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ON GENERALIZED EMPIRICAL LIKELIHOOD METHODS

MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

Abstract. We introduce estimation and test procedures through divergence minimization for
models satisfying linear constraints with unknown parameter. These procedures extend the em-
pirical likelihood (EL) method and share common features with generalized empirical likelihood
(GEL) approach. We treat the problems of existence and characterization of the divergence
projections of probability measures on sets of signed finite measures. Our approach allows to
obtain the limit distributions of the estimates and test statistics (including the EL ones) under
alternatives and misspecification. The asymptotic behavior of the estimates and test statistics
are studied both under the model and under alternatives including misspecification, using the
dual representation of the divergences and the explicit forms of the divergence projections. An
approximation to the power function is deduced as well as the sample size which ensures a desired
power for a given alternative.
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1. Introduction and notation

Statistical models are often defined through estimating equations

E [g(X, θ)] = 0

where g(X, θ) is some vector valued function of a random vector X ∈ R
m and a parameter vector

θ ∈ Θ ⊂ R
d. The function g has l real valued functions gj as its components. Examples of

such models are numerous, see e.g. Qin and Lawless (1994), Haberman (1984), Sheehy (1987),
McCullagh and Nelder (1983), Owen (2001) and the references therein. DenotingM1 the collection
of all probability measures (p.m.) on R

m, the submodel M1
θ, associated to a given value θ of the

parameter, consists of all distributions Q satisfying the linear constraints induced by g(., θ), namely

M1
θ :=

{
Q ∈M1 such that

∫
g(x, θ) dQ(x) = 0

}
.

The statistical model which we consider can be written as

(1.1) M1 :=
⋃

θ∈Θ

M1
θ.

Let X1, ..., Xn denote an i.i.d sample of X with unknown distribution P0. We denote θ0, if it
exists, the value of the parameter such that P0 belongs to M1

θ0
, namely the value satisfying

E [g(X, θ0)] = 0, and we assume obviously that θ0 is unique. This paper addresses the two following
natural questions:

Problem 1 : Does P0 belong to the model M1?
Problem 2 : When P0 is in the model, which is the value θ0 of the parameter for which

E [g(X, θ0)] = 0? Also can we perform tests about θ0? Can we construct confidence areas for
θ0?
We quote that these problems have been investigated by many authors along different ways. Hansen
(1982) considered generalized method of moments (GMM). Hansen et al. (1996) introduce the
continuous updating (CU) estimate. The empirical likelihood (EL) approach developed by Owen
(1988) and Owen (1990) has been adapted in the present setting by Qin and Lawless (1994) and
Imbens (1997) introducing the EL estimator. The recent literature in econometrics focusses on
such models; the paper by Newey and Smith (2004) provides a wide list of works dealing with the
statistical properties of GMM and generalized empirical likelihood (GEL) estimators. Schennach
(2007) discussed the asymptotic properties of the empirical likelihood estimate under misspecifica-
tion; She showed the important fact that the EL estimate may cease to be root n consistent when
the functions defining the moments conditions are unbounded. Among other results pertaining
to EL, Newey and Smith (2004) states that EL estimate enjoys optimality properties in term of
efficiency when bias corrected among all GEL estimates including the GMM one. Also Corcoran
(1998) and Baggerly (1998) proved that in a class of minimum discrepancy statistics (called power
divergence statistics), EL ratio is the only one that is Bartlett correctable. Confidence areas for
the parameter θ0 have been considered in the seminal paper by Owen (1990). Problem 1 and 2
have been handled via EL approach in Qin and Lawless (1994) and in Newey and Smith (2004)
under the null hypothesis H0 : P0 ∈ M; however the limit distributions of the estimates and test
statistics under misspecification have not been obtained so far. Our contribution is as follows.

(1) The approach which we develop is based onminimum discrepancy estimates, which extends
the EL method and has common features with minimum distance and GEL techniques,
using merely divergences. We present a wide class of estimates, test statistics and confi-
dence regions for the parameter θ0 as well as various test statistics for Problems 1 and 2,
all depending on the choice of the divergence.

(2) The limit distribution of the EL test statistic under the alternative and under misspecifi-
cation remains up to date an open problem. The present paper fills this gap; indeed, we
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give the limit distributions of the proposed estimates and test statistics for Problems 1 and
2 both under the null hypotheses, under alternatives and under misspecification.

(3) The limit distributions of the test statistics under the alternatives and misspecification are
used to give an approximation to the power function and the sample size which ensures a
desired power for a given alternative.

(4) We extend confidence region (C.R.) estimation techniques based on EL (see Owen (1990)),
providing a wide range of such C.R.’s, each one depending upon a specific criterion.

From the point of view of the statistical criterion under consideration the main advantage of us-
ing a divergence based approach lays in the fact that it leads to all statistical properties of the
estimates and test statistics under the alternative, including misspecification, which cannot be
achieved through the classical EL context. Under local alternatives, Lazar and Mykland (1998)
discusses the performance of the empirical and dual likelihood tests with respect to the parametric
likelihood one. For parametric models of densities, White (1982) studied the asymptotic proper-
ties of the maximum likelihood estimate and the likelihood ratio statistic under misspecification.
Broniatowski and Keziou (2009) state the consistency and obtain the limit distributions of the
minimum divergence estimates and the corresponding test statistics (including the likelihood ones)
both under the null hypotheses and the alternatives, from which they deduced an approximation
to the power function. In this paper, we extend these results for the semi-parametric models M
in the global context of empirical divergences; including EL.

2. Statistical divergences

2.1. Divergences and discrepancies. We first set some general definitions and notations. Let
P be some p.m. Denote M the space of all signed finite measures (s.f.m.) on R

m. Let φ be
a convex function from R onto [0,+∞] with φ(1) = 0, and such that its domain domφ :=
{x ∈ R such that φ(x) <∞} is an interval with endpoints a < 1 < b (which may be finite or
infinite). We assume that φ is closed1. For any s.f.m. Q, the φ-divergence between Q and the p.m.
P , when Q is absolutely continuous with respect to (a.c.w.r.t) P , is defined through

(2.1) Dφ(Q,P ) :=

∫

Rm

φ

(
dQ

dP
(x)

)
dP (x).

in which dQ
dP (x) denotes the Radon-Nikodym derivative. When Q is not a.c.w.r.t. P , we set

Dφ(Q,P ) = +∞. For any p.m. P , the mapping Q ∈ M 7→ Dφ(Q,P ) is convex and takes
nonnegative values. When Q = P then Dφ(Q,P ) = 0. Furthermore, if the function x 7→ φ(x) is
strictly convex on a neighborhood of x = 1, then

(2.2) Dφ(Q,P ) = 0 if and only if Q = P.

All these properties are presented in Csiszár (1963), Csiszár (1967) and Liese and Vajda (1987)
chapter 1, for φ−divergences defined on the set of all p.m.’s M1. When the φ-divergences are
defined on M , then the same arguments as developed on M1 hold. When defined on M1, the
Kullback-Leibler (KL), modified Kullback-Leibler (KLm), χ2, modified χ2 (χ2

m), Hellinger (H),
and L1 divergences are respectively associated to the convex functions φ(x) = x log x−x+1, φ(x) =

− logx + x − 1, φ(x) = 1
2 (x− 1)

2
, φ(x) = 1

2 (x− 1)
2
/x, φ(x) = 2(

√
x− 1)

2
and φ(x) = |x− 1|.

All these divergences except the L1 one, belong to the class of power divergences introduced in
Cressie and Read (1984) (see also Liese and Vajda (1987) and Pardo (2006)). They are defined
through the class of convex functions

(2.3) x ∈ R
∗
+ 7→ φγ(x) :=

xγ − γx+ γ − 1

γ(γ − 1)

1The closedness of φ means that if a or b are finite then ϕ(x) → ϕ(a) when x ↓ a, and ϕ(x) → ϕ(b) when x ↑ b.



4 MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

if γ ∈ R\{0, 1} and by φ0(x) := − logx+x−1 and φ1(x) := x log x−x+1. So, the KL−divergence
is associated to φ1, the KLm to φ0, the χ

2 to φ2, the χ
2
m to φ−1 and the Hellinger distance to

φ1/2. We extend the definition of the power divergences functions Q ∈M1 7→ Dφγ
(Q,P ) onto the

whole set of signed finite measures M as follows. When the function x 7→ φγ(x) is not defined on
(−∞, 0[ or when φγ is defined on R but is not a convex function we extend the definition of φγ
through

(2.4) x ∈ R 7→ φγ(x)1[0,+∞](x) + (+∞)1[−∞,0[(x).

Note for instance that for χ2-divergence, the corresponding φ function φ(x) = 1
2 (x− 1)2 is convex

and defined on whole R. In this paper, for technical raisons, we will consider φ functions which
are strictly convex on its domain (a, b), twice continuously differentiable on the interior of their
domain and satisfy φ(1) = 0, φ′(1) = 0 and φ′′(1) = 1. We assume also that φ is “essentially
smooth” in the sense that limx↓a φ

′(x) = −∞ if a > −∞ and limx↑b φ
′(x) = +∞ if b < +∞. All

the power functions φγ , see (2.4), satisfy these conditions, including all standard divergences.

Definition 2.1. Let Ω be some subset in M . The φ−divergence between the set Ω and a p.m. P
is defined by

Dφ(Ω, P ) := inf
Q∈Ω

Dφ(Q,P ).

A finite measure Q∗ ∈ Ω, such that Dφ(Q
∗, P ) <∞ and

Dφ(Q
∗, P ) ≤ Dφ(Q,P ) for all Q ∈ Ω,

is called a projection of P on Ω. This projection may not exist, or may be not defined uniquely.

2.2. Minimum divergence estimates. LetX1, ..., Xn denote an i.i.d. sample of a random vector
X ∈ R

m with distribution P0. Let Pn be the empirical measure pertaining to this sample, namely

Pn(·) :=
1

n

n∑

i=1

δXi
(·)

in which δx denotes the Dirac measure at point x. We will endow our statistical approach in the
global context of s.f.m’s with total mass 1 satisfying linear constraints:

(2.5) Mθ :=

{
Q ∈M such that

∫

Rm

dQ(x) = 1 and

∫

Rm

g(x, θ) dQ(x) = 0

}

and

M :=
⋃

θ∈Θ

Mθ,

sets of signed finite measures that replace M1
θ and M1. The “plug-in” estimate of Dφ(Mθ, P0) is

(2.6) D̂φ(Mθ, P0) := inf
Q∈Mθ

Dφ(Q,Pn) = inf
Q∈Mθ

∫

Rm

φ

(
dQ

dPn
(x)

)
dPn(x).

If the projection Qn of Pn on Mθ exists, then it is clear that Qn is a s.f.m. (or possibly a p.m.)
a.c.w.r.t. Pn, i.e., the support of Qn must be included in the set {X1, . . . , Xn}. So, define the sets

(2.7) M(n)
θ :=

{
Q ∈M | Q a.c.w.r.t. Pn,

n∑

i=1

Q(Xi) = 1 and
n∑

i=1

Q(Xi)g(Xi, θ) = 0

}
,

which may be seen as subsets of Rn. Then, the plug-in estimate (2.6) can be written as

(2.8) D̂φ(Mθ, P0) = inf
Q∈M

(n)
θ

1

n

n∑

i=1

φ (nQ(Xi)) .
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In the same way, Dφ(M, P0) := infθ∈Θ infQ∈Mθ
Dφ(Q,P0) can be estimated by

(2.9) D̂φ(M, P0) = inf
θ∈Θ

inf
Q∈M

(n)
θ

1

n

n∑

i=1

φ (nQ(Xi)) .

By uniqueness of arg infθ∈ΘDφ(Mθ, P0) and since the infimum is reached at θ = θ0 under the
model, we estimate θ0 through

(2.10) θ̂φ = arg inf
θ∈Θ

inf
Q∈M

(n)
θ

1

n

n∑

i=1

φ (nQ(Xi)) .

Enhancing M1 to M and accordingly extensions in the definitions of the φ functions on ]−∞,+∞[
and of the φ-divergences on the whole space of s.f.m’s M , is motivated by the following arguments:

- If the domain (a, b) of the function φ is included in [0,+∞[ then minimizing over M1 or
over M leads to the same estimates and test statistics. Hence, both approaches coincide
for instance in the case of the divergences KLm, KL, modified χ2 and Hellinger.

- Let θ be a given value in Θ. Denote Q1
n and Qn respectively the projection of Pn on M1

θ

and on Mθ. If Q
1
n satisfies 0 < Qn(Xi)

1 < 1 for all i = 1, . . . , n then it coincides with Qn,
i.e., Q1

n = Qn. Therefore, in this case, both approaches leads also to the same estimates
and test statistics.

- It may occur that for some θ in Θ and some i = 1, . . . , n, Q1
n(Xi) is a boundary value

of [0, 1], hence the first order conditions are not met which makes a real difficulty for the
calculation of the estimates over the sets of p.m. M1

θ and M1. However, when M1 is
replaced by M, then this problem does not hold any longer in particular when domφ = R,
which is the case for instance of the χ2-divergence. Other arguments are given in Remark
2.5 below.

The empirical likelihood paradigm (see Owen (1988), Owen (1990), Qin and Lawless (1994) and
Owen (2001)), enters as a special case of the statistical issues related to estimation and tests
based on φ−divergences with φ(x) = φ0(x) = − logx + x − 1, namely on KLm−divergence.
The empirical log-likelihood ratio statistic for testing P0 ∈ M against P0 /∈ M, in the context

of φ-divergences, can be written as 2nD̂KLm
(M, P0); the EL estimate of θ0 can be written as

θ̂KLm
= arg infθ∈Θ D̂KLm

(Mθ, P0). In the case of power functions φ = φγ , the estimates (2.10)
belongs to the class of GEL estimates introduced by Newey and Smith (2004), and (2.8) are the
empirical Cressie-Read statistics introduced by Baggerly (1998) and Corcoran (1998).

The constrained optimization problems (2.8), (2.9) and (2.10) can be transformed into uncon-
strained ones through “duality” theory, making use of some arguments of “Fenchel” duality which
we briefly recall hereunder. On the other hand, the obtention of asymptotic statistical results of
the estimates and the test statistics, under misspecification or under alternative hypotheses, re-
quires to handle existence conditions and characterization of the projection of P0 on the submodel
Mθ or on the entire model M. This also will be considered through duality, along the following
subsection.

2.3. Dual representation of φ−divergences under constraints. The Lagrangian “dual”
problems, corresponding to the “primal” ones

(2.11) inf
Q∈Mθ

Dφ(Q,P0)

and its empirical counterpart (2.8) make use of the Fenchel-Legendre transform of φ, defined
through

(2.12) ψ : t ∈ R 7→ ψ(t) := sup
x∈R

{tx− φ(x)} .



6 MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

The “dual” problems associated to (2.11) and (2.8) are respectively

(2.13) sup
t∈R1+l



t0 −

∫

Rm

ψ(t0 +

l∑

j=1

tjgj(x, θ)) dP0(x)



 ,

and

(2.14) sup
t∈R1+l



t0 −

1

n

n∑

i=1

ψ(t0 +

l∑

j=1

tjgj(Xi, θ))



 .

In the following propositions, we state conditions under which the primal problems (2.11) and
(2.8) coincide respectively with the dual ones (2.13) and (2.14). First, recall some properties of
the convex conjugate ψ of φ. For the proofs we can refer to Rockafellar (1970) section 26. The
function ψ is convex and closed, its domain is an interval with endpoints

(2.15) a∗ = lim
x→−∞

φ(x)

x
, b∗ = lim

x→+∞

φ(x)

x

satisfying a∗ < 0 < b∗ and ψ(0) = 0. The strict convexity of φ on its domain (a, b) is equivalent to
the condition that its conjugate ψ is essentially smooth, i.e., differentiable with

(2.16)
limt↓a∗ ψ′(t) = −∞ if a∗ > −∞,
limt↑b∗ ψ

′(t) = +∞ if b∗ < +∞.

Conversely, φ is essentially smooth on its domain (a, b) if and only if ψ is strictly convex on its
domain (a∗, b∗). In all the sequel, we assume additionally that φ is essentially smooth. Hence, ψ
is strictly convex on its domain (a∗, b∗), and it holds that

a∗ = lim
x↓a

φ′(x), b∗ = lim
x↑b

φ′(x),

and

(2.17) ψ(t) = tφ′
−1

(t)− φ
(
φ′

−1
(t)
)
, for all t ∈]a∗, b∗[.

It holds also that ψ is twice continuously differentiable on ]a∗, b∗[,

(2.18) ψ′(t) = φ′
−1

(t) and ψ′′(t) =
1

φ′′
(
φ′−1(t)

) .

In particular, ψ′(0) = 1 and ψ′′(0) = 1. Obviously, since φ is assumed to be closed, we have

φ(a) = lim
x↓a

φ(x) and φ(b) = lim
x↑b

φ(x),

which may be finite or infinite. Hence, by closedness of ψ, we have

ψ(a∗) = lim
t↓a∗

ψ(x) and ψ(b∗) = lim
t↑b∗

ψ(t).

Finally, the first and second derivatives of φ in a and b are defined to be the limits of φ′(x) and
φ′′(x) when x ↓ a and when x ↑ b. The first and second derivatives of ψ in a∗ and b∗ are defined
in a similar way. In Table 1, we give the convex conjugates ψ of some functions φ associated to
standard divergences. We determine also theirs domains, (a, b) and (a∗, b∗).

Proposition 2.1. Let θ be a given value in Θ. If there exists Q0 in M(n)
θ such that

(2.19) a < Q0(Xi) < b, for all i = 1, . . . , n.

Then

(2.20) inf
Q∈M

(n)
θ

Dφ(Q,Pn) = sup
t∈R1+l



t0 −

1

n

n∑

i=1

ψ(t0 +

l∑

j=1

tjgj(Xi, θ))




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Table 1. Convex conjugates for some standard divergences.

Dφ φ domφ domψ ψ
DKLm

φ(x) := − log x+ x− 1 ]0,+∞[ ]−∞, 1[ ψ(t) = − log(1− t)
DKL φ(x) := x log x− x+ 1 [0,+∞[ R ψ(t) = et − 1

Dχ2
m

φ(x) := 1
2
(x−1)2

x ]0,+∞[
]
−∞, 12

]
ψ(t) = 1−

√
1− 2t

Dχ2 φ(x) := 1
2 (x− 1)

2
R R ψ(t) = 1

2 t
2 + t

DH φ(x) := 2(
√
x− 1)2 [0,+∞[ ]−∞, 2[ ψ(t) = 2t

2−t

Dφγ
φ(x) := xγ−γx+γ−1

γ(γ−1) −− −− ψ(t) = 1
γ (γt− t+ 1)

γ
γ−1 − 1

γ

with dual attainment. Inversely, if there exists a dual optimal solution t̂ such that

(2.21) a∗ < t̂0 +
l∑

j=1

t̂jgj(Xi, θ) < b∗, for all i = 1, . . . , n,

then the equality (2.20) holds, and the unique optimal solution of the primal problem inf
Q∈M

(n)
θ

Dφ(Q,Pn),

namely the projection of Pn on M(n)
θ , is given by

Qn(Xi) =
1

n
φ′

−1
(t̂0 +

l∑

j=1

t̂jgj(Xi, θ)), i = 1, ..., n,

where t̂ is solution of the equations
{

1− 1
n

∑n
i=1 φ

′−1
(t̂0 +

∑l
j=1 t̂jgj(Xi, θ)) = 0

− 1
n

∑n
i=1 gj(Xi, θ)φ

′−1
(t̂0 +

∑l
j=1 t̂jgj(Xi, θ)) = 0, j = 1, ..., l.

Remark 2.1. For the χ2−divergence, we have a = −∞ and b = +∞. Hence, condition (2.19)

holds whenever M(n)
θ is not void. More generally, the above Proposition holds for any φ-divergence

with φ function satisfying domφ = R.

Remark 2.2. Assume that g(x, θ) := x − θ. So, for any divergence Dφ with domφ =]0,+∞[,
which is the case of the modified χ2 divergence and the modified Kullback-Leibler divergence (or
equivalently EL method), condition (2.19) means that θ is an interior point of the convex hull of
the data (X1, ..., Xn). This is precisely what is checked in Owen (1990), p. 100, for the EL method;
see also Owen (2001).

For the asymptotic counterpart of the above results we have; see Theorem 1 in Broniatowski and Keziou
(2006):

Proposition 2.2. Let θ be a given value in Θ. Assume that
∫
|gj(x, θ)| dP0(x) < ∞ for all

j = 1, . . . , l. If there exists Q0 in Mθ with Dφ(Q0, P0) <∞ and2

(2.22) a < inf
x

dQ0

dP0
(x) ≤ sup

x

dQ0

dP0
(x) < b, P0 − a.s.

Then

(2.23) inf
Q∈Mθ

Dφ(Q,P0) = sup
t∈R1+l



t0 −

∫

Rm

ψ(t0 +

l∑

j=1

tjgj(x, θ)) dP0(x)





2The strict inequalities in (2.22) mean that P0

{

x ∈ Rm | dQ0
dP0

(x) ≤ a
}

= P0

{

x | dQ0
dP0

(x) ≥ b
}

= 0.



8 MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

with dual attainment. Inversely, if there exists a dual optimal solution t∗ which is an interior point
of the set

(2.24)



t ∈ R

1+l such that

∫

Rm

|ψ(t0 +
l∑

j=1

tjgj(x, θ))| dP0(x) <∞



 ,

then the dual equality (2.23) holds, and the unique optimal solution Q∗
θ of the primal problem

infQ∈Mθ
Dφ(Q,P0), namely the projection of P0 on Mθ, is given by

dQ∗
θ

dP0
(x) = φ′

−1
(t∗0 +

l∑

j=1

t∗jgj(x, θ)),

where t∗ is solution of

(2.25)

{
1−

∫
φ′−1(t∗0 +

∑l
j=1 t

∗
jgj(x, θ)) dP0(x) = 0

−
∫
gj(x, θ)φ

′−1
(t∗0 +

∑l
j=1 t

∗
jgj(x, θ)) dP0(x) = 0, j = 1, . . . , l.

Furthermore, t∗ is unique if the functions 1Rm , g1(., θ), . . . , gl(., θ) are linearly independent in the

sense that P0

{
x | t0 +

∑l
j=1 tjgj(x, θ) 6= 0

}
> 0 for all t ∈ R

m with t 6= 0.

For sake of brevity and clearness, we must introduce some additional notations. Denote g the
vector valued function (1Rm , g1, . . . , gl)

T . For any p.m. P and any measurable function f on R
m,

Pf denotes the integral
∫
Rm f(x) dP (x). Let

(2.26) m(x, θ, t) := t0 − ψ(tT g(x, θ)), for all x ∈ R
m, θ ∈ Θ ⊂ R

d, t ∈ R
1+l.

Note that the sup in (2.20) and (2.23) can be restricted respectively to the sets

(2.27) Λn(θ) :=
{
t ∈ R

1+l | a∗ < tT g(Xi, θ) < b∗, for all i = 1, . . . , n
}

and

(2.28) Λ(θ) :=



t ∈ R

1+l |
∫

Rm

|ψ(t0 +
l∑

j=1

tjgj(x, θ))| dP0(x) <∞



 .

In view of the above propositions, we redefine the estimates (2.8), (2.9) and (2.10) as follows

(2.29) D̂φ (Mθ, P0) := sup
t∈Λn(θ)

1

n

n∑

i=1

m(Xi, θ, t) := sup
t∈Λn(θ)

Pnm(θ, t),

(2.30) D̂φ (M, P0) := inf
θ∈Θ

sup
t∈Λn(θ)

1

n

n∑

i=1

m(Xi, θ, t) := inf
θ∈Θ

sup
t∈Λn(θ)

Pnm(θ, t)

and

(2.31) θ̂φ := arg inf
θ∈Θ

sup
t∈Λn(θ)

1

n

n∑

i=1

m(Xi, θ, t) := arg inf
θ∈Θ

sup
t∈Λn(θ)

Pnm(θ, t).

Remark 2.3. When φ(x) = − log x+x−1, then the estimate (2.10) clearly coincides with the EL
one, so it can be seen as the value of the parameter which minimizes the KLm-divergence between

the model M and the empirical measure Pn of the data. The statistics 2nD̂KLm
(M, P0), see (2.9),
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coincides with the empirical likelihood ratio associated to the null hypothesis H0 : P0 ∈ M against

the alternative H1 : P0 6∈ M. The dual representation of D̂KLm
(M, P0), see (2.30), is

D̂KLm
(M, P0) = inf

θ∈Θ
sup

t∈Λn(θ)



t0 +

1

n

n∑

i=1

log(1− t0 −
l∑

j=1

tjgj(Xi, θ))



 .

For a given θ ∈ Θ, the KLm-projection Qn, of Pn on Mθ, is given by (see Proposition 2.1)

1

Qn(Xi)
= n


1− t∗0 −

l∑

j=1

t∗jg(Xi, θ)


 , i = 1, . . . , n,

which, multiplying by Qn(Xi) and summing upon i yields t∗0 = 0. Therefore, t0 can be omitted,
and the above representation can be rewritten as follows

D̂KLm
(M, P0) = inf

θ∈Θ
sup

t1,...,tl





1

n

n∑

i=1

log(1 +

l∑

j=1

tjgj(Xi, θ))





and then

θ̂KLm
= θ̂EL = arg inf

θ∈Θ
sup

t1,...,tl





1

n

n∑

i=1

log(1 +

l∑

j=1

tjgj(Xi, θ))





in which the sup is taken over the set


(t1, . . . , tl) ∈ R

l | − 1 <

l∑

j=1

tjgj(Xi, θ) < +∞, for all i = 1, . . . , n



 .

This is the ordinary dual representation of the EL estimate; see Qin and Lawless (1994) and Owen
(2001).

Remark 2.4. Consider the power divergences, associated to the power functions φγ ; see (2.3) and

(2.4). The estimates θ̂φγ
belongs to the class of GEL estimators introduced by Newey and Smith

(2004). The projection Qn of Pn on Mθ is given by

Qn(Xi) =


(γ − 1)(t∗0 +

l∑

j=1

t∗jg(Xi, θ)) + 1




1/(γ−1)

, i = 1, . . . , n.

Using the constraint
∑n

i=1Qn(Xi) = 1, we can explicit t∗0 in terms of t∗1, . . . , t
∗
l , and hence the sup

in the dual representation (2.31) can be reduced to a subset of Rl, as in Newey and Smith (2004).

When φ(x) = 1
2 (x−1)2, then θ̂φ coincides with the continuous updating estimator of Hansen et al.

(1996).

Remark 2.5. (Numerical calculation of the estimates and the specific role of the χ2-

divergence). The obtention of t̂(θ) for fixed θ as defined in (2.25) is difficult when handling a
generic divergence. In the case of χ2-divergence, i.e., when φ(x) = 1

2 (x − 1)2, optimizing on all

s.f.m’s, the system (2.25) is linear; we thus easily obtain an explicit form for t̂(θ), which in turn
allows for a single gradient descent when optimizing upon Θ. This procedure is useful in order to
calculate the estimates for all other divergences (for which the corresponding system is non linear)
including EL, since it provides an easy starting point for the resulting double gradient descent.
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3. Asymptotic properties of the estimates of the parameter and the estimates of

the divergences

3.1. Under the model. This section addresses Problems 1 and 2, aiming at testing the null
hypothesis H0 : P0 ∈ M against the alternative H1 : P0 6∈ M. We expose the limit distributions of
test statistics which are the estimated divergences between the model M and P0. We also derive
the limit distributions of the estimates of θ0. The following two theorems extend Theorem 3.1 and
3.2 in Newey and Smith (2004) to the context of divergence based approach. The assumptions
which we consider match those of theorems 3.1 and 3.2 in Newey and Smith (2004).

Assumption 1. (a) P0 ∈ M and θ0 ∈ Θ is the unique solution to E [g(X, θ)] = 0; (b) Θ ⊂ R
d is

compact; (c) g(X, θ) is continuous at each θ ∈ Θ with probability one; (d) E [supθ∈Θ ‖g(X, θ)‖α] <
∞ for some α > 2; (e) the matrix Ω := E

[
g(X, θ0)g(X, θ0)

T
]
is nonsingular.

Theorem 3.1. Under assumption 1, the estimate θ̂φ exists and converges to θ0 in probabil-

ity, 1
n

∑n
i=1 g(Xi, θ̂φ) = OP (1/

√
n), t̂(θ̂φ) := arg supt∈Λn(θ̂φ)

Pnm(θ̂φ, t) exists and belongs to

int(Λn(θ̂φ)) with probability one as n→ ∞, and t̂(θ̂φ) = OP (1/
√
n).

In order to obtain asymptotic normality, we need some additional assumptions. Denote G the
matrix G := E [∂g(X, θ0)/∂θ].

Assumption 2. (a) θ0 ∈ int(Θ); (b) With probability one g(X, θ) is continuously differentiable in
a neighborhood N of θ0 and E [supθ∈N ‖∂g(X, θ)/∂θ‖] <∞; (c) rank(G) = d.

Theorem 3.2. Assume that assumption 1 and 2 hold. Then,

(1)
√
n
(
θ̂φ − θ0

)
converges in distribution to a centered normal vector with covariance matrix

V :=
[
GΩ−1GT

]−1
.

(2) If l > d, the statistic 2nD̂φ(M, P0) converges in distribution to a χ2 random variable with
(l − d) degrees of freedom.

Remark 3.1. The above Theorem allows to perform statistical tests (of the model) with asymp-
totic level α. Consider the null hypothesis

(3.1) H0 : P0 ∈ M against the alternative H1 : P0 6∈ M.

The critical region is then

Cφ :=
{
2nD̂φ(M, P0) > q(1−α)

}

where q(1−α) is the (1 − α)-quantile of the χ2(l − d) distribution. When φ(x) = − log x + x − 1,
the corresponding test is the empirical likelihood ratio one; see Qin and Lawless (1994).

3.2. Asymptotic properties of the estimates of the divergences for a given value of the

parameter. For a given θ ∈ Θ, consider the test problems of the null hypothesis H0 : P0 ∈ Mθ

against two different families of alternative hypotheses: H1 : P0 /∈ Mθ and H′
1 : P0 ∈ M \ Mθ.

Those two tests address different situations since H1 may include misspecification of the model
while testing for the peculiar value θ of the parameter. We present two different test statistics
each pertaining to one of the situations and derive their limit distributions both under H0 and
under the alternatives. As a by product we also derive confidence areas for the true value θ0 of

the parameter. We will state the convergence in probability of D̂φ(Mθ, P0) to Dφ(Mθ, P0), and

we will obtain the limit law of D̂φ(Mθ, P0) both when P0 ∈ Mθ and when P0 6∈ Mθ. Obviously,
when P0 ∈ Mθ, this means that θ = θ0 since the true-value θ0 of the parameter is assumed to be
unique.
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Assumption 3. (a) P0 ∈ Mθ and θ is the unique solution to E [g(X, θ)] = 0; (b) E [‖g(X, θ)‖α] <∞
for some α > 2; (c) the matrix
Ω := E

[
g(X, θ)g(X, θ)T

]
is nonsingular.

Theorem 3.3. Under assumption 3, we have

(1) t̂(θ) := arg supt∈Λ(θ) Pnm(θ, t) exists and belongs to int(Λ(θ)) with probability one as n →
∞, and t̂(θ) = OP (1/

√
n).

(2) The statistic 2nD̂φ(Mθ, P0) converges in distribution to a χ2(l) random variable.

In order to obtain the limit distribution of the test statistics 2nD̂φ (Mθ, P0) under the alternative
H1 : P0 /∈ Mθ, including misspecification, the following assumption is needed.

Assumption 4. (a) P0 6∈ Mθ, and t
∗(θ) := arg supt∈Λ(θ) E [m(X, θ, t)] exists and is an interior point

of Λ(θ); (b) E [supt∈N |m(X, θ, t)|] < ∞ for some compact set N ⊂ Λ(θ) such that t∗(θ) ∈ int(N);
(c) the functions 1Rm , g1, . . . , gl are linearly independent in the following sense:

P0

{
x | t0 +

∑l
j=1 tjgj(x, θ) 6= 0

}
> 0 for all t ∈ R

1+l with t 6= 0.

Assumption (c) hereabove ensures the strict concavity of the function t ∈ Λ(θ) 7→ E [m (X, θ, t)];

otherwise t∗(θ) may not be defined uniquely implying possible inconsistency of t̂(θ).

Theorem 3.4. Under assumption 4, when P0 6∈ Mθ, we have

(1) t̂(θ) converges in probability to t∗(θ).

(2) D̂φ(Mθ, P0) converges in probability to Dφ(Mθ, P0).

We now present the limit distribution of the test statistics under H1. We need the following
additional condition.

Assumption 5. (a) with probability one, the function t 7→ m(X, θ, t) is C3 in a neighborhood
N (t∗(θ)) of t∗(θ), and all third order partial derivatives (w.r.t. t) of {t 7→ m(X, θ, t); t ∈ N} are
dominated by some P0-integrable function;
(b) E

[
m(X, θ, t∗(θ))2

]
<∞, E

[
‖∂m(X, θ, t∗(θ))/∂t‖2

]
<∞, and the matrix

E
[
∂2m(X, θ, t∗(θ))/∂t2

]
exists and nonsingular.

Theorem 3.5. Under assumptions 4 and 5, we have

(1)
√
n(t̂(θ) − t∗(θ)) converges in distribution to a centered normal vector with covariance

matrix

[E [m′′(X, θ, t∗)]]
−1

E
[
m′(X, θ, t∗)m′(X, θ, t∗)T

]
[E [m′′(X, θ, t∗)]]

−1
.

(2)
√
n
(
D̂φ(Mθ, P0)−Dφ(Mθ, P0)

)
converges in distribution to a centered normal random

variable with variance

σ2(θ) = E
[
m(X, θ, t∗(θ))2

]
− [E [m(X, θ, t∗(θ))]]

2
.

Remark 3.2. Let θ be a given value in Θ. Consider the test problem of the null hypothesis

(3.2) H0 : P0 ∈ Mθ against P0 /∈ Mθ.

In view of Theorem 3.3 part 2, we reject H0 against H1 at asymptotic level α when 2nD̂φ (Mθ, P0)
exceeds the (1 − α)- quantile of the χ2(l) distribution. Theorem 3.5 part 2 is useful to give an
approximation to the power function

P0 /∈ Mθ 7→ β(P0) := P0

[
2nD̂φ (Mθ, P0) > q(1−α)

]
.
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We obtain then the following approximation

(3.3) β(P0) ≈ 1− FN

( √
n

σ(θ)

[q1−α

2n
−Dφ(Mθ, P0)

])
,

where FN is the cumulative distribution of the standard normal distribution. From this approxi-
mation, we can can give the approximate sample size that ensures a desired power β for a given
alternative P0 /∈ Mθ. Let n0 be the positive root of the equation

β = 1− FN

[ √
n

σ (θ)

(q(1−α)

2n
−Dφ (Mθ, P0)

)]

i.e.,

n0 =
(a+ b)−

√
a (a+ 2b)

2Dφ (Mθ, P0)
2

with a := σ(θ)2
[
F−1
N (1− β)

]2
and b := q(1−α)Dφ (Mθ, P0) . The required sample size is then

⌊n0⌋+ 1 where ⌊n0⌋ is the integer part of n0.

Remark 3.3. (Generalized empirical likelihood ratio test). For testing H0 : P0 ∈ Mθ

against the alternative H′
1 : M\Mθ, we propose to use the statistics

(3.4) 2nSφ
n := 2n

[
D̂φ (Mθ, P0)− inf

θ∈Θ
D̂φ (Mθ, P0)

]

which converge in distribution to a χ2(d) random variable under H0 when assumption 3 holds.
This can be proved using similar arguments as in Theorem 3.3. We then reject H0 at asymptotic
level α when 2nSφ

n > q(1−α), the (1 − α)-quantile of the χ2(d)-distribution. Under H′
1 and when

assumptions 4 and 5 hold, as in Theorem 3.4, it can be proved that

(3.5)
√
n
(
Sφ
n −Dφ (Mθ, P0)

)

converges to a centered normal random variable with variance

σ2(θ) := E
(
m(X, θ, t∗(θ))2

)
− (Em(X, θ, t∗(θ)))

2
.

So, as in the above Remark, we obtain the following approximation

(3.6) β(P0) ≈ 1− FN

( √
n

σ(θ)

[q1−α

2n
−Dφ(Mθ, P0)

])

to the power function. The approximated sample size required to achieve a desired power for a
given alternative can be obtained as in the above Remark.

Remark 3.4. (Confidence region for the parameter). For a fixed level α, using convergence
(3.4), the set {

θ ∈ Θ such that 2nSφ
n ≤ q(1−α)

}

is an asymptotic confidence region for θ0 at level (1 − α), where q(1−α) is the (1 − α)-quantile of

the χ2(d)-distribution.

3.3. Under misspecification. We address Problem 1 stating the limit distribution of the test
statistics under the alternative H1 : P0 /∈ M. This needs the introduction of Q∗

θ∗ , the projection
of P0 on M. Assumption 6 ensures the existence of the “pseudo-true” value θ∗ as well as the
existence of the projection Q∗

θ∗ of P0 on M, and states some necessary other regularity conditions.

Assumption 6. (a) Θ is compact, θ∗ := arg infθ∈Θ supt∈Λ(θ) E [m(X, θ, t)] exists and is unique; (b)

g(X, θ) is continuous at each θ ∈ Θ with probability one; (c) E

[
supθ∈Θ,t∈N(θ) |m(X, θ, t)|

]
< ∞

where N(θ) ⊂ Λ(θ) is a compact set such that t∗(θ) ∈ int (N(θ)); (d) the functions 1Rm , g1, . . . , gl
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are linearly independent in the following sense: P0

{
x | t0 +

∑l
j=1 tjgj(x, θ) 6= 0

}
> 0 for all t ∈

R
1+l with t 6= 0.

Theorem 3.6. Under assumption 6, we have

(1) ‖t̂(θ)− t∗(θ)‖ converges in probability to 0 uniformly in θ ∈ Θ.

(2) θ̂φ converges in probability to θ∗;

(3) D̂φ(M, P0) converges in probability to Dφ(M, P0).

The asymptotic normality of the test statistics under misspecification requires the following addi-
tional conditions.

Assumption 7. (a) θ∗ ∈ int(Θ); (b) with probability one, the function (θ, t) 7→ m(X, θ, t) is
C3 in a neighborhood N ⊂ Θ × Λ(Θ) of (θ∗, t∗(θ∗)), and all the third order partial deriva-
tives functions are dominated on N by some P0-integrable function; (c) E

[
m(X, θ∗, t∗(θ∗))2

]
,

E

[
‖∂m(X, θ∗, t∗(θ∗))/∂t‖2

]
and E

[
‖∂m(X, θ∗, t∗(θ∗)/∂θ‖2

]
are finite, and the matrix

S :=

(
S11 S12

S21 S22

)
,

exists and is nonsingular, where S11 := E
[
∂2m(X, θ∗, t∗(θ∗))/∂t2

]
, S12 = S21

T := E
[
∂2m(X, θ∗, t∗(θ∗))/∂t∂θ

]

and S22 := E
[
∂2m(X, θ∗, t∗(θ∗))/∂θ2

]
.

Theorem 3.7. Under assumptions 6 and 7, we have

(1)

√
n

(
t̂(θ̂φ)− t∗(θ∗)

θ̂φ − θ∗

)

converges in distribution to a centered normal vector with covariance matrix

W = S−1MS−1

where

M := E

[[
∂
∂tm (X, θ∗, t∗(θ∗))
∂
∂θm (X, θ∗, t∗(θ∗))

] [
∂
∂tm (X, θ∗, t∗(θ∗))
∂
∂θm (X, θ∗, t∗(θ∗))

]T]
;

(2)
√
n
(
D̂φ(M, P0)−Dφ(M, P0)

)
converges in distribution to a centered normal variable with

variance

σ2(θ∗) = E
[
m(X, θ∗, t∗(θ∗))2

]
− [E [m(X, θ∗, t∗(θ∗))]]

2
.

Remark 3.5. For EL, assumption (6) (c) implies that (see 2.26)

−∞ < inf
x
t0 + tT g(x, θ) ≤ sup

x
t0 + tT g(x, θ) < 1 (P0 − a.s.)

for all θ ∈ Θ and t ∈ N(θ), which imposes a restriction on the model when the support of P0 is
unbounded. Indeed, when the support of P0 is for example the whole space R

m condition above
does not hold when g is unbounded. At the contrary the same condition may hold for other choices
of the divergence whose domain is the whole space R.

Remark 3.6. Theorem 3.7 is useful for the calculation of the power function. For testing the null
hypothesis P0 ∈ M against the alternative H1 : P0 /∈ M, the power function is (see Remark 3.1)

(3.7) P0 /∈ M 7→ β(P0) := P0

[
2nD̂φ (M, P0) > q(1−α)

]
.
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Using Theorem 3.7 part (2), we obtain the following approximation to the power function (3.7):

(3.8) β(P0) ≈ 1− FN

[ √
n

σ (θ∗)

(q(1−α)

2n
−Dφ (M, P0)

)]

where FN is the empirical cumulative distribution of the standard normal distribution. From the
proxy value of β(P0) hereabove, the approximate sample size that ensures a given power β for a
given alternative P0 6∈ M can be obtained as follows. Let n0 be the positive root of the equation

β = 1− FN

[ √
n

σ(θ∗)

(q(1−α)

2n
−Dφ (M, P0)

)]

i.e.

n0 =
(a+ b)−

√
a (a+ 2b)

2Dφ (M, P0)
2

with a := σ(θ∗)2
[
F−1
N (1− β)

]2
and b := q(1−α)Dφ (M, P0) . The required sample size is then

⌊n0⌋+ 1 where ⌊n0⌋ is the integer part of n0.

4. Simulation results: Approximation of the power function

Consider the test problem of the null hypothesis

H0 : P0 ∈ M against the alternative H1 : P0 /∈ M.

We will illustrate by simulation the accuracy of the power approximation (3.8) in the case of EL
method, i.e., when φ(x) = − logx+ x− 1. The submodel Mθ is the set of all s.f.m’s satisfying the
constraints

∫
dQ(x) = 1 and

∫
g(x, θ) dQ(x) = 0 with g(x, θ) := (x, x2 − θ), namely

Mθ :=

{
Q such that

∫

R

dQ(x) = 1 and

∫

R

g(x, θ) dQ(x) = 0

}
,

where θ ∈ R is the parameter of interest. We consider the asymptotic level α = 0.05 and the
alternatives P0 := U([−1, 1+ ǫ]) 6∈ M for different values of ǫ in the interval ]0, 1]. Note that when
ǫ = 0 then the uniform distribution U([−1, 1]) belongs to the modelM. For this model, we can show
also that all assumptions of Theorem 3.2 are satisfied when ǫ = 0, and all assumptions of Theorem
3.7 are met under alternatives. In figure 1, the power function (3.7) is plotted (with a continuous
line), with sample sizes n = 50, n = 100, n = 200 and n = 500, for different values of ǫ. Each
power entry was obtained by Monte-Carlo from 1000 independent runs. The approximation (3.8)

is plotted (with a dashed line) as a function of ǫ. The estimates θ̂φ and D̂φ(M, P0) are calculated
using the Newton algorithm. We observe from figure 1 that the approximation is accurate even
for moderate sample sizes.

5. Concluding remarks and possible developments

We have proposed new estimates and tests for model satisfying linear constraints with unknown
parameter through divergence based methods which generalize the EL approach. This leads to the
obtention of the limit distributions of the test statistics and the estimates under alternatives and
under misspecification, which can not be obtained through the likelihood point of view. Consistency
of the test statistics under the alternatives is the starting point for the study of the optimality of
the tests through Bahadur approach; also the generalized Neyman-Pearson optimality of EL test
(as developed by Kitamura (2001)) can be studied for empirical divergence based methods. Many
other problems remain to be studied such as the choice of the divergence which leads to an optimal
(in some sense) estimator or test in terms of efficiency and/or robustness. Preliminary simulation
results show that Hellinger divergence enjoys good properties in terms of efficiency-robustness;
see Broniatowski and Keziou (2008). Also comparisons of test statistics under local alternatives
should be developed.
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Figure 1. Approximation of the power function
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6. Appendix

Proof of Theorem 3.1The same arguments, used for the proof of Theorem 3.1 in Newey and Smith
(2004), hold when their criterion function (θ, λ) ∈ Θ×R

l 7→ 1
n

∑n
i=1 ρ(λ

T g(X, θ)) is replaced by our

function (θ, t) ∈ Θ×R
1+l 7→ 1

n

∑n
i=1m(tT g(X, θ)). In particular, we have maxi≤n

∣∣∣t̂(θ̂φ)T g(Xi, θ̂φ)
∣∣∣

tends to 0 in probability, which implies that t̂(θ̂φ) ∈ int(Λn(θ̂φ)) with probability one as n → ∞,
since a∗ < 0 < b∗.

Proof of Theorem 3.2. The proof is similar to that of Newey and Smith (2004) Theorem 3.2.
Hence, it is omitted.

Proof of Theorem 3.3. (1) It is a particular case of Theorem 3.1 taking Θ = {θ}. (2) The

first order conditions Pn∂m(θ, t̂)/∂t = 0 are satisfied with probability one as n → ∞. Hence by a
Taylor expansion we obtain

0 = Pn∂m
(
θ, t̂
)
/∂t

= Pn∂m (θ, 0) /∂t+
1

2

[
Pn∂

2m
(
θ, t
)
/∂t2

]T
t̂,(6.1)
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where t ∈ R
1+l is a vector inside the segment that links 0 and t̂. By the uniform weak law of

large numbers (UWLLN), and dominated convergence Theorem, we have Pn∂
2m
(
θ, t
)
/∂t2 tends

in probability to

E
[
∂2m(X, θ, 0)/∂t2

]
= −

[
1 0T

0 Ω

]
=: −M,

which is nonsingular and symmetric. Hence, we can write

(6.2)
√
nt̂ =M−1√nPn∂m(X, θ, 0)/∂t+ oP (1).

Using similar arguments, we get also

D̂φ(Mθ, P0) = Pnm(θ, t̂) = [Pn∂m(θ, 0)/∂t]
T
t̂− 1

2
t̂TMt̂+ oP (1/n).

From this, using (6.2), we obtain

D̂φ(Mθ, P0) =
1

2
[Pn∂m(θ, 0)/∂t]

T
M−1[Pn∂m(θ, 0)/∂t] + oP (1).

This yields to

(6.3) 2nD̂φ(Mθ, P0) = [Pn∂m(θ, 0)/∂t]
T
M−1[Pn∂m(θ, 0)/∂t] + oP (1).

In the other hand, direct calculation shows that

E
[
∂m(X, θ, 0)∂m(X, θ, 0)T

]
=M.

Combining this with (6.3), we conclude the proof.

Proof of Theorem 3.4. (1) First, note that condition (b) implies that t∗(θ) is unique since
t ∈ Λ(θ) 7→ E [m(X, θ, t)] is strictly concave by (c) and Λ(θ) is a convex set. By UWLLN, using
continuity of m(X, θ, t) in t and condition (b), we obtain

(6.4) |Pnm(θ, t)− E [m(X, θ, t)]| → 0,

in probability uniformly in t over the compact set N . Using this and the fact that t∗(θ) :=
arg supt∈Λ(θ) P0m(θ, t) is unique and belongs to int(N) and the strict concavity of t 7→ P0m(θ, t),
we conclude that any value

(6.5) t := arg sup
t∈N

Pnm(θ, t)

converges in probability to t∗(θ); see e.g. Theorem 5.7 in van der Vaart (1998). We end the proof

by showing that t̂(θ) belongs to int(N) with probability one as n → ∞, and therefore converges
to t∗(θ). In fact, since for n sufficiently large any value t lies in the interior of N , concavity of
t 7→ Pnm(θ, t) implies that no other point t in the complement of int(N) can maximize Pnm(θ, t)

over t ∈ R
1+l, hence t̂ must be in int(N).

(2) We have D̂φ(Mθ, P0) = Pnm(θ, t̂) = Pnm(θ, t) where the second equality holds for n sufficiently
large. Hence we can write

∣∣∣D̂φ(Mθ, P0)−Dφ(Mθ, P0)
∣∣∣ =

∣∣Pnm(θ, t)− P0m(θ, t∗)
∣∣

≤
∣∣Pnm(θ, t)− P0m(θ, t)

∣∣+
∣∣P0m(θ, t)− P0m(θ, t∗)

∣∣ .
The first term tends to 0 in probability by (6.4), the second term tends to 0 by dominated conver-
gence Theorem using assumption (b).
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Proof of Theorem 3.5. By Taylor expansion, there exists t ∈ R
l+1 inside the segment that links

t̂ and t∗ with

(6.6)

0 = Pnm
′(θ, t̂)

= Pnm
′(θ, t∗) + (Pnm

′′(θ, t∗))
T (
t̂− t∗

)

+ 1
2

(
t̂− t∗

)T
Pnm

′′′(θ, t)
(
t̂− t∗

)
.

By condition (a) and the Law of Large Numbers (LLN), we get Pnm
′′′(θ, t) = OP (1). Hence, we

can write the last term in the right hand side of (6.6) as oP (1)
(
t̂− t∗

)
. On the other hand, by

the WLLN, Pnm
′′(θ, t∗) converges in probability to the matrix P0m

′′(θ, t∗). Write Pnm
′′(θ, t∗) as

P0m
′′(θ, t∗) + oP (1) to obtain from (6.6)

(6.7) − Pnm
′(θ, t∗) = (P0m

′′(θ, t∗) + oP (1))
(
t̂− t∗

)
.

By the Central Limit Theorem (CLT), we have
√
nPnm

′(θ, t∗) = OP (1), which by (6.7) implies

that
√
n
(
t̂− t∗

)
= OP (1). Hence, from (6.7), we get

(6.8)
√
n
(
t̂− t∗

)
= [−P0m

′′(θ, t∗)]
−1√

nPnm
′(θ, t∗) + oP (1).

The CLT concludes the proof of part 1. (2) Using the fact that
(
t̂− t∗

)
= OP (1/

√
n) and

Pnm
′(θ, t∗) = P0m

′(θ, t∗) + oP (1) = 0 + oP (1) = oP (1), we obtain

√
n
(
D̂φ(Mθ, P0)−Dφ(Mθ, P0)

)
=

√
n
(
D̂φ(Mθ, P0)− P0m(θ, t∗)

)

=
√
n (Pnm(θ, t∗)− P0m(θ, t∗)) + oP (1),

and the CLT yields to the conclusion of the proof.

Proof of Theorem 3.6. (1) First note that condition (d) implies that the function t ∈ Λ(θ) 7→
Em(X, θ, t) is strictly concave for all θ ∈ Θ. Hence, condition (c) implies that t∗(θ) is unique for
all θ ∈ Θ. By UWLLN, using continuity of m(X, θ, t), in θ and t, and condition (c), we obtain the
uniform convergence in probability, over the compact set {(θ, t) | θ ∈ Θ, t ∈ N(θ)},
(6.9) sup

θ∈Θ,t∈N(θ)

|Pnm(θ, t)− P0m(θ, t)| → 0.

We can then prove the convergence in probability supθ∈Θ ‖t̂(θ)− t∗(θ)‖ → 0 in two steps. Step 1:

let η > 0, we will show that P0

[
supθ∈Θ ‖t(θ)− t∗(θ)‖ ≥ η

]
→ 0 for any value

(6.10) t(θ) := arg sup
t∈N(θ)

Pnm(θ, t).

Step 2: to conclude the proof we will show that t̂(θ) belongs to int(N(θ)) with probability one as
n → ∞ for all θ ∈ Θ. Let η > 0 such that supθ∈Θ ‖t(θ)− t∗(θ)‖ ≥ η. Sine Θ is a compact set, by

continuity there exists θ ∈ Θ such that supθ∈Θ ‖t(θ) − t∗(θ)‖ = ‖t(θ) − t∗(θ)‖ ≥ η. Hence, there

exists ε > 0 such that P0m(θ, t∗(θ))− P0m(θ, t(θ)) > ε. In fact, ε may be defined as follows

ε := inf
θ∈Θ

sup
t∈N(θ):‖t−t∗(θ)‖≥η

E[m(X, θ, t∗(θ))] − E[m(X, θ, t)]

which is strictly positive by the strict concavity of E[m(X, θ, t)] in t for all θ ∈ Θ, the uniqueness
of t∗(θ) ∈ int(N(θ)) and the fact that Θ is compact. Hence the event

[
supθ∈Θ ‖t(θ)− t∗(θ)‖ ≥ η

]

implies
[
P0m(θ, t∗(θ))− P0m(θ, t(θ)) ≥ ε

]
,

from which we obtain

(6.11) P0

[
sup
θ∈Θ

‖t(θ)− t∗(θ)‖ ≥ η

]
≤ P0

[
P0m(θ, t∗(θ))− P0m(θ, t(θ)) ≥ ε

]
.
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On the other hand, by (6.9), we have

P0m(θ, t∗(θ))− P0m(θ, t(θ)) = Pnm(θ, t∗(θ))− P0m(θ, t(θ)) + oP (1)

≤ Pnm(θ, t(θ))− P0m(θ, t(θ)) + oP (1)

≤ sup
θ∈Θ,t∈N(θ)

|Pnm(θ, t)− P0m(θ, t)|+ oP (1).

Combining this with (6.11) and (6.9), we conclude that supθ∈Θ ‖t(θ) − t∗(θ)‖ → 0 in probability.
In particular, t(θ) ∈ int(N(θ)) for n sufficiently large, for all θ ∈ Θ. Since t 7→ Pnm(θ, t) is concave

then t̂(θ) must be in intN(θ) for n sufficiently large; hence the same results holds when t is replaced

by t̂.
(2) From (1), we have for n large,

sup
θ∈Θ

|Pnm(θ, t̂(θ)) − P0m(θ, t∗(θ))| = sup
θ∈Θ

|Pnm(θ, t(θ))− P0m(θ, t∗(θ))|

≤ sup
θ∈Θ

|Pnm(θ, t(θ))− P0m(θ, t(θ))|

+ sup
θ∈Θ

|P0m(θ, t(θ)) − P0m(θ, t∗(θ))|.

Both terms in the above display tend to 0; the first one by (6.9), the second one by Dominated
convergence Theorem using assumption (c). Now, since the minimizer θ∗ of θ 7→ P0m(θ, t∗(θ))
over the compact set Θ is unique, by continuity and the above uniform convergence, we conclude

that θ̂φ converges to θ∗.

(3) This holds as a consequence of the uniform convergence in probability supθ∈Θ |Pnm(θ, t̂(θ)) −
P0m(θ, t∗(θ))| → 0 proved in part (2) above.

Proof of Theorem 3.7. By the first order conditions, we have
{

Pn
∂
∂tm (θ, t) = 0

Pn
∂
∂θm (θ, t(θ)) = 0,

i.e., 



Pn
∂
∂tm

(
θ̂, t̂(θ̂)

)
= 0

Pn
∂
∂θm

(
θ̂, t̂(θ̂)

)
+ Pn

∂
∂tm

(
θ̂, t̂(θ̂)

)
∂
∂θ t̂(θ̂) = 0.

The second term in the left hand side of the second equation is equal to 0, due to the first equation.

Hence t̂(θ̂) and θ̂ are solutions of the somehow simpler system




Pn
∂
∂tm

(
θ̂, t̂(θ̂)

)
= 0 (E1)

Pn
∂
∂θm

(
θ̂, t̂(θ̂)

)
= 0 (E2).

Use a Taylor expansion in (E1); there exists
(
θ, t
)
inside the segment that links (θ̂, t̂(θ̂)) and

(θ∗, t∗(θ∗)) such that

0 = Pn
∂

∂t
m (θ∗, t∗(θ∗)) +

[(
Pn

∂2

∂t2
m(θ∗, t∗(θ∗))

)T

,

(
Pn

∂2

∂θ∂t
m(θ∗, t∗(θ∗))

)T
]
an

+
1

2
aTnAnan,(6.12)

with

(6.13) an :=

((
t̂(θ̂)− t∗(θ∗)

)T
,
(
θ̂ − θ∗

)T)T
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and

(6.14) An :=

(
Pn

∂3

∂t3m(θ, c) Pn
∂3

∂t∂θ∂tm(θ, c)

Pn
∂3

∂θ∂t2m(θ, c) Pn
∂3

∂θ2∂tm(θ, c)

)
.

By condition 7(a) and the WLLN we have An = OP (1). So, we can write the last term in right
hand side of (6.12) as oP (1)an. On the other, we can write also[(
Pn

∂2

∂t2m(θ∗, t∗)
)T

,
(
Pn

∂2

∂θ∂tm(θ∗, t∗)
)T]

as

[
P0

∂2

∂t2m(θ∗, t∗),
(
P0

∂2

∂θ∂tm(θ∗, t∗)
)T ]

+oP (1) to ob-

tain from (6.12)

(6.15) − Pn
∂

∂t
m(θ∗, t∗) =

[
P0

∂2

∂t2
m(θ∗, t∗) + oP (1),

(
P0

∂2

∂θ∂t
m(θ∗, t∗)

)T

+ oP (1)

]
an.

In the same way, using a Taylor expansion in (E2), there exists (θ, t) inside the segment that links(
θ̂, t̂
)
and (θ∗, t∗) such that

0 = Pn
∂

∂θ
m(θ∗, t∗) +

[(
Pn

∂2

∂t∂θ
m(θ∗, t∗)

)T

,

(
Pn

∂2

∂θ2
m(θ∗, t∗)

)T
]
an

+
1

2
atnBnan,(6.16)

with

Bn :=

[
Pn

∂3

∂t2∂θm(θ, t) Pn
∂3

∂t∂θ2m(θ, t)

Pn
∂3

∂θ∂t∂θm(θ, t) Pn
∂3

∂θ3m(θ, t)

]
.

As in (6.15), we obtain

(6.17) − Pn
∂

∂θ
m(θ∗, t∗) =

[(
P0

∂2

∂t∂θ
m(θ∗, t∗)

)T

+ oP (1), P0
∂2

∂θ2
m(θ∗, t∗) + oP (1)

]
an.

From (6.15) and (6.17), we get

√
nan =

√
n




P0
∂2

∂t2m(θ∗, t∗)
(
P0

∂2

∂θ∂tm(θ∗, t∗)
)T

(
P0

∂2

∂t∂θm(θ∗, t∗)
)T

P0
∂2

∂θ2m(θ∗, t∗)




−1

×

×
(

−Pn
∂
∂tm(θ∗, t∗)

−Pn
∂
∂θm(θ∗, t∗)

)
+ oP (1).(6.18)

Denote S the (l + 1 + d)× (l + 1 + d)-matrix defined by

(6.19) S :=

(
S11 S12

S21 S22

)
:=




P0
∂2

∂t2m(θ∗, t∗)
(
P0

∂2

∂θ∂tm(θ∗, t∗)
)T

(
P0

∂2

∂t∂θm(θ∗, t∗)
)T

P0
∂2

∂θ2m(θ∗, t∗)


 .

Hence, we obtain

√
n

(
t̂(θ̂)− t∗

θ̂ − θ∗

)
=

√
nS−1

(
−Pn

∂
∂tm(θ∗, t∗)

−Pn
∂
∂θm(θ∗, t∗)

)
+ oP (1),

and the CLT concludes the proof.
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