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Abstract

We examine the use of a structured thresholdingriéhgn for sparse underwater channel estimatiomgusiompressed
sensing. This method shows some improvements taedard algorithms for sparse channel estimatich a8 matching pursuit,
iterative detection and least squares.

1. Haupt and Nowak’s Algorithm

In Ref. [1], Haupt and Nowak propose a method tmver signals corrupted with noisy random projewio
Ref. [1] is an improvement over Ref. [2] where Gas and Tao propose a method called the Dantzirt®elto
recover signals using random projections with asueament matrix of lesser rank than the input sigrmasis. In
the Dantzig Selector problem, however, the sigasdscorrupted by bounded perturbations; Ref. [1¢mds this to
unbounded Additive White Gaussian Noise (AWGN) wihic more practical in nature.

Consider a signat that can represented in an orthonormal b#sidf W is a matrix and is considered to be a
signal vector, they can be related as:

x=ya 1)

If the vectord has very few non-zero taps, the signa said to be sparse in the babis From work in Ref. [3] and
[4], such a signal can be recovered by measurimgtlit an orthonormal matrix of much lesser ranknthiae basis
itself (say the basis has raNk This method is known ampressed sensintn essence, if we consider a random
orthonormal matriP of sizeKxN with K[ N, we may measure the signalat rate much lesser than that of the
Shannon Rate, to obtajras:

y=bx=0WYo= A0 2

As described in Ref. [3] and [4], to successfuligaver the signal, the effective measurement méatskould
satisfy therestricted isometry conditiorwhich puts some restriction on the orthogonalify /0 Also, if the
matricesW and® are largelyincoherentthe recovery probability is larger. Further, widrge probability, the
signals can be recovered by standard methods suBhsis Pursuit from |1 norm minimization [4] usiteghniques
like Matching Pursuit [5], Simplex and Primal-Duaterior Point Methods [6].

In Ref. [1], the nature the signelis allowed to be corrupted with Gaussian noise.siter a signal measured
as:

y=®(x+7)+w &)

wherew andy are vectors consisting of random AWGN samples.|&hgth ofw is K and the length of is N. With
this assumption, the 11 norm minimization mentiobediore for the Dantzig Selector can be adaptezhtt?2 norm

minimization to recover the signal, wittriak of candidatureli( X) [1]:
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c(X) =2Slog( N)

B = maximum possible signal power

¢ = noise variance

S =Sparsity of the signal (number of non-zero tap@)n

Ii( X) = Risk of candidature of the received signal, and2m function of the error

This problem can be simplified for the estimatehaf sparse vectoné() instead with the following modification:
A . 2 2log(2)log(N)
g = arg n;m{||y—¢L|J6?|| + 252 ©)

To solve the above system of equations, the foligvelgorithm is used [1]:
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0 otherwise

where/. is the largest eigenvalue of the matix

Note that Eq. (10) follows a two step process veithestimation of the possible vecjoand a soft decision step
where the value of the threshold,is dependent highly os and therefore the noise level. Heraletermines the
iteration number anldis the tap numbekE 1, 2, 3....N).

The Dantzig Selector (DS) considers random pertiote Therefore, implementations of the algorittionnot
give good results for recovery of signals corrupteth AWGN resulting in SNR lesser than 48 [7]. However,
Haupt and Nowak’s Algorithm (HN) recovers signahsiglerably well till up to 2@B, after which the signal are not
recoverable. Also, since the algorithms are stasistthere is always a negligible probability DaigtSelector and
HN fail. Besides, HN is performed ®(NK); however Dantzig Selector D(N°).

2. Sparse Channel Estimation using Compressive®pling

With many algorithms available for compressive stmgpit is clear that Haupt and Nowak’s Algorithismwell
suited for estimation problems in wireless commatigms as the paper considers AWGN. In Ref. [8]wBaet al.
consider the application of Compressive SamplingSparse Channel Estimation. However, Ref. [8] doets
discuss in detail the metrics used to evaluateeftemate of the sparse channel using their meth@dmmon
metrics for the evaluation of the channel estineateMean Square Error (MSEQndBit Error Rate (BER)f an
equalizer output. Also, Ref. [8] considers uptotéps in a channel response of delay spread 12&hwkinot
always the case with sparse channel. We will noscidee qualitatively the channel model and loolpedvious
work in Sparse Channel Estimation.

A. Sparse Underwater Acoustic Channels

In practical situations, underwater acoustic (UVaAY ultra-wideband (UWB) channels exhibit a higharse
channel response (in the time domain). Researdkein [17] shows that a typical channel responseveag few
non-zero taps but has a large delay spread. Adlplannel shown in Fig. 1 has a delay spread 0ftdfs with as
few as 3 non-zero taps.
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Figure 1. Time Domain response of a typical sparserwater channel. Note the number of non-zers imps less as 3 in a
delay spread of 100.

The problem of sparse channel estimation has bddmessed in many previous works ([9]-[11]). Refern[9]
and [10], attempt to solve the problem using thetetd techniques of Matching Pursuit and Orthogdatching
Pursuit (a variant of Matching Pursuit). Ref. [Ifb]lows a different approach where many parallelcured
estimates are performed after taking hard decismmghe channel tap locations. Such an estimaterised
structured as a hard estimate determines first the postbléocations and then uses pseudo-inverses offnidigx
to estimate the amplitude at these tap locatiomsoAdingly, the method proposed in [11] perforngngicantly
better than those in [9] and [10]. However, the bemof computations is increased as there are marsllel
estimation and decision loops based on noise irdtam from an initial unstructured estimate (fotalls, see Ref.
[11]).

Unlike compressive sampling, these methods useritiee received signal and not a projection ofdesank to
estimate the sparse channel. The property of ragutie rank using compressive sampling can thugeses an
advantage in reducing the amount of computatiomceSicompressive sampling techniques require random
projection on a signal (see Ref. [4]), the methwdkalso serve to reduce the constraints of thesneement matrix.
The random projections are usually random matrafeGaussian or Rademacher Distributions, whichsgathe
Restricted Isometry and Incoherence conditionsh(wéarly all possible basis expansion models [4&]nentioned
in Section 1. We may thus summarize the motivatiorusing compressive sampling in sparse chanrighason
with the following points:

 Sparse channels can be estimated using compresaiupling if the algorithm used by the estimator
satisfies the restrictions posed by the underlyfregpry

* Unlike techniques as used in Ref. [9]-[11], compiess sampling requires a project signal with a rank
much lesser than that of the received signal €€N) thus reducing the number of sensors and the
computation complexity.

» Since the projection of the received signal is tandthe measurement matrix need not be constrdigped
the input signal and noise power.

B. Brute Use of Compressive Sampling

We will now consider the use of DS and HN for spatkannel estimation. Consider a system wherdrartga
sequence of lengthM is transmitted through a channel with respdmaad added AWGM. The received signal at
the receiver can be written as:

r=(CCh)+n @)

The matrix C is the convolution matrix formed from the trainisgquenceC is a full Toeplitz matrix with
dimensiongM+N-1)x(N) of the form:



cQ) 0 » 0

c(2) c(1) 0
M M-1) ... M- N+1
C(M+N71)><(N) = C( ) C( ) C( ) (8)
0 c(M) ... c(M=-N+2)
0 0 ... ¢(M-N+23)
0 0 c(M)

The usual choice for the elements of the trainiaguence is a Rademacher distributed sequence &PSK
symbols. We will consider such a sequencecf@inceh is sparse in nature, it makes sense to mddify order for

it form an appropriate basis for the estimatiof.dflote that withC as basis, (7) approaches a form equivalent to (3),
with » = n,w=0,x = W@ = Ch. The received signal can be measured with a métaxd the resulting vectgrcan

be now used to estimale Note that in the above model, to normalize theidave have assumed that the ma¥ix

is full Toeplitz, and there exists a guard intervblength(N-1) before further data symbols are transmitted.

Note that to use &, it must be orthonormal. Als@C should satisfy the restricted isometry conditioef.R8]
shows that with certain conditions on the paransetevolved in DS, the matriA = ®C satisfies all properties
required for use with compressive sampling meth&isilar proofs apply for other compressive sanplin
techniques, such as Lasso [13] and HN. Sifteis Rademacher distributed, the norm of the vectors

is /Z(tl)z = /M . If vectors inC are normalized the@ becomes orthonormal. Thus usiﬁg\/ﬁ instead ofC

satisfies all conditions for the use of recovehtgques like HN, DS, Lasso etc.

We now apply DS and HN for the estimationhpfwvith the equivalent signal model as describedrab®he DS
is 11 minimization technique [2] of the form:

argmin || || subjectto [[AAG-Y) .4y Q)

which can be solved using the Primal-Dual InteRoint Method ([6], [7]).

Some changes are made to the HN algorithm. Refsygpests that the value Gffluctuates highly, as it is
related directly tar (noise variance)\ (delay spread) anill (training sequence length). Also, in the prooftaf tise
of the algorithm shown in (6), there is a constrain the maximum permissible power of the sigralThis
condition has to be satisfied in order for the atho in (6) to be used. We will consider the ca$¢he threshold
and the power constraint in the following section.

C. Power Restrictions in Application of HN

Consider the signat uncorrupted with AWGN. In the case of the convielnitmatrix,x = Ch. If C is of the
form as shown in (8)% is a vector of lengtiM+N-1)x(N). The power restriction to use (6) as per [1] for tase of
the signal model described above is:

S (x) =[] < (M n-1) B (10)

Each element of the vectwcan be written as:

X ZiC(i, 1 Oh()) i= 1,2,3...(M +N - )Z (11)

C is a Toeplitz matrix with consisting of random remns from the Rademacher distribution. The meathef
distribution is 0 and the variance is 1. Assuniinig a uniformly distributed or Gaussian (most ctesmesponses



are combinations of these two distributions), theamofh is 0 and the variance is a non-zero value depgnatin
the probability distribution function df and the number of divisions between 0 and 1 irtithe axis.

Suppose the sparsity &f is equal toS the sparse representation of the individgakill only involve a
summation ovet multiplications ofC(i,j) andh(j). With this definition ofx we have to prove the inequality shown
in (10). We will use the Hoeffding's Inequality gJ. [15]), which states that independent bounded random

variablesg with the conditiona, < z < b satisfy:

Pr((s-E(s)) = t)< exg ——— (12)

i=1

whereS = z Z .1In the case of Eq. (11), substitate= C(i, j) Uh(j). We see that Z C(i, DOh(j). The
=1 j=1

variablesh(j) and C(i,j) are bounded between 0 and 1, and between (D/a@ respectively. This implies that
(Os C(@i,j)th(j)< (1/N)) which are the boundganda;. Since the mean of both elementadndh is 0 and the

variables are independerii(s) = 0. Since the values of power are all normalizedLt we are interested in

=+/1/M . Therefore, for the case of the signal model imsaderation, it is easy to verify that:
2 -1
Pr(|x|* 2 1/M) < exr{—j (13)
2S

With the normalization factor introduced, we obtairelation equivalent to both sides of Eq. (13}tiplied by (M)
which results in the same inequality. The norm gadfi vectorx is defined as in Eqg. (10). Since the conditiormaft

M+N-1
normalizing is<l2 + x: +..+ ij-l < (—j it is sufficient to prove the probability conditi (13). With a
M

simple convolution of identical probability disttition functions we show that:

[ I

According to Ref. [15], the sparsity should satiSx c(\/( M+ N—1)/Iog N) where c is a constant. If we

consider a fixed low sparsity as is typical in UWA channels described above,ptobability in (14) can be made
very high thus statistically ensuring that with mogx;, the power constraint posed by Ref. [1] is safiThus,
with very low sparsity and large delay spreadsigasith UWA channels), the compressive samplindhégue
described in [1] can be adapted to the estimatibmighly sparse UWA channels. To show that the powe
constraints are satisfied, we consider a variabiaing sequence length, a delay spread of 10Gapérsity of 3. It
was found that on average, 86.3% of the experim@entsof 1000 experiments) satisfied the power trairg. Thus,
the HN algorithm has chances of failure in some&saghis failure rate can be manipulated, if théentng sequence
is designed, in which case the probability limit(ls) will not hold. We will discuss failure of @siator in more
detail later in this report.

D. Experiments

We now compare results of DS and HN with respedh&structured and unstructured Cramer-Rao Bounds
(CRB). The unstructured and structured CRBs armeéfas:

CRB-U=(0?) trace{(c:T c)'l} (15)



CRB-S=(0) trace{((Cdiag b )T ( cdiag Zb)jT} (16)

wheret denotes the pseudo-inverse arigl a hard estimate of the time domain channel respolt is clear that
CRB-S assumes a prior knowledge of the tap position

Note from Eg. (6), the value @ is dependent on SNR throughThus there is some uncertainty as to what
would be the best threshold to work well for all &\ In Ref. [1], Haupt and Nowak made approximatiand
determined a lower bound enAfter determining this value they reported tia#.6 as the best possible threshold.
In Ref. [1], the matrices were assumed ideal aedtsis are deterministic. In the case of a RanBoeplitz Matrix
as a basis@), it is difficult to determine the threshold thetically. Therefore, various values of a divisdwere
experimented with at all SNRs to obtain the besitnede using the threshol@d/P. Fig. 2(a) shows the variation of
the value ofP with SNR as observed empirically. Fig. 2(b) shdkes MSE performance of DS and HN with respect
to CRB-U and SRB-S for sparse channel estimation.

For the experiment, we have considered a trairdggience of lengtiM = 200, with a delay spread Nf= 100,
and sparsitys = 3. In the DS algorithm, we have used Eq. (9) witgual to 0.24, as suggested by analysis in Ref.
[8]. In both the algorithms, the noise is AWGN. HB, the measurement matfxis a random Rademacher
distributed matrix of dimensior80x(M+N-1) =50x299

Observe that the plot &f (or the optimized threshold ratio value) is randeith respect to the SNR. Therefore,
without prior knowledge of SNR it is quite impodsilto determine the optimal threshold to use farse channel
estimation. Also, observe that even though thesitatistep in (6) considers the SNR as a factohenttireshold, it
is not tuned to the channel response as is theafasecurate estimators such as in [9] and [11\weleer, taking
optimal P (as per Fig. 2(a)) and estimating using HN produesults closer to CRB-S than DS. This is duééo t
presence of the decision step in (6) that aimgeeige some tradeoffs between bias and variandeeoéstimator.
Also notice in HN that the power of the signal lgean integral constraint of the algorithm tendfiuotuate more if
the SNR is as high asdB; thus poorer estimates at low SNR.

3. Structured Thresholding for HN
A. Analysis of the Threshold in HN for Sparselémvater Channels

A analysis of the optimum threshold, with adaptatio the signal model discussed in Section 2 andidering
a sparse underwater channel is now presented. ddigiah step threshold in (6) is given by:

G- /2 log( i)glog( N) a7
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Figure 2. (a) The variation of the divisor for tieesholdP with SNR. Notice the increasing trend, but thiegold is an

empirical estimate and is not the same for eacleraxent. (b) The MSE of HN and DS with respect RBS.



where/ is the largest eigenvalue of the measurement xf®tri The other parameters are as described in Eq. (4).
Note that® has dimensionKx(M+N-1), and is a normalized Rademacher distributed ranchatnix. ForN = 100
andM = 200, we obtain an appropriate maximum allowalplarsityS = 8 (from discussion in Section 2, Subsection
C). We consider a much lesser sparsity;3. For this sparsity it suffices to have a measergmank [4]:

K = Slog( N) (18)

In most channel estimation systems such as inrf@][&1], the delay spread is known. Therefore, masg that the
designer has knowledge Nf consideiK = N/2. ForS= 3, the relation (18) is satisfied fr= 50, thus covering all
possible large delay spreads. The variationt aff a random Rademacher matrix of si®¢2)x(M+N-1) (and

normalized by dividing by N /2 ), with N is shown in Fig. 3, wherg = 200.

According to experiments and Ref. [16] it can beveh that this variation is independent of the ptulity
distribution function of the matrix, thus compagwith the theory of compressive sampling where @tyonormal
random matrix may be used to measure the signab REef. [16] suggests that the eigenvalue is a abfamction
with sharp falls around the mean, thus implyingt tthee variation is not large with randomness of thatrix.
Therefore, the plot in Fig.(3) isnore or less universafor a given value ofM. Assuming a region of
interesb0< N < 150, the plot in Fig. (3) may be approximated to @éinapproximation of the form:

A(N) =18.81- 0.064N) (19)

It is clear that better approximations of the pioFig. (3) may be obtained with higher degree polvials.

However, for simplicity we consider a linear apgmation. Also note that the nature of the plot ig.K3) is not
different with varyingM, however different constants and slopes are ofdain Eq. (19). Substituting values of
ande, the threshold may now be written as:

(y/2100(2)x 50 { T N) [m 1 J

18.81- 0.064 IM

(20)

Substituting value$! = 200 andN = 100, we obtaiG =1.4397(c + 0.070Y. This expression of G is linear with

respect to the variance in noisg and can be manipulated in the estimation prockesgeneral, with linear
approximations:

G=(a+o)b abaref M N (21)

the constanta andb can be determined from the method described above.
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Figure 3. Variation of with the delay spreal for a measurement ramk



B. The initial channel estimate and the thredtsmst

A strong point of the algorithm presented in [14]that it uses thresholds based on an initial eséimf the
channel using a sliding correlator. This initialieste can be represented as:

A=—2", n=12..N (22)

R
e
wherec, is each column of the convolution mat@x

However, in the compressive sampling situation, itligal estimate used is generally a maximum eperg
estimate defined aB= A’ y[7], where A= ®Candy is the received signal after random projection. May also
define a sliding correlator similar to (22), wittet columns of\ instead ofC, and the signa} instead ofr. For the
sparse channel response shown in Fig. 1, the glmbrrelator and the maximum energy plots are shioviig. 4.

The plots show that both the estimates nearly matshithe matrices are all normalized. However, tduthe
random measurement matrix, both the estimates ighgdyhcorrupted with noise, in comparison non coegsive
sampling cases. With the threshold expression fisedeby Eq. (20) and Eq. (21) and the initial chelnestimate
we aim to arrive at an optimal set of threshol@§,{which can be used by the algorithm described)nifstead of
the arbitrarily taking a threshold value as defitgdFig. 2(a). By developing this method we alsm & find an
optimal threshold set, which combines the use efitiitial estimate as shown in [11] and the expoesdeveloped
in Eq. (20) and (21). This will ensure that theéreation is tuned to both SNR and channel response.

An algorithm is defined as follows:

» Compute the initial estimaté” as defined by (22).

» Consider the SNR of interest range td_be(SNF§ < H; the corresponding values ar@, < o< g, .
* Using the empirical method defined in Subsectiomdmpute the function which giv€s = f(M,N o).
» For a known value dfl, Mandg, compute the functio in the rangt{ea, ,U'h] .

* Make the functiorG discrete by quantizinG to obtair{Gl,G GN[} .
«  Similarly dividehinto equal divisions to obtaih= max,{|h()} .

— .G D(i DA)
» For each going from 1 ta\, calculate: threshold(i) = ———=.
max{G}

The above algorithm will ensure that the threstsaltitakes the form of Eq. (21), and will also eaghat the set of
thresholds is within the range of the initial unostured channel estimate as described in [11]. Whhicrative is
that G can be a simple look up tableNf andN are known; and with an initial estimate, a neairopin set of
thresholds can be determined.
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Figure 4. Initial estimates of the channel using tifferent methods
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Figure 5. The set of thresholds to be used fomedion using HN algorithm.

For M = 200,N = 100,S = 3, K = N/2 = 50, and an initial estimate of the form shown ig.H, t(i) was
obtained as shown in Fig. 5. The SNR range of @stewas from 0 to 20B and for ease of calculatioN; = 21.

4. Estimation Process
A. Parallel Estimation

A simple Parallel Estimation Algorithm using Comgsire Sampling (PEA-CS) can now be described fer th
estimation process using Eq. (6) and the threshgltdichnique described in Section 3:

» Determine the vector of thresholdgsing the method described in Section 3.
* Use these set of thresholds to determMeparallel estimatedy , with i = 1,2,3...N; using the
corresponding(i) in the algorithm as described by Eqg. (6), instei@.

» Using this estimate find the set of errwei):‘sun( V- ADAh)‘

» Since the vectoA is a product of a random measurement matrix aaddovolution matrix the above error
is not the least for the best estimate (unlikeatlgorithm in Ref. [11]). However, we can exploietfact
that many estimates are carried out, and the lséstaes are close to each other. Hence:

Find € = % and choosenin )[e'(i)] ; € # 0as the threshold which gives the best estimate
i

t(i

As described above, the results obtained in Filg) @fth HN are byoracle estimationThat is, the value oP is
known before hand as per Fig. 2(a) and then appbedbtain the best estimate. However with PEA-G®,
estimates were found to be exactly the same withotlacle estimator. This can be shown by choosirendom
experiment and looking at the thresholds generayetie oracle estimator, and comparing them wits¢hobtained
by the process in Section 3. The results are showig. 6(a). Notice, that almost all the threslsofbnerated by the
oracle estimator (sorted in plot) lie close to thgenerated by algorithm used in PEA-CS (bold lineBig. 6(a)
show the matching). This proves that PEA-CS indgieds the same MSE as the oracle HN estimator.

Figure 6(b), shows comparison of PEA-CS with lt@eDetection/Estimation (IDE) [11] and MatchingrBuit
(MP) [9], and the Cramer-Rao Bounds. As mentionetbiie, the MSE for PEA-CS were the same as the ones
obtained with the oracle HN estimator. Note that igfhe best estimator at low SNR; however, as 8itReases,

IDE and PEA-CS outperform MP. An added advantagBEA-CS is that the computation complexity is much
lesser than that of IDED(N’KN,) vs. O(NIN)). As K is usually much smaller thaw, PEA-CS can be preferred over
IDE at SNRs 10-2@B. The reason why MP performs well at low SNR ig tiv@ number of taps or sparskyis
assumed available, which may not be the case ali@isand PEA-CS do not assume this, and hencaighdy
affected by noise at low SNR.

Note, that IDE involves complex computations sushpaeudo-inverses and alternate hard and soft assm
(see Ref. [11] for details), which is eliminatedlire case of PEA-CS; thus showing its clear adegnéser other
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algorithms. However, PEA-CS performs very poorlylatv SNR. This is due to two reasons: 1) the power
constraints are harmed in the HN algorithm; anth2)use of random projection to obtain a signdes$er rank in
the presence of high noise makes the initial esdroampletely noisy.
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