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1 Introduction

Suppose we are given observations (yj)1≤j≤n which obey the heteroscedastic
regression equation

yj = S(xj) + σjξj , (1.1)

where design points xj = j/n, S(·) is an unknown function to be esti-
mated, (ξj)1≤j≤n is a sequence of i.i.d. random variables, Eξ1 = 0 , E ξ21 =
1 , (σj)1≤j≤n are unknown volatility coefficients, which may depend on design
points and on unknown regression function S.

The models of type (1.1) with σj = σj(xj) were introduced in [1] as a gen-
eralisation of the nonparametric ANCOVA model of [18]. It should be noted
that heteroscedastic regressions with this type of volatility coefficients have
been encountered in econometric studies, namely, in consumer budget stud-
ies utilizing observations on individuals with diverse incomes and in analyses
of the investment behavior of firms of different sizes (see [12]). For example,
for consumer budget problems one uses there (see p. 83) some parametric
version of model (1.1) with the volatility coefficient defined as

σ2
j
= c0 + c1xj + c2S

2(xj) , (1.2)

where c0, c1 and c2 are some nonnegative unknown constants.
Moreover, this regression model appears in the drift estimation problem

for stochastic differential equations when one passes from continuous time
to discrete time model by making use of sequential kernel estimators having
asymptotically minimal variances (see [6],[8]-[10]).

The volatility coefficient estimation in heteroscedastic regression was con-
sidered in a few papers (see, for example, [3] and the references therein). By
making use of the squared first-order differences of the observations the ini-
tial problem in that paper was reduced to the regression function estimation
in the model of type (1.1).

In this paper we develop the approach proposed in [7]. The first goal of
the research is to construct an adaptive procedure for estimating the function
S which does not use any smoothness information of S and which is based on
observations (yj)1≤j≤n and further to obtain a sharp non-asymptotic upper
bound (oracle inequality) for a quadratic risk in the case when the smoothness
of S is unknown. The second goal is to prove that the constructed procedure
is efficient also in the asymptotic setup.

Problems of constructing a nonparametric estimator and proving a non-
asymptotic upper bound for a risk in homoscedastic model, that is when
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σj ≡ σ, were studied in few papers. A non-asymptotic upper bound for a
quadratic risk over thresholding estimators is given in [13]. In papers [2],
[15] an adaptive model selection procedure has been constructed. It is based
on least squares estimators and a non-asymptotic upper bound has been
obtained for a quadratic risk which is best in the principal term for the given
class of estimators when the noise vector (ξ1 . . . , ξn) is gaussian. This type
of upper bounds is called the oracle inequality. In [5] the oracle inequality
has been obtained for a model selection procedure based on any estimators
in the case when the noise vector (ξ1, . . . , ξn) has a spherically symmetric
distribution. Moreover, some sharp oracle inequalities have been obtained
also for homoscedastic regression with gaussian noises, see, for example, [14].
Here the adjective ”sharp” means that the coefficient of the principal term
may be chosen as close to unity as desired.

In the paper for heteroscedastic regression an adaptive procedure is con-
structed for which the sharp non-asymptotic oracle inequality is proved. It
should be noted that the methods used in former papers to obtain the sharp
oracle inequality in regression models are limited by the homoscedastic case
since they are based on the fact that an orthogonal transformation of a noise
gaussian vector (ξ1, . . . , ξn) gives a gaussian vector. In heteroscedastic regres-
sion models under consideration these methods are not valid since the noise
vector is not gaussian. To obtain sharp non-asymptotic oracle inequalities in
the heteroscedastic case the authors develop a new mathematical tools based
on ”penalty” methods and Pinsker’s type weights.

Moreover, in [11] we show that the given adaptive estimator is efficient
in the asymptotic sense, that is, the sharp asymptotic lower bound is proved
for a quadratic risk and it is attained over this estimator. The sharp non-
asymptotic oracle inequality plays a cornerstone role in proving the asymp-
totic efficiency. To obtain the optimal upper bound for the risk one should use
a weighted least squares estimator with weights depending on the smooth-
ness of the unknown regression function. The smoothness being unknown,
one can’t use directly this weighted least squares estimator giving the mini-
mal upper bound. The given sharp non-asymptotic oracle inequality allow us
to replace this unknown weighted least squares estimator with an adaptive
estimator. The risk of the adaptive estimator is less than the risk of optimal
(unknown) weighted least squares estimator up to additive and multiplica-
tive constants. Taking in account that the multiplicative constant tends
to one and the order of the additive constant is less then the order of the
convergence rate, we obtain that the risk of the given adaptive procedure
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asymptotically coincides with the risk of the optimal (unknown) weighted
least squares estimator. Therefore, given the optimal lower bound, we ob-
tain the asymptotic efficiency of the adaptive procedure satisfying the sharp
non-asymptotic oracle inequality.

The paper is organized as follows. In Section 2 we construct an adaptive
estimation procedure based on weighted least squares estimators and we ob-
tain a non-asymptotic upper bound for the quadratic risk. In Section 3 we
propose an estimator for the integrated noise variance and give the oracle
inequality in the case of Sobolev space, S ∈ W k

r
. The proofs are given in

Section 4. Section 5 contains a numerical comparison of the given procedure
with an adaptive procedure proposed in [4]. The Appendix contains some
technical results.

2 Oracle inequality

In this paper we study the non-asymptotic estimation problem of the function
S in the model (1.1) by observations (yj)1≤j≤n with odd sample number n.
We assume that in (1.1) the sequence (ξj)1≤j≤n is i.i.d. with

Eξ1 = 0 , E ξ21 = 1 and Eξ41 = ξ∗ < ∞ . (2.1)

Moreover, we assume that (σl)1≤l≤n is a sequence of positive random
variables independent of (ξi)1≤i≤n and bounded away from +∞, i.e. there
exists some nonrandom unknown constant σ∗ > 0 such that

max
1≤l≤n

σ2
l
≤ σ∗ . (2.2)

For any estimate Ŝn of S based on observations (yj)1≤j≤n, the estimation
accuracy is measured by the mean integrated squared error (MISE)

ES ‖Ŝn − S‖2n , (2.3)

where

‖Ŝn − S‖2n = (Ŝn − S, Ŝn − S)n =
1

n

n∑

l=1

(Ŝn(xl)− S(xl))
2 .

We make use of the trigonometric basis (φj)j≥1 in L2[0, 1] with

φ1 = 1 , φj(x) =
√
2 Trj(2π[j/2]x) , j ≥ 2 , (2.4)
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where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd
j; [x] denotes the integer part of x. Note that if n is odd, then this basis is
orthonormal for the empirical inner product generated by the sieve (xj)1≤j≤n,
that is for any 1 ≤ i, j ≤ n,

(φi , φj)n =
1

n

n∑

l=1

φi(xl)φj(xl) = δij , (2.5)

where δij is Kronecker’s symbol.
By making use of this basis we define the discrete Fourier transformation

in (1.1) and obtain the Fourier coefficients

θ̂j,n = (Y, φj)n and θj,n = (S, φj)n . (2.6)

Here Y = (y1, . . . , yn)
′ and S = (S(x1), . . . , S(xn))

′. The prime denotes the
transposition.

From (1.1) it follows directly that these Fourier coefficients satisfy the
following equation

θ̂j,n = θj,n +
1√
n
ξj,n with ξj,n =

1√
n

n∑

l=1

σlξlφj(xl) . (2.7)

We estimate the function S by the weighted least squares estimator

Ŝλ(x) =
n∑

j=1

λ(j)θ̂j,nφj(x) , (2.8)

where x ∈ [0, 1], the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some
finite set Λ from [0, 1]n. We denote by ν the cardinal number of the set Λ.

Now we need to write a cost function to choose a weight λ ∈ Λ. Of course,
it is obvious, that the best way is to minimize the cost function which is equal
to the empirical squared error

Errn(λ) = ‖Ŝλ − S‖2
n
,

which in our case is equal to

Errn(λ) =

n∑

j=1

λ2(j)θ̂2
j,n

− 2

n∑

j=1

λ(j)θ̂j,n θj,n +

n∑

j=1

θ2
j,n

. (2.9)
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Since coefficients θj,n are unknown, we need to replace the term θ̂j,n θj,n by
some estimator which we choose as

θ̃j,n = θ̂2
j,n

− 1

n
ς̂n ,

where ς̂n is some estimator of the integrated noise variance

ςn = n−1

n∑

l=1

σ2
l
. (2.10)

Such type of estimators is given in (3.5).
Moreover, for this substitution to the empirical squared error one needs

to pay a penalty. Finally, we define the cost function by the following way

Jn(λ) =
n∑

j=1

λ2(j)θ̂2
j,n

− 2
n∑

j=1

λ(j) θ̃j,n + ρP̂n(λ) , (2.11)

where ρ is some positive coefficient which will be chosen later. The penalty
term we define as

P̂n(λ) =
|λ|2ς̂n
n

with |λ|2 =
n∑

j=1

λ2(j) . (2.12)

Note that in the case when the sequence (σl)1≤l≤n is known, i.e. ς̂n = ςn, we
obtain

Pn(λ) =
|λ|2ςn
n

. (2.13)

We set
λ̂ = argmin

λ∈Λ
Jn(λ) (2.14)

and define an estimator of S as

Ŝ∗ = Ŝλ̂ . (2.15)

We recall that the set Λ is finite so λ̂ exists. In the case when λ̂ is not unique
we take one of them.

To formulate the oracle inequality we introduce, for 0 < ρ < 1/3, the
following function

Υ∗
n
(ρ) =

16ν

ρ
+ 4u1,n

(
1 + ν

√
ξ∗√
n

)
+ 4νvn

√
ξ∗√
n
. (2.16)
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Here and thereafter we make use of the following notations: for i = 1, 2,

vn = max
λ∈Λ

n∑

j=1

λ(j) and ui,n = max
λ∈Λ

sup
1≤l≤n

|
n∑

j=1

λi(j) (φ2
j
(xl)− 1)| , (2.17)

.

Theorem 2.1. Let Λ be any finite set in [0, 1]n. For any n ≥ 3 and

0 < ρ < 1/3, the estimator Ŝ∗ satisfies the oracle inequality

ES‖Ŝ∗ − S‖2
n
≤ 1 + 3ρ− 2ρ2

1− 3ρ
min
λ∈Λ

ES‖Ŝλ − S‖2
n
+

1

n
Bn(ρ) , (2.18)

where Bn(ρ) = Ψn(ρ) + κ(ρ)vn ES|ς̂n − ςn| with

Ψn(ρ) =
ρ(1− ρ)Υ∗

n
(ρ) + 2ν + 2ρ2(1− ρ)u2,n

ρ(1 − 3ρ)
σ∗

and κ(ρ) = 4(1− ρ2)/(1− 3ρ).
If in the model (1.1) the volatility coefficients (σl)1≤l≤n are known, then

ς̂n = ςn and inequality (2.18) has the following form

ES‖Ŝ∗ − S‖2
n
≤ 1 + 3ρ− 2ρ2

1− 3ρ
min
λ∈Λ

ES‖Ŝλ − S‖2
n
+

1

n
Ψn(ρ) . (2.19)

Remark 2.1. Note that the principal term in the right-hand side of (2.18)–

(2.19) is best in the class of estimators (Ŝλ , λ ∈ Λ). Inequalities of such
type are called the sharp non-asymptotic oracle inequalities. The inequality
is sharp in the sense that the coefficient of the principal term may be chosen
as close to 1 as desired. Similar inequalities for homoscedastic models (1.1)
with σl = σ were given, for example, in [14]. The methods used there cannot
be extended to the heteroscedastic case since, after the Fourier transforma-
tion, the random variables (ξi,n) in model (2.7) are dependent contrary to the
homoscedastic case, where these random variables are independent (see, for
example,[17]).
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Remark 2.2. If one would like to obtain the asymptotically minimal MISE
of the estimator Ŝ∗, then the secondary term Bn(ρ) in (2.18) should be slowly
varing, i.e. for any γ > 0,

Bn(ρ)/n
γ → 0 , as n → ∞ . (2.20)

Indeed, since usually the optimal rate is of order n2k/(2k+1) for some k ≥ 1,
then after multiplying the inequality (2.18) by this rate the principal term
gives the optimal constant and the secondary one is of the type

Bn(ρ)/n
1/(2k+1) .

Therefore the property (2.20) provides the asymptotic vanishing, as n → ∞,
the secondary term Bn(ρ) for k ≥ 1. To obtain the property (2.20), it suffices
that, for any γ > 0,

ρnγ → +∞ ,

and
u1,n + u2,n + vnES|ς̂n − ςn|

nγ
→ 0 , as n → ∞ , (2.21)

thanks to definitions of Bn(ρ) and Ψn(ρ). To obtain the first convergence it
suffices to take the parameter ρ as ρ ≥ ̺n, where ̺n is a slowly decreasing
function, i.e.

lim
n→∞

̺n = 0 and for any γ > 0 lim
n→∞

nγ ̺n = +∞ , (2.22)

for example, ̺ = 1/ lnn. For the second convergence the choice of u1,n, u2,n, vn
and of the estimator ς̂n is proposed below.

Consider now the order of the termes vn, u1,n, u2,n and the function Ψn(ρ)
in the case when the finite set Λ is formed by a special version of Pinsker’s
weights (see, for example, [16]). To this end, we define the sieve

Aε = {1, . . . , k∗} × {t1, . . . , tm} ,

where ti = iε and m = [1/ε2]. We suppose that the parameters k∗ ≥ 1 and
0 < ε ≤ 1 are functions of n, i.e. k∗ = k∗

n
and ε = εn, such that,





limn→∞ k∗
n
= +∞ , limn→∞ k∗

n
/ lnn = 0 ,

limn→∞ εn = 0 and limn→∞ nγ εn = +∞ ,
(2.23)
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for any γ > 0. For example, one can take for n ≥ 3

εn = 1/ lnn and k∗
n
= k +

√
lnn , (2.24)

where k is any nonnegative constant.
For any α = (β, t) ∈ Aε we define the weight vector λα = (λα(1), . . . , λα(n))

′

as
λα(j) = 1{1≤j≤j

0
} +

(
1− (j/ωα)

β
)
1{j

0
<j≤ωα} . (2.25)

Here j0 = j0(α) = [ωα/ lnn] with

ωα = ω + (Aβ t n)
1/(2β+1) ,

where ω is any nonnegative constant and

Aβ = (β + 1)(2β + 1)/(π2ββ) .

Hence,
Λ = {λα , α ∈ Aε} (2.26)

and ν = νn = k∗
n
mn. Note that in this case, in view of (2.23), for any γ > 0

lim
n→∞

νn/n
γ = 0 .

Moreover, by (2.25)

n∑

j=1

λα(j) = 1{j
0
≥1} j0 + 1{ω

α
≥1}

[ω
α
]∑

j=j
0
+1

(
1− (j/ωα)

β
)
≤ ωα .

Therefore, taking into account that Aβ ≤ A1 < 1 for β ≥ 1 we find that

vn ≤ ω + (n/ε)1/3 ,

i.e.
lim sup
n→∞

vn√
n

< ∞ . (2.27)

Moreover, note that for any 1 ≤ l ≤ n, we get

n∑

j=1

λα(j) (φ
2
j
(xl)− 1) = 1{j

0
≥1}

j
0∑

j=1

(φ2
j
(xl)− 1)

+ 1{ω
α
≥1}

[ω
α
]∑

j=j
0
+1

(
1− (j/ωα)

β
)
(φ2

j
(xl)− 1) .
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Thus Lemma A.2 implies that

u1,n ≤ 1 + 2β+1 ≤ 1 + 2k
∗+1 .

Due to the condition for k∗
n
in (2.23) this function is slowly varying, i.e. for

any γ > 0,
lim
n→∞

u1,n/n
γ = 0 . (2.28)

By the same way we obtain that

u2,n ≤ 1 + 2k
∗+2 + 22k

∗+1

and, therefore, for any γ > 0

lim
n→∞

u2,n/n
γ = 0 . (2.29)

Then for any sequence (̺n)n≥1 satisfying properties (2.22) and for any γ > 0,

lim
n→∞

sup
̺
n
≤ρ≤1/6

Ψn(ρ)/n
γ = 0 .

Remark 2.3. As we shall see in the proof of Theorem 2.1, the oracle in-
equality is true for any basis and any design (xk)1≤k≤n which possesse the
orthonormality property (2.5). Moreover, if the sequences (2.17) and an es-
timator of the unknown integrated variance ς̂n satisfy the property (2.21), then
the secondary term in the inequality (2.18) possesses the property (2.20). In
the next section we give an estimator ς̂n in the case of the trigonometric basis
and the equidistant design.

3 Oracle inequality for S ∈ W k
r

Assume that S : R → R is a k times differentiable 1-periodic function such
that

k∑

j=0

‖S(j)‖2 ≤ r , (3.1)
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where

‖f‖2 =
∫ 1

0

f 2(t)dt . (3.2)

We denote by W k
r
the set of all such functions. Moreover, we suppose that

r > 0 and k ≥ 1 are unknown parameters.
Note that, the space W k

r
can be represented as an ellipses in the Hilbert

space, i.e.

W k
r
= {S ∈ L2[0, 1] : S =

∞∑

j=1

θjφj such that
∞∑

j=1

ajθ
2
j
≤ r} , (3.3)

where the basis functions (φj)j≥1 are defined in (2.4); (θj)j≥1 are the Fourier
coefficients, i.e.

θj = (S, φj) =

∫ 1

0

S(t)φj(t)dt . (3.4)

The coefficients (aj)j≥1 are defined as

aj =

k∑

l=0

‖φ(l)
j
‖2 =

k∑

l=0

(2π[j/2])2l .

To estimate ςn, we make use of the following estimator:

ς̂n =

n∑

j=d
n
+1

θ̂2
j,n

, (3.5)

where the parameter dn , 1 ≤ dn ≤ n− 1 , will be chosen later.
In Section 4 we show the following result.

Lemma 3.1. For any n ≥ 2, r > 0 and S ∈ W 1
r

ES |ς̂n − ςn| ≤
2
(√

ξ∗ +
√
2
)
σ∗ + ς∗

n
(r)√

n
, (3.6)

where

ς∗
n
(r) =

4r
√
n

d2
n

+ 4
√
rσ∗

1

dn
+

(2 + dn)σ∗√
n

.
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If we choose the parameter dn in (3.5) such that

lim
n→∞

dn/
√
n = 0 and lim

n→∞
d2
n
/
√
n = ∞ , (3.7)

we obtain that
lim
n→∞

ς∗
n
(r) = 0 .

Theorem 2.1 and inequality (3.6) imply immediately the following result.

Theorem 3.2. Let Λ be any finite set in [0, 1]n. Assume that in the model
(1.1) the function S belongs to W 1

r
. Then, for any n ≥ 3 and 0 < ρ < 1/3,

the procedure Ŝ∗ from (2.15) with ς̂n defined by (3.5) and (3.7) satisfies the
following oracle inequality

ES‖Ŝ∗ − S‖2n ≤ 1 + 3ρ− 2ρ2

1− 3ρ
min
λ∈Λ

ES‖Ŝλ − S‖2n +
1

n
Dn(ρ, r) , (3.8)

where

Dn(ρ, r) = Ψn(ρ) + κ(ρ)
(
2
(√

ξ∗ +
√
2
)
σ∗ + ς∗

n
(r)
) vn√

n
.

Moreover, if the sequencies (2.17) satisfy the properties (2.27)–(2.29) then,
for any γ > 0,

lim
n→∞

sup
̺
n
≤ρ≤1/6

Dn(ρ, r)/n
γ = 0 ,

where ̺n is any slowly decreasing sequence, i.e. satisfying (2.22).

Remark 3.1. The inequality (3.8) is used to prove the asymptotic effi-
ciency of the estimator (2.15) (see, [11]). To obtain the minimal asymptotic
quadratic risk, one has to take a weighted least squares estimator (2.8) with
weights of type (2.25), where the parameter α depends on unknown smooth-
ness of unknown function S. So one can’t use this estimator directly. The
oracle inequality allows us to overcome this difficulty because the upper bound
is majorized up to a multiplicative and a additive constants by the minimal
quadratic risk over all weighted estimators including the optimal one. Taking
into account that the multiplicative constant tends to unity, as n → ∞, and
the additive constant is negligible in comparison with any degree of n and,
in particular, with the optimal convergence rate and then multiplying the in-
equality (3.8) by the optimal convergence rate, one obtains the asymptotically
minimal upper bound for the quadratic risk of the estimator (2.15). The last
result means that this estimator is asymptotically efficient.
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4 Proofs

4.1 Proof of Theorem 2.1

First of all, note that we can represent the empirical squared error Errn(λ)
by the following way

Errn(λ) = Jn(λ) + 2

n∑

j=1

λ(j)θ′
j,n

+ ‖S‖2
n
− ρ P̂n(λ) (4.1)

with θ′
j,n

= θ̃j,n − θj,nθ̂j,n. The second term is most difficult to handle in the

right-hand part of (4.1). To estimate, we decompose it in the sum of terms
and we apply appropriate technique to each of them. By setting

ςj,n = ES ξ
2
j,n

=
1

n

n∑

l=1

σ2
l
φ2
j
(xl) and µj,n = ξ2

j,n
− ςj,n , (4.2)

we find that

θ′
j,n

=
1√
n
θj,nξj,n +

1

n
µj,n +

1

n
(ςj,n − ς̂n) . (4.3)

Moreover, we can represent µj,n as

µj,n =
1

n

n∑

l=1

σ2
l
φ2
j
(xl)ηl + 2

n∑

l=2

τj,l ξl = µ′
j,n

+ 2µ′′
j,n

(4.4)

with ηl = ξ2
l
− 1 and

τj,l =
1

n
σlφj(xl)

l−1∑

k=1

σkφj(xk) ξk .

Now we set

N ′(λ) =
n∑

j=1

λ(j)µ′
j,n

and N ′′(λ) =
1

√
nςn

n∑

j=1

λ(j)µ′′
j,n

1{ς
n
>0} , (4.5)

where λ(j) = λ(j)/|λ|. In the Appendix we show that

sup
λ∈Λ

ES |N ′(λ)| ≤ σ∗(vn + u1,n)

√
ξ∗√
n

(4.6)
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and

sup
λ∈Rn

ES(N
′′(λ))2 ≤ 2σ∗

n
. (4.7)

Now, for any λ ∈ Λ, we rewrite (4.1) as

Errn(λ) = Jn(λ) +
2

n
N ′(λ) + 4

√
Pn(λ)N

′′(λ)

+ 2M(λ) +
2

n
∆(λ) + ‖S‖2

n
− ρP̂n(λ) ,

where Pn(λ) is defined in (2.13),

∆(λ) =
n∑

j=1

λ(j) (ςj,n − ς̂n) and M(λ) = n−1/2
n∑

j=1

λ(j)θj,nξj,n . (4.8)

Further we estimate the term ∆(λ). Setting

ςj,n = ςj,n − ςn =
1

n

n∑

l=1

σ2
l
(φ2

j
(xl)− 1) , (4.9)

we obtain that

|∆(λ)| ≤ |
n∑

j=1

λ(j)ςj,n |+ vn|ς̂n − ςn|

≤ σ∗u1,n + vn|ς̂n − ςn| . (4.10)

Now from (4.1) we obtain that, for some fixed λ0 ∈ Λ,

Errn(λ̂)− Errn(λ0) = J(λ̂)− J(λ0) + 2M(ϑ̂) +
2

n
N ′(ϑ̂)

+ 4

√
Pn(λ̂)N

′′(λ̂)− 4
√
Pn(λ0)N

′′(λ0)

− ρP̂n(λ̂) + ρP̂n(λ0) +
2

n

(
∆(λ̂)−∆(λ0)

)
,

where ϑ̂ = λ̂− λ0.

By the definition of λ̂ in (2.14) and by (4.10) we get

Errn(λ̂)− Errn(λ0) ≤ 2M(ϑ̂) +
4σ∗u1,n + 4vn|ς̂n − ςn|

n

+
2

n
N ′(ϑ̂) + 4

√
Pn(λ̂)N

′′(λ̂)− ρP̂n(λ̂)

+ ρP̂n(λ0)− 4
√
Pn(λ0)N

′′(λ0) .
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Moreover, making use of the inequality

2|ab| ≤ ǫa2 + ǫ−1b2 (4.11)

with ǫ = ρ/4 and taking into account the definition of the penalty term in
(2.12) we deduce, for any λ ∈ Λ,

4
√

Pn(λ)|N ′′(λ)| ≤ ρPn(λ) + 4
(N ′′(λ))2

ρ

≤ ρP̂n(λ) + ρ
|λ|2|ς̂n − ςn|

n
+

4(N ′′(λ))2

ρ
.

Thus from here it follows that

Errn(λ̂) ≤ Errn(λ0) + 2M(ϑ̂) + Υn + 2ρP̂n(λ0) , (4.12)

where

Υn =
4

n
N∗

1
+

8

ρ
(N∗

2
)2 +

4σ∗u1,n

n
+

4 + 2ρ

n
vn|ς̂n − ςn|

with N∗
1
= sup

λ∈Λ
|N ′(λ)| and N∗

2
= sup

λ∈Λ
|N ′′(λ)|. Moreover, note that

the bounds (4.6), (4.7) and (4.10) imply that

ESΥn ≤ Υ∗
n
(ρ)

σ∗

n
+

4 + 2ρ

n
vnES|ς̂n − ςn| , (4.13)

where the function Υ∗
n
(ρ) is defined in (2.16).

Now we study the second term in (4.8). First, note that for any nonran-
dom vector ϑ = (ϑ(1), . . . , ϑ(n))′ ∈ R

n Lemma A.4 implies

ESM
2(ϑ) ≤ σ∗

n

n∑

j=1

ϑ2(j)θ2
j,n

= σ∗
‖Sϑ‖2n
n

, (4.14)

where

Sϑ =
n∑

j=1

ϑ(j)θj,nφj .

We set now

Z∗ = sup
ϑ∈Λ

1

nM2(ϑ)

‖Sϑ‖2n
with Λ1 = Λ− λ0 .

15



To estimate this term we apply the inequality (4.14), i.e.

ES Z
∗ ≤

∑

ϑ∈Λ
1

nES M
2(ϑ)

‖Sϑ‖2n
≤ νσ∗ . (4.15)

Moreover, making use of inequality (4.11) with ǫ = ρ‖Sϑ‖n, we get

2|M(ϑ)| ≤ ρ‖Sϑ‖2n +
Z∗

nρ
. (4.16)

Now we estimate ‖Sϑ‖2n. We have

‖Sϑ‖2n − ‖Ŝϑ‖2n =

n∑

j=1

ϑ2(j)(θ2
j,n

− θ̂2
j,n
) ≤ −2M1(ϑ) (4.17)

with

M1(ϑ) =
1√
n

n∑

j=1

ϑ2(j)θj,nξj,n .

Now, taking into account that |ϑ(j)| ≤ 1 for any ϑ ∈ Λ1, we obtain

ESM
2
1
(ϑ) ≤ σ∗

‖Sϑ‖2n
n

.

Putting

Z∗
1
= sup

ϑ∈Λ
1

nM2
1
(ϑ)

‖Sϑ‖2n
,

we get
ES Z

∗
1
≤ νσ∗ . (4.18)

Therefore, applying inequality (4.16) forM1(ϑ) in (4.17) we deduce the upper
bound for ‖Sϑ‖2n, i.e.

‖Sϑ‖2n ≤ 1

1− ρ
‖Ŝϑ‖2n +

Z∗
1

nρ(1 − ρ)
. (4.19)

Taking into account this inequality in (4.16) we obtain that

2M(ϑ) ≤ ρ

1− ρ
‖Ŝϑ‖2n +

Z∗ + Z∗
1

nρ(1− ρ)

≤ 2ρ(Errn(λ) + Errn(λ0))

1− ρ
+

Z∗ + Z∗
1

nρ(1 − ρ)
.

16



Therefore (4.12) implies that

Errn(λ̂) ≤
1 + ρ

1− 3ρ
Errn(λ0) +

1− ρ

1− 3ρ
Υn

+
Z∗ + Z∗

1

nρ(1− 3ρ)
+

2ρ(1− ρ)

1− 3ρ
P̂n(λ0) ,

Now by inequalities (4.15)–(4.18) we get that

ESErrn(λ̂) ≤
1 + ρ

1− 3ρ
ESErrn(λ0) +

1− ρ

1− 3ρ
ES Υn

+
2νσ∗

nρ(1− 3ρ)
+

2ρ(1− ρ)

1− 3ρ
ESP̂n(λ0) .

By making use of inequality (4.13) and Lemma A.1 we come to Theorem 2.1.

4.2 Proof of Lemma 3.1

First notice that from (2.7) we obtain that

ς̂n − ςn =

n∑

j=d
n
+1

θ2
j,n

+
2√
n

n∑

j=d
n
+1

θj,n ξj,n

+ n−1
n∑

j=d
n
+1

µj,n + n−1
n∑

j=d
n
+1

ς j,n − dn
n

ςn

:= ∆1 +
2√
n
∆2 +

1

n
∆3 +

1

n
∆4 −

dn
n

ςn ,

where µj,n and ςj,n are defined in (4.3) and (4.9) respectively.
We estimate the first term by Lemma A.3 for S ∈ W 1

r
. We have

∆1 ≤
4r

d2
n

.

The next term we estimate with the help of Lemma A.4. We get that

ES(∆2)
2 ≤ σ∗∆1 ≤ σ∗

4r

d2
n

.

17



By (4.4) and (4.5) we can represent ∆3 as

∆3 = N ′(λI) + 2|λI |
√
nςnN

′′(λI)

with the vector λI = (λI(1) , . . . , λI(n))
′ having the indicator components,

i.e. λI(j) = 1{j>d
n
}. By estimating in (A.1) φ2

j
by 2 we obtain

ES |N ′(λI)| ≤ 2σ∗

√
ξ∗

√
n .

Thus the upper bound (4.7) implies

ES|∆3| ≤ 2σ∗(
√
ξ∗ +

√
2)
√
n = σ

√
n .

Moreover, due to Lemma A.2 with k = 0, one has

|∆4| =

∣∣∣∣∣∣
n−1

n∑

l=1

σ2
l

n∑

j=d
n
+1

(φ2
j
(xl)− 1)

∣∣∣∣∣∣

≤ σ∗

n

n∑

l=1

∣∣∣∣∣∣

n∑

j=1

(φ2
j
(xl)− 1)

∣∣∣∣∣∣
+

σ∗

n

n∑

l=1

∣∣∣∣∣∣

d
n∑

j=1

(φ2
j
(xl)− 1)

∣∣∣∣∣∣
≤ 2σ∗ .

Hence Lemma 3.1.

5 Numerical example

In this Section, we compare via simulations the adaptive procedure proposed
for the heteroscedastic regression in [4] (section 4.1) with that of (2.15).

Consider the model (1.1) with

S(x) = x sin(2πx) + x2 (1− x) cos(4πx) and σ2
j
= 1 + S2(xj) ,

assuming that (ξk)k≥1 follow the gaussian distribution with zero mean and
unit variance.

In the procedure (2.15) we take the weight vectors defined in (2.25) with
k∗ = 100 +

√
lnn, ε = 1/ lnn, m = ln2 n, ρ = 1/(3 + ln2 n) and

ωβ = 10 + (Aβtn)
1/(2β+1) .

Moreover, we make use of the estimate (3.5) with dn = n1/3.

The results of simulations are reported in Table 1.
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Table 1

Ê ‖S∗ − S‖2
n

Ê ‖S̃ − S‖2
n

n

0.260 0.410 21
0.148 0.427 41
0.058 0.476 101
0.034 0.430 201
0.019 0.448 401

The columns of Table 1 with the headings Ê ‖S∗−S‖2
n
, Ê ‖S̃−S‖2

n
and n

report, respectively, the empirical quadratic risk for the procedure (2.25), the
empirical quadratic risk for the procedure from [4] and the sample size. To
calculate the empirical risks 50 independent Monte Carlo simulations were
performed.

Table 1 shows that in comparison with the procedure from [4] our adaptive
estimator performs resonably well for the small sample sizes.

6 Appendix

A.1 Proof of (4.6)

First note that we can represent the term N ′(λ) as

N ′(λ) =
n∑

l=1

gl,n ηl with gl,n =
σ2
l

n

n∑

j=1

λ(j)φ2
j
(xl) .

Recalling that E η2
1
= ξ∗ − 1 we calculate

ES (N
′(λ))2 =

ξ∗ − 1

n2

n∑

l=1

ESσ
4
l




n∑

j=1

λ(j)φ2
j
(xl)




2

.

Therefore for any vector λ ∈ R
n

ES |N ′(λ)| ≤ σ∗

√
ξ∗√
n

max
1≤l≤n

|
n∑

j=1

λ(j)φ2
j
(xl) | . (A.1)
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Thus taking into account here definitions (2.17) we come to inequality (4.6).

A.2 Proof of (4.7)

By putting gl =
∑n

j=1
λ(j)τj,l and taking into account that the random vari-

ables (ξk)1≤k≤n are independent of (σk)1≤k≤n we obtain that

ES

(
(N ′′(λ))2 | σ1, . . . , σn

)
= 1{ςn>0}

(
n∑

k=1

σ2
k

)−1 n∑

l=2

ĝl , (A.2)

where

ĝl = E(g2
l
| σ1, . . . , σn) =

σ2
l

n2

l−1∑

k=1

σ2
k




n∑

j=1

λ(j)φj(xl)φj(xk)




2

.

Therefore the orthonormality property (2.5) implies that for any λ ∈ R
n

ĝl ≤ σ∗

σ2
l

n2

n∑

k=1




n∑

j=1

λ(j)φj(xl)φj(xk)




2

= σ∗

σ2
l

n

n∑

j=1

λ
2
(j)φ2

j
(xl) ≤ 2σ∗

n
σ2
l
.

Now by making use of this inequality in (A.2) we get (4.7).

A.3 Technical lemma

Lemma A.1. For any n ≥ 1 and λ ∈ Λ,

ESP̂n(λ) ≤ ES Errn(λ) +
vn
n
ES|ς̂n − ςn|+

σ∗u2,n

n
.

Proof. Indeed, by the definition of Errn(λ) we have

Errn(λ) =

n∑

j=1

(
(λ(j)− 1)θj,n + λ(j)

1√
n
ξj,n

)2

.
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Therefore,

ESErrn(λ) ≥ ES

1

n

n∑

j=1

λ2(j) ξ2
j,n

= ES

1

n

n∑

j=1

λ2(j) ςj,n ,

where the sequence (ςj,n) is defined in (4.2). Moreover, note that the last
term can be estimated as

∣∣∣∣∣∣

n∑

j=1

λ2(j)ςj,n − |λ|2ςn

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

n

n∑

l=1

σ2
l

n∑

j=1

λ2(j) (φ2
j
(xl)− 1)

∣∣∣∣∣∣
≤ σ∗u2,n .

We recall that the definition of the set Λ and the definition of vn in (2.17)
imply that |λ|2 ≤ vn for λ ∈ Λ. Therefore for any λ ∈ Λ

n∑

j=1

λ2(j) ςj,n ≥ |λ|2ς̂n − σ∗u2,n − |λ|2|ς̂n − ςn|

≥ |λ|2ς̂n − σ∗u2,n − vn|ς̂n − ςn| .

Hence the desired inequality.

A.4 Properties of trigonometric basis

Lemma A.2. For any k ≥ 0,

sup
N≥2

sup
x∈[0,1]

N−k

∣∣∣∣∣

N∑

l=2

lk (φ2
l
(x)− 1)

∣∣∣∣∣ ≤ 2k . (A.3)

Proof. Due to the properties of the trigonometric functions, we get

N∑

l=2

lk (φ2
l
(x)− 1) =

∑

1≤l≤N/2

(2l)k cos(4πlx)

−
∑

1≤l≤(N−1)/2

(2l + 1)k cos(4πlx) .
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This yields

∣∣∣∣∣

N∑

l=2

lk (φ2
l (x)− 1)

∣∣∣∣∣ ≤

∣∣∣∣∣∣

∑

1≤l≤(N−1)/2

(
(2l + 1)k − (2l)k

)
cos(4πlx)

∣∣∣∣∣∣
+Nk

≤
∑

1≤l≤(N−1)/2

(
(2l + 1)k − (2l)k

)
+Nk

=
∑

1≤l≤(N−1)/2

k−1∑

j=0

(
k

j

)
(2l)j +Nk .

This implies (A.3).

Lemma A.3. For any function S ∈ W k
r ,

sup
n≥1

sup
1≤m≤n−1

m2k

(
n∑

j=m+1

θ2
j,n

)
≤ 4r

π2(k−1)
. (A.4)

Proof. First, note that any function S from W k
r can be represented by its

Fourier series, i.e. S =
∑∞

j=1 θjφj with the coefficients defined by (3.4). By
denoting the residual term for S as

∆m(x) = S −
m∑

j=1

θjφj =

∞∑

j=m+1

θjφj(x) ,

we obtain that

n∑

j=m+1

θ2
j,n

= inf
α1,...,αm

‖S −
m∑

j=1

αj φj‖2n ≤ ‖∆m‖2n .

Moreover, it is easy to deduce that

‖∆m‖2n = n−1

n∑

k=1

∆2
m(xk) =

n∑

k=1

∫ x
k

x
k−1

∆2
m(xk)dx

≤ 2

∫ 1

0

∆2
m(x)dx + 2

n∑

k=1

∫ x
k

x
k−1

(∆m(xk)−∆m(x))
2dx .
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The last term in this inequality we estimate as

(∆m(xk)−∆m(x))
2 =

(∫ x
k

x

∆̇m(z)dz

)2

≤ n−1

∫ x
k

x
k−1

(∆̇m(z))
2dz .

Therefore,

‖∆m‖2n ≤ 2‖∆m‖2 +
2

n2
‖∆̇m‖2

= 2

∞∑

j=m+1

θ2
j
+

2

n2

∞∑

j=m+1

θ2
j
‖φ̇j‖2.

Now note that by the representation of the set W k
r
in the form (3.3) we can

estimate the first term in the last inequality as

∞∑

j=m+1

θ2
j
=

∞∑

j=m+1

θ2
j

aj
aj

≤ r

am+1

≤ r

(πm)2k
.

Similarly, we find that

∞∑

j=m+1

θ2
j
‖φ̇j‖2 ≤ sup

j≥m+1

‖φ̇j‖2
aj

r ≤ sup
j≥m+1

‖φ̇j‖2

‖φ(k)
j ‖2

r ≤ r

(πm)2(k−1)
.

Therefore, for m ≤ n we get that

1

n2

∞∑

j=m+1

θ2
j
‖φ̇j‖2 ≤

r

π2(k−1)m2k
.

This implies (A.4).

Lemma A.4. Let ξj,n be defined in (2.7) for the model (1.1). Then, for any
real numbers f1, . . . , fn,

E

(
n∑

j=1

fj ξj,n

)2

≤ σ∗

n∑

j=1

f 2
j
. (A.5)
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Proof. Due to the definition of ξj,n, one has

n∑

j=1

f 2
j
ξj,n =

n∑

l=1

σl f̃l ξl with f̃l =
1√
n

n∑

j=1

fj φj(xl) .

Moreover

E

(
n∑

j=1

fj ξj,n

)2

=

n∑

l=1

σ2
l
f̃ 2
l
≤ σ∗

n∑

l=1

f̃ 2
l

= σ∗

n∑

i,j=1

fi fj (φi, φj)n .

The orthogonality of the basis (φj) implies inequality (A.5). Hence Lemma A.4.
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