce an estimator f̂ with particularly low

mean squared error, in fact of order n−1 in some cases. The most easily

seen disadvantage of sinc-kernel density estimators is their tendency to

suffer from spurious oscillations, inherited from the infinite number of

oscillations of the kernel itself.

These properties can be expected to carry over to density and re-

gression estimators based on contaminated data, when we use the sinc

kernel. To give a little detail in the case of density estimation from data
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contaminated by measurement errors, we note that if the density f of

X is infinitely differentiable, but we observe only the contaminated data

W1, . . . , Wn distributed as W , generated as at (1.1); if we use the dens-

ity estimator at (1.4), but computed using K = L, the sinc kernel; and

if |φU (t)| ≥ C (1 + |t|)−α for constants C, α > 0; then, in view of (2.3),

(2.4) and (3.2), we have for all r > 0,
∫

{f̂decon(x)− f(x)}2 dx

=

∫

{Ef̂(x)− f(x)}2 +
(

nh2
)−1

∫

var
{

LU

(x−W

h

)}

dx

≤

∫
[
∫

{f(x+ hu)− f(x)}L(u) du

]2

dx+ (nh)−1

∫

L2
U

= O

{

hr + (nh)−1

∫ 1

−1

|φU (t/h)|
−2 dt

}

= O
{

hr +
(

nh2α+1
)−1

}

. (3.3)

It follows that, if f has infinitely many integrable derivatives and if the

tails of φU (t) decrease at no faster than a polynomial rate as |t| → ∞,

then the bandwidth h can be chosen so that the mean integrated squared

error of a deconvolution kernel estimator of f , using the sinc kernel,

converges at rate O(nǫ−1) for any given ǫ > 0.

This very fast rate of convergence contrasts with that which occurs if

the kernel K is of only finite order. For example, if K is a second-order

kernel, in which case (3.2) holds only for r ≤ 4 when L is replaced by

K, the argument at (3.3) gives:
∫

{f̂decon(x)− f(x)}2 dx = O
{

h4 +
(

nh2α+1
)−1

}

.

The fastest rate of convergence of the right-hand side to zero is attained

with h = n−1/(2α+5), giving
∫

{f̂decon(x)− f(x)}2 dx = O
(

n−4/(2α+5)
)

.

In fact, this is generally the best rate of convergence of mean integrated

squared error that can be obtained using a second-order kernel when

the characteristic function φU decreases like |t|−α in the tails, even if

the density f is exceptionally smooth. Nevertheless, second-order kernels

are often preferred to the sinc kernel in practice, since they do not suffer

from the unwanted oscillations that afflict estimators based on the sinc

kernel.
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3.2 Minimum contrast estimators, and their

relationship to deconvolution kernel estimators

In the context of the measurement error model at (1.1), Comte et al.

(2007) suggested an interesting minimum contrast estimator of the dens-

ity f of X . Their approach has applications in a variety of other settings

(see Comte et al., 2006, 2008; Comte and Taupin, 2007), including to

the regression model at (1.2), and the conclusions we shall draw below

apply in these cases too. Therefore, for the sake of brevity we shall treat

only the density deconvolution problem.

To describe the minimum contrast estimator in that setting, define

âkℓ =
1

2πn

n
∑

j=1

∫

exp(itWj)φLkℓ
(t)φU (t)

−1 dt ,

where φLkℓ
denotes the Fourier transform of the function Lkℓ defined by

Lkℓ(x) = ℓ1/2 L(ℓ x− k), k is an integer and ℓ > 0. In this notation the

minimum contrast nonparametric density estimator is

f̃(x) =

k0
∑

k=−k0

âkℓ Lkℓ(x) .

There are two tuning parameters, k0 and ℓ. Comte et al. (2007) suggest

choosing ℓ to minimise a penalisation criterion.

The resulting minimum contrast estimator is called a penalised con-

trast density estimator. The penalisation criterion suggested by Comte

et al. (2007) for choosing ℓ is related to cross-validation, although its

exact form, which involves the choice of additional terms and multi-

plicative constants, is based on simulation experiments. It is clear on

inspecting the definition of f̃ that ℓ plays a role similar to that of the

inverse of bandwidth in a conventional deconvolution kernel estimator.

In particular, ℓ should diverge to infinity with n. Comte et al. (2007)

suggest taking k0 = 2m − 1, where m ≥ log2(n + 1) is an integer. In

numerical experiments they use m = 8, which gives good performance

in the cases they consider. More generally, k0/ℓ should diverge to infinity

as sample size increases.

The minimum contrast density estimator of Comte et al. (2007) is ac-

tually very close to the standard deconvolution kernel density estimator

at (1.4), where in the latter we use the sinc kernel at (3.1). Indeed, as

the theorem below shows, the two estimators are exactly equal on a grid,

which becomes finer as the bandwidth, h, for the sinc kernel density es-

timator decreases. However, this relationship holds only for values of x
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for which |x| ≤ k0/ℓ; for larger values of |x| on the grid, f̃(x) vanishes.

(This property is one of the manifestations of the fact that, as noted

earlier, k and ℓ generally should be chosen to depend on sample size in

such a manner that k0/ℓ→ ∞ as n→ ∞.)

Theorem Let f̂decon denote the deconvolution kernel density estimator

at (1.4), constructed using the sinc kernel and employing the bandwidth

h = ℓ−1. Then, for any point x = hk with k an integer, we have

f̃(x) =

{

f̂decon(x) if |x| ≤ k0/ℓ

0 if |x| > k0/ℓ .

A proof of the theorem will be given in section 3.3. Between grid points

the estimator f̃ is a nonstandard interpolation of values of the kernel

estimator f̂decon. Note that, if we take h = ℓ−1, the weights L(ℓx− k) =

L{(x − hk)/h} used in the interpolation decrease quickly as k moves

further from x/h, and, except for small k, neighbour weights are close in

magnitude but differ in sign. (Here L is the sinc kernel defined at (3.1).)

In effect, the interpolation is based on rather few values f̂decon(k/ℓ)

corresponding to those k for which k is close to x/h.

In practice the two estimators are almost indistinguishable. For ex-

ample, Figure 3.1 compares them using the bandwidth that minimises

the integrated squared difference between the true density and the es-

timator, for one generated sample in the case where X is normal N(0, 1),

U is Laplace with var(U)/var(X) = 0.1, and n = 100 or n = 1000. In

the left graphs the two estimators can hardly be distinguished. The right

graphs show magnifications of these estimators for x ∈ [− 1
2 , 0]. Here it

can be seen more clearly that the minimum contrast estimator is an ap-

proximation of the deconvolution kernel estimator, and is exactly equal

to the latter at x = 0.

These results highlight the fact that the differences in performance

between the two estimators derive more from different tuning para-

meter choices than from anything else. In their comparison, Comte et

al. (2007) used a minimum contrast estimator with the sinc kernel L

and a bandwidth chosen by penalisation, whereas for the deconvolution

kernel estimator they employed a conventional second-order kernel K

and a different bandwidth-choice procedure. Against the background of

the theoretical analysis in section 3.1, the different kernel choices (and

different ways of choosing smoothing parameters) explain the differences

observed between the penalised contrast density estimator and the de-

convolution kernel density estimator based on a second-order kernel.
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Figure 3.1 Deconvolution kernel density estimator (DKDE) and min-
imum contrast estimator (PCE) for a particular sample of size
n = 100 (upper panels) or n = 1000 (lower panels) in the case
var(U)/var(X) = 0.1. Right panels show magnifications of the es-
timates for x ∈ [−0.5, 0] in the respective upper panels.

3.3 Proof of Theorem

Note that φLkℓ
(t) = ℓ−1/2 exp(itk/ℓ)φL(t/ℓ) and

âkℓ =
1

2nπℓ1/2

n
∑

j=1

∫ ℓπ

−ℓπ

exp
{

− it
(

k ℓ−1 −Wj

)} φL(t/ℓ)

πU (t)
dt .

Therefore,

f̃(x)

=
1

2nπ

k0
∑

k=−k0

L(ℓx− k)

n
∑

j=1

∫ ℓπ

−ℓπ

exp
{

− it
(

kℓ−1 −Wj

)}φL(t/ℓ)

πU (t)
dt
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=

k0
∑

k=−k0

L(ℓx− k) f̂decon(k/ℓ) . (3.4)

If r is a nonzero integer then L(r) = 0. Therefore, if x = kh = s/ℓ for an

integer s then L(ℓx−k) = 0 whenever k 6= s, and L(ℓx−k) = 1 if k = s.

Hence, (3.4) implies that f̃(x) = f̂decon(x) if |k| ≤ k0, and f̃(x) = 0

otherwise.
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