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Novel Graphical Approach to Analyze the Stability of

TCP/AQM Networks
GE Long1, 2 FANG Bin1 SUN Jin-Sheng1 WANG Zhi-Quan1

Abstract In order to set controller parameters correctly, a graphical stability analysis approach for active queue management
(AQM) is proposed. The model of TCP/AQM is converted into a second-order system with time delay. The stability of the closed-
loop AQM system is described in terms of characteristic quasi-polynomial. New necessary and sufficient stability criterion is deduced
based on the inverse Nyquist curve and the negative frequency characteristic line. The relations between stabilizing boundary of
proportional gain in PID controller and network parameters are investigated. Different stabilizing regions are compared to show
the less conservatism of our approach, and simulation experiments implemented by both Matlab and Network Simulator validate
our analysis. The specialty of the proposed approach lies in the lower complexity of the calculation procedure and intuition in the
complex plane.
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It is well known that the transmission control protocol
(TCP) has a mechanism to adjust the packet sending rate
by probing the congestion. However, the end-to-end TCP
congestion control is not sufficient to provide satisfactory
performance in terms of overall quality of service (QoS).
Active queue management (AQM) plays a key role in the
intermediate router to complement the endpoint conges-
tion avoidance mechanism, which attempts to estimate the
congestion and signal the incipient congestion by mark-
ing/dropping packets before the buffer is full.

Random early detection (RED)[1] is the first well known
AQM algorithm, which aims to achieve fairness among
multi-sources and control the queue length to the desired
range. From the viewpoint of control theory, the AQM
scheme works as a feedback control law. It enables us to
use the control principles to analyze and design AQM con-
trollers in the network environment. This study is based on
the use of a dynamic model of TCP/AQM[2]. The Network
Simulator (NS) simulation demonstrates that this model
accurately captures the TCP′s dynamic behavior. In [3],
this nonlinear model was linearized at an operating point
to address the feedback control nature. Proportional (P)
and proportional-integral (PI) AQM controllers were in-
troduced by comparison to RED. In [4], structural nonlin-
ear component of RED was considered, and the describing
function approach was applied to obtain a stability criterion
for RED. In [5], an improved PI controller was proposed,
which adaptively adjusted the controller parameters based
on network parameters estimation.

In order to stabilize the network traffic system and
achieve the desired QoS, [6−11] paid much attention to
the setting of controller parameters. In [6], pole assign-
ment approach was adopted to obtain the higher utiliza-
tion and congestion avoidance. In [7], a stabilizing optimal
gain for proportional-integral-derivative (PID) controller
was constructed based on state space model. In [8−9],
PID controllers were designed analytically using H∞ op-
timal control theory. In [10−11], PID controllers were de-
signed based on the integral of time-weighted absolute error
(ITAE) and integral of absolute error (IAE) performance,
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respectively.
It is interesting to note that even though most of these

setting techniques provide effective results[6−11], the stabi-
lizing region of controller parameters for TCP/AQM model
with time delay remains unknown. The fact motivates this
paper. Our objective is to characterize the stabilizing re-
gion of PID controller to guarantee parameters in which
could stabilize the second-order system with time delay.
In earlier work, when the AQM controller is of P type,
in the case of delay-free marking, the system′s equilibrium
point is stable for all proportional gains. In a more realistic
case of delayed feedback, there exists a boundary for pro-
portional gain to guarantee the closed-loop AQM system
stability[12]. When the AQM controller is of PI type, the
stabilizing boundary of proportional gain has been given
by using a parameter space approach[13].

In this paper, when the AQM controller is of PID type, a
novel graphical stability criterion for closed-loop AQM sys-
tem is proposed, which is based on observing the inverse
Nyquist curve and the negative frequency characteristic line
in complex plane. The necessary and sufficient stability cri-
terion is employed to investigate the stabilizing boundary
of proportional gain directly, and its relations with the net-
work parameters are illuminated. The stabilizing region of
AQM controller in PID type is given in three-dimensional
graph. At last, comparisons and simulations are conducted
to prove our criterion.

1 TCP/AQM model

1.1 Simplified dynamics

A dynamic model of TCP behavior is developed based
on fluid-flow and stochastic differential equation[2], which
is difficult to deal with due to its complexity. The following
version ignores the TCP timeout mechanism[3].





Ẇ (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t))

q̇(t) =
N(t)

R(t)
W (t)− C(t)

(1)

where Ẇ (t) and q̇(t) denote the time-derivatives of W (t)
and q(t), respectively. W (t) denotes the TCP window size.
q(t) denotes the queue length in the router. p(t) denotes the
probability of packet marking/dropping (p(t) ∈ [0, 1]). R(t)
denotes the round-trip time, where R(t) = q(t)/C(t) + Tp.
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C(t) denotes the link capacity. Tp denotes the propaga-
tion delay. N(t) denotes the load factor (number of TCP
sessions).

Taking (W, q) as state variable and p as input, we de-

fine the operating point (W0, q0, p0) as Ẇ (t) = 0, q̇(t) = 0.

That is, W0 =
R0C

N
, p0 =

2

W 2
0

. Using linearization tech-

niques near the operating point of the nonlinear differential
equation (1), we obtain a linear differential equation of the

TCP/AQM model[3].





δẆ (t) = − N

R2
0C

(δW (t) + δW (t−R0))−
1

R2
0C

(δq(t)− δq(t−R0))− R0C
2

2N2
δp(t−R0)

δq̇(t) =
N

R0
δW (t)− 1

R0
δq(t)

(2)
where δW = W −W0, δq = q − q0, δp = p− p0.

For typical network conditions[3]
N

R2
0C

=
1

W0R0
¿ 1

R0
,

we just consider the following dynamics.





δẆ (t) = − 2N

R2
0C

δW (t)− R0C
2

2N2
δp(t−R0)

δq̇(t) =
N

R0
δW (t)− 1

R0
δq(t)

(3)

Performing Laplace transform on (3), we have

GTCP(s) =

R0C
2

2N2

s +
2N

R2
0C

e−sR0 (4)

Gqueue(s) =

N

R0

s +
1

R0

(5)

where GTCP(s) denotes the TCP′s dynamic, and Gqueue(s)
denotes the queue′s dynamic. The block diagram of the
AQM system presents as Fig. 1.

Fig. 1 Block diagram of the AQM system

1.2 Characteristic quasi-polynomial

Consider the closed-loop AQM system with G(s) being
the transcendental function of the plant and C(s) being the
transfer function of the controller.

G(s) = GTCP(s)Gqueue(s) =
P (s)

Q(s)
e−τs (6)

where P (s) = k, Q(s) = (s + T1)(s + T2), k =
C2

2N
, T1 =

2N

R2
0C

, T2 =
1

R0
, τ = R0. As the network parameters

{N, C, R0} are positive, the model parameters {k, T1, T2, τ}
are positive.

C(s) = kp +
ki

s
+ kds (7)

The closed-loop AQM system is a second-order system
with time delay, whose characteristic equation is

1 + C(s)G(s) = 0 (8)

and characteristic quasi-polynomial is

∆(s) = s(s + T1)(s + T2) + k(ki + kps + kds2)e−τs (9)

Multiplying both sides of (9) by eτs yields

∆∗(s) = s(s + T1)(s + T2)e
τs + k(ki + kps + kds2) (10)

As eτs does not have any finite zeros, the zeros of ∆(s)
are identical to those of ∆∗(s). The characteristic quasi-
polynomial ∆(s) of the closed-loop AQM system is stable
if and only if the zeros of ∆∗(s) are in open left hand plane
(LHP). Then, ∆∗(s) is defined as Hurwitz or stable.

The problem of stability verification for linear system
with time delay involves finding the location of the roots
of transcendental functions. The classical method is the
Nyquist criterion. However, for the analytical characteriza-
tion of the stabilizing gain, we have to deal with non-linear
inequalities.

To determine the region of controller parameters for the
closed-loop AQM system to be stable, a novel graphical
stability criterion will be deduced in next section.

2 Graphical stability criterion

2.1 Extended Hermite-Biehler theorem

Consider a class of linear system with time delay, which
has characteristic function described by a quasi-polynomial
with the form

δ(s) = d(s) +

m∑
i=1

e−sTini(s) (11)

where d(s), ni(s) for i = 1, · · · , m are polynomials with real
coefficients, and 0 < T1 < T2 < · · · < Tm.

Substituting s = jω into (11), we have

δ(jω) = δr(ω) + jδi(ω) (12)

where δr(ω) and δi(ω) represent the real and imaginary
parts of the transcendental function associated with quasi-
polynomial (11), respectively. The Hermite-Biehler theo-
rem is extended as follows.

We make the following assumptions.
Assumption 1. Deg[d(s)] = n, Deg[ni(s)] < n for i =

1, · · · , m.
Assumption 2. d(s) and ni(s) for i = 1, · · · , m are

coprime polynomials.
Lemma 1[14]. Consider quasi-polynomial (11). Under

Assumption 1, δ(s) has all zeros in the open left half plane
if and only if

1) δr(ω) and δi(ω) have only real roots and these roots
interlace;

2) δ′i(ω0)δr(ω0) − δi(ω0)δ
′
r(ω0) > 0 for some ω0 in

(−∞, +∞), where δ′r(ω) and δ′i(ω) denote the first deriva-
tives with respect to ω of δr(ω) and δi(ω), respectively.

Remark 1. Condition 2) of Lemma 1 depicts the char-
acteristic of δ(s) in complex plane. Phase angle of δ(jω)
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increases with ω monotonically. A crucial step to use
Lemma 1 to check stability is to ensure that δr(ω) and
δi(ω) have only real roots. This condition is inconvenient
to use. So, we have Lemma 2.

Lemma 2[15]. Consider real transcendental functions
δr(ω) and δi(ω) in (12). Let M and N denote the highest
powers of s and es of δ(s) in (11), respectively. Let η be an
appropriate constant such that the coefficients of terms of
highest degree in δr(ω) and δi(ω) do not vanish at ω = η.
For the equations δr(ω) = 0 or δi(ω) = 0 to have only real
roots, it is necessary and sufficient that in the intervals

[−2Lπ + η, 2Lπ + η], L = 1, 2, 3, · · ·
δr(ω) and δi(ω) have exactly 4LN + M real roots starting
with sufficiently large L.

Lemma 3[14]. Consider quasi-polynomial (11). Under
Assumptions 1 and 2, there exists ω0 ∈ (0, +∞) such that
δr(ω) and δi(ω) in (12) have only simple real roots and
these roots interlace for ω > ω0.

Remark 2. Lemma 3 illuminates that for ω > ω0, where
ω0 is sufficiently large, under Assumptions 1 and 2, roots
of δ(s) in (11) interlace, whether it is stable or not.

2.2 Stability criterion based on inverse Nyquist
curve

We rewrite ∆∗(s) in (10) as

δ(s) = sQ(s)eτs + (ki + kps + kds2)P (s) = 0 (13)

Substituting z = τs into (13), we have

δ(z) = zQ1(z)ez +(ki +kpτ−1z +kdτ−2z2)P1(z) = 0 (14)

where Q1(z) = 1
τ
Q( z

τ
) and P1(z) = P ( z

τ
).

Substituting z = jωz into (14), we have

δ(jωz) = δr(ωz) + jδi(ωz) (15)

Lemma 4. Consider quasi-polynomial (14). For δ(z) to
be stable, it is necessary and sufficient that in the intervals

ωz ∈ [−2Lπ +
π

4
, 2Lπ +

π

4
], L = 1, 2, 3, · · ·

δr(ωz) and δi(ωz) have exactly 4L + 3 real roots and these
roots interlace, with sufficiently large L.

Proof. Consider the reciprocal of G(s) in (6),

Ḡ(s) =
1

G(s)
=

Q(s)

P (s)
eτs (16)

Substituting s = jω into (16), we have

Ḡ(jω) =
1

G(jω)
=

Q(jω)

P (jω)
ejτω = |Ḡ(jω)|ejϕ(ω) (17)

where |Ḡ(jω)| =
|Q(jω)|
|P (jω)| and ϕ(ω) = ∠Q(jω) − ∠P (jω) +

τω.
From (6), we have P (jω) = k and Q(jω) = (jω+T1)(jω+

T2). It follows that |P (jω)| = k and ∠P (jω) = 0 are con-
stants. |Q(jω)| increases monotonically, and ∠Q(jω) seems
to be a constant for ω > ω0, with sufficiently large ω0.
As τ is positive, τω increases linearly with ω. So, there
exists a sufficiently large ω0 such that |Ḡ(jω)| and ϕ(ω) in-
crease monotonically with ω for ω > ω0. It means that the

Nyquist curve of Ḡ(jω) is a helix encircling the origin anti-
clockwise for ω > ω0. It satisfies the phase angle condition
2) in Lemma 1.

δ(z) in (14) satisfies Assumptions 1 and 2. According to
Lemma 3, there exists ω0 ∈ (0, +∞) such that δr(ωz) and
δi(ωz) have only simple real roots and these roots interlace
for ω > ω0 (ωz > ωz0).

Then, we find a sufficiently large ω0 such that two con-
ditions above are satisfied at the same time. According to
Lemma 1, for δ(z) to be stable, it is necessary and sufficient
that δr(ωz) and δi(ωz) have only real roots and these roots
interlace for ω < ω0.

For δ(z) in (14), from Lemma 2, we have M = 3, N =
1, η = π/4. The coefficients of terms of highest degree in
δr(ω) and δi(ω) do not vanish at ω = π/(4τ) (ωz = π/4).
For δr(ωz) and δi(ωz) to have only real roots, it is necessary
and sufficient that in the intervals

ωz ∈ [−2Lπ +
π

4
, 2Lπ +

π

4
], L = 1, 2, 3, · · ·

δr(ωz) and δi(ωz) have exactly 4L + 3 real roots with suf-
ficiently large L, where 2Lπ + π/4 > ω0. ¤

Definition 1. The inverse Nyquist curve (INC) of plant
G(jω) is defined as the Nyquist curve of Ḡ(jω), where

Ḡ(jω) =
1

G(jω)
.

Definition 2. The negative frequency characteristic line
(NFCL) of controller C(jω) is defined as Re[−C(jω)] =

−kp, where C(jω) = kp +
ki

jω
+ kdjω.

Theorem 1. Plot the INC of AQM plant in (6) and the
NFCL of PID controller in (7), for ω ∈ [0, (2Lπ + π/4)/τ ].
For the characteristic quasi-polynomial of the closed-loop
AQM system to be stable, it is necessary that the two
curves have exactly M0 intersections, where

M0 = 2L + 1 (18)

Proof. Substituting s = jω into (7) and (8), we have

−C(jω) = −kp + j(
ki

ω
− kdω) (19)

−C(jω) =
1

G(jω)
= Ḡ(jω) (20)

From (17), (19) and (20), it follows that

−kp + j(
ki

ω
− kdω) =

(jω + T1)(jω + T2)

k
ejτω (21)

The real and imagery parts of left hand side and right hand
side of (21) are equal, respectively.

Re[Ḡ(jω)] = Re

[
(jω + T1)(jω + T2)

k
ejτω

]
=

1

k
[(T1T2 − ω2) cos(τω)− (T1 + T2)ω sin(τω)] =

Re[−C(jω)] = −kp (22)

Im[Ḡ(jω)] = Im

[
(jω + T1)(jω + T2)

k
ejτω

]
=

1

k
[(T1T2 − ω2) sin(τω) + (T1 + T2)ω cos(τω)] =

Im[−C(jω)] =
ki

ω
− kdω (23)
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From Definitions 1 and 2, intersections of the INC and
the NFCL are just real roots of δr(ωz). These intersections
satisfy Re[Ḡ(jω)] = Re[−C(jω)]. As non-negative real zeros
of δr(ωz) are considered, we just need parts of the INC of
G(jω) for ω ∈ [0, +∞).

When δ(z) in (14) is stable, according to Lemma 4,
δr(ωz) and δi(ωz) have exactly 4L + 3 real roots for ωz ∈
[−2Lπ + π/4, 2Lπ + π/4], and these roots interlace. As
ωz = 0 is a zero of δi(ωz), zeros of δr(ωz) and δi(ωz)
interlace meanwhile ωz = τω, it follows that δr(ωz) has
M0 = 2L + 1 real roots and δi(ωz) has M0 + 1 real roots
for ω ∈ [0, (2Lπ + π/4)/τ ]. ¤

Theorem 2. Define the intersections in Theorem 1 as
ω1, ω2, · · · , ωM0(0 = ω0 < ω1 < ω2 < · · · < ωM0). For
the characteristic quasi-polynomial of the closed-loop AQM
system to be stable, it is necessary and sufficient that (24)
has feasible solution and M0 = 2L + 1.





Im[−C(jω0)] ≥ Im[Ḡ(jω0)]

Im[−C(jω1)] ≤ Im[Ḡ(jω1)]
...

Im[−C(jωM0)] ≤ Im[Ḡ(jωM0)]

(24)

Proof. That inequality (24) has feasible solution means

that real roots of δr(ωz) and δi(ωz) interlace[15]. The num-
ber of zeros of δr(ωz) is M0 = 2L+1, and ω0 = 0 is a zero of
δi(ωz). So, δr(ωz) and δi(ωz) have M0+M0+1 = 4L+3 real
roots for ω ∈ [0, (2Lπ + π/4)/τ ]. According to Lemma 4,
it is the sufficient condition for δ(z) in (14) to be stable.

When δ(z) in (14) is stable, according to Lemma 4,
δr(ωz) and δi(ωz) have exactly 4L + 3 real roots and these
roots interlace. From Theorem 1, we have M0 = 2L + 1.
For these roots interlace, inequality (24) must have feasible
solution. ¤
2.3 Graphical approach

In Theorem 1, boundaries of the INC are given by ω = 0
and ω = (2Lπ + π/4)/τ mathematically. We will convert
them to key points in the complex plane.

Definition 3. Let ω = 0 and ω = (2Lπ + π/4)/τ in
(22), respectively. The first kind of key points are defined
as

kA1 = −Re[Ḡ(jω)]|ω=0 = −T1T2

k
(25)

kA2 = −Re[Ḡ(jω)]|ω=(2Lπ+ π
4 )/τ (26)

Definition 4. For ω ∈ [0, (2Lπ + π/4)/τ ], let
dRe[Ḡ(jω)]

dω
|ω=ωi = 0 in (22). The second kind of key

points are defined as

kBi = −Re[Ḡ(jω)]|ω=ωi , i = 1, 2, 3, · · · (27)

Remark 3. Using (27) to calculate kBi is a little com-
plicated. Bi is in nature the inflexion of Re[Ḡ(jω)] with
respect to ω in the complex plane. At the same time, A1 is
the starting point, and A2 is the ending point of the INC
of G(jω) for ω ∈ [0, (2Lπ + π/4)/τ ].

With the help of Definitions 3, 4 and Remark 3, we could
describe Theorems 1 and 2 in a graphical approach as fol-
lows.

Corollary 1. In the complex plane, for ω ∈
[0, (2Lπ + π/4)/τ ], we plot the INC of AQM plant in (6)
to find out the first and the second kinds of key points
{kA1, kA2, kBi}, i = 1, 2, 3, · · · . We plot the NFCL of PID

controller in (7) to make sure that the INC and NFCL have
exactly M0 = 2L + 1 intersections for any kp ∈ [kp1, kp2],
where kp1 and kp2 belong to the key points. For the char-
acteristic quasi-polynomial of the closed-loop AQM system
to be stable, it is necessary that kp belongs to [kp1, kp2].
The region [kp1, kp2] is defined as interested region of pro-
portional gain.

Corollary 2. In the complex plane, for any kp that
belongs to interested region of proportional gain in Corol-
lary 1, we plot lines Im[−C(jωi)] = Im[Ḡ(jωi)], i =
0, 1, · · · , M0 in (23). We could find a region for {ki, kd}
that satisfies (24). For the characteristic quasi-polynomial
of the closed-loop AQM system to be stable, it is necessary
and sufficient that {kp, ki, kd} locates in this region. This
region is defined as stabilizing region of controller parame-
ters.

3 Stabilizing boundaries

3.1 Stabilizing region of controller parameters

Take the network parameters N = 60, C =
3 750 packets/s, and R0 = 0.25 s. It follows from (6) that

G(s) =
117187.5

(s + 0.512)(s + 4)
e−0.25s (28)

Let x = Re[Ḡ(jω)] in (22), y = Im[Ḡ(jω)] in (23). From
Definition 1, we plot the INC of AQM plant (28) in Fig. 2.
We find that the real roots of δr(ω) = 0 and δi(ω) = 0
alternate along the direction of increasing ω. Between every
two zeros of δi(ω), there exists exactly one zero of δr(ω).

In order to analyze the stability of the characteristic
quasi-polynomial of the closed-loop AQM system, we pay
more attention to the part of the INC shown in Fig. 3, which
is a zoomed-in version of Fig. 2 for ω ∈ [0, (2π + π/4)/τ ].
We mark out the first kind of key points A1, A2 and the
second kind of key points B1, B2, B3.

Fig. 2 The inverse Nyquist curve of the AQM system

In Fig. 3, from Definition 2, we find that if and only if the
NFCL of PID controller locates between A1 and B1, there
will be 3 intersections (L = 1). Two dashed lines denote
x = −kp1 = 1.7476×10−5 and x = −kp2 = −2.5501×10−4,
respectively.

From Corollary 1, the interested region of proportional
gain is given by kp ∈ [kp1, kp2]. For the close-loop AQM
system to be stable, it is necessary that proportional gain
locates in this region.

From Corollary 2, for any kp0 ∈ (kp1, kp2), we plot the
NFCL of PID controller x = −kp0. There will be 3 inter-
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sections, named as ω1, ω2, ω3 (0 < ω1 < ω2 < ω3). From
(23), for i = 0, 1, 2, 3, we plot lines

ki

ωi
−kdωi =

1

k
[(T1T2 − ω2

i ) sin(τωi) + (T1 + T2)ωi cos(τωi)]

(29)
From (24), we have

ki

ω0
− kdω0 ≥ 1

k
[(T1T2 − ω2

0) sin(τω0) + (T1 + T2)ω0 cos(τω0)]

ki

ω1
− kdω1 ≤ 1

k
[(T1T2 − ω2

1) sin(τω1) + (T1 + T2)ω1 cos(τω1)]

ki

ω2
− kdω2 ≥ 1

k
[(T1T2 − ω2

2) sin(τω2) + (T1 + T2)ω2 cos(τω2)]

ki

ω3
− kdω3 ≤ 1

k
[(T1T2 − ω2

3) sin(τω3) + (T1 + T2)ω3 cos(τω3)]

(30)

There exists a region for {ki, kd} satisfying (30), which is
defined as the stabilizing region of {ki, kd}.

Fig. 3 Interested boundary of proportional gain

For kp0 = 0.5 × 10−4, 1 × 10−4, 1.5 × 10−4, 2 × 10−4,
and 2.5 × 10−4, respectively, using (29) and (30), we plot
the stabilizing regions of {ki, kd} in Fig. 4. We conclude
that with a fixed proportional gain, the stabilizing region
of {ki, kd} is a triangle. Traversing over the proportional
gain in interested region [kp1, kp2], we could confirm that
the entire stabilizing region of {kp, ki, kd} is a polyhedron,
with cross section being triangle.

We can find out the traversing boundary of proportional
gain based on Corollary 1. That is kp ∈ [kp1, kp2] in Fig. 3.
Compared to those methods whose traversing boundary is
given by empiricism in large scope, the proposed approach
consumes lower complexity of calculation procedure to ob-
tain the stabilizing region of {kp, ki, kd}.

Fig. 4 Stabilizing region of controller parameters

3.2 Stabilizing boundary′s relations with network
parameters

In the following, we turn our attention to analyzing the
relations between stabilizing boundary of the proportional
gain in PID controller and the network parameters.

Take network parameters C = 3750 packets/s and R0 =
0.25 s. N ranges from 40 to 300. For different N , we plot
the INC, and mark out two kinds of key points. Then,
we plot lines in (29) and check the stabilizing boundary
of proportional gain by (30). Using the stability criterion
given in previous sections, we confirm that the region be-
low the curve kpmax corresponds to the stabilizing region
of kp shown in Fig. 5 (a), and we find that the stabilizing
boundary of kpmax increases approximately linearly with
N .

(a) Stabilizing region of kp for different N

(b) Stabilizing region of kp for different C

(c) Stabilizing region of kp for different R0

Fig. 5 Stabilizing regions of kp for different network
parameters (The stabilizing region is below the curve.)
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In the same way, N = 60 and R0 = 0.25 s. C ranges
from 1 500 to 5 000 packets/s. The stabilizing region of kp

is shown in Fig. 5 (b). Then, N = 60, C = 3750 packets/s,
R0 ranges from 0.1 to 0.25 s. The corresponding stabilizing
region of kp is shown in Fig. 5 (c). From these two curves,
we find that stabilizing boundary of kpmax decreases ap-
proximately in inverse proportion with C and R0, respec-
tively.

3.3 Stabilizing boundary comparison

Result comparisons between ours and the ones in [13, 16]
were conducted. Reference [13] discussed stabilizing pro-
portional gain of the PI controller by Jacobi matrix in pa-
rameter space. Reference [16] gave the delay-dependent
stability criterion using the Lyapunov sufficient condition.
The proportional gain regions are estimated in Table 1, as
functions of round-trip time delay.

From Table 1, we find that the smallest proportional gain
region is given by [16] based on Lyapunov criterion, which
is a sufficient condition for system to be stable. Although
[13] gives a necessary and sufficient condition based on pa-
rameter space, the result is conservative for its controller is
of PI type C(s) = kpi(1 + 1

Tis
), which gives the stabilizing

boundary of kpi with a fixed integral time constant Ti in
two-dimensional plane.

It is clear that our result is less conservative than those
in [13, 16]. Two reasons explain its superiority: 1) Our
approach is based on a necessary and sufficient condition;
2) Our controller is of PID type C(s) = kp + ki/s + kds,
which gives the stabilizing boundary of kp, ki and kd in
three-dimensional space. As derivative element is adopted,
stabilizing region of proportional gain for close-loop AQM
system stable is extended.

Table 1 Comparison of stabilizing proportional gains between
the results in [13, 16] and the proposed approach

R0(s)(×10−4) 0.20 0.25 0.30 0.35

In [16] 2.6314 1.5920 1.0546 0.7425

In [13] 2.7176 1.6412 1.0857 1.0857

Proposed 4.0690 2.5501 1.7462 1.2701

4 Simulation

4.1 Simulation in Matlab

To verify the stabilizing region, we conducted simula-
tions by Matlab. The AQM plant and network parameters
are given in (28). The controller is of PID type with pa-
rameters {kp, ki, kd}.

In Fig. 4, setting kp0 = 1 × 10−4, we obtain the sta-
bilizing region of {ki, kd} in a triangle graph. Setting
kd0 = 0.5× 10−4, we obtain the stabilizing boundary of ki,
ki ∈ [0, 5.1× 10−4]. Let ki0 = 2 × 10−4, ki1 = 5.1 × 10−4,
and ki2 = 10× 10−4. We obtain three groups of controller
parameters. {kp0, ki0, kd0} locates inside the stabilizing re-
gion, {kp0, ki1, kd0} locates on the stabilizing boundary, and
{kp0, ki2, kd0} locates outside the stabilizing region.

With these three groups of controller parameters, we
picture the step responses of δq in Fig. 6, respectively.
We find that {kp0, ki0, kd0} controls the output conver-
gence, {kp0, ki1, kd0} controls the output flapping, and
{kp0, ki2, kd0} controls the output flapping divergence. The
result has validated our analysis.

Fig. 6 Step responses of δq for different PID parameters

4.2 Simulation in NS

To verify the stabilizing region in network environment,
we conducted nonlinear simulations by NS, using the net-
work topology depicted in Fig. 7.

Fig. 7 Simulation network topology

Si (i = 1, · · · , n) are TCP senders with average packet
size being 1 000 Bytes. Sd is a UDP sender which has
3 Mbps capacity and 30ms propagation delay, generating
the realistic traffic scenarios. The only bottleneck link
lies between Router A and Router B, which has 30Mbps
capacity and 25ms propagation delay. Other links have
30 Mbps capacity and 30ms propagation delay. Router A
uses the PID controller to implement active queue manage-
ment, others use the Drop Tail. The sampling frequency
is 160Hz. The buffer size is 1 125 packets and the desired
queue length is 300 packets, giving 80 ms queuing delay. To-
gether with the propagation delay of 170ms, the round-trip
time delay is about 250ms. The simulation lasted for 200 s,
and the UDP started sending packets as CBR disturbance
at time t = 100 s.

Experiment results are illustrated in Figs. 8 and 9. As
one of the controller parameters inside the stabilizing re-
gion, {kp0, ki0, kd0} regulates the queue length to the de-
sired 300 packets pictured in Fig. 8 (a). Fig. 8 (b) shows
a little oscillation in the case of controller parameters
{kp0, ki1, kd0} on the stabilizing boundary, when it is crit-
ically stable. Fig. 8 (c) shows significant oscillation in the
case of {kp0, ki2, kd0} outside the region, when it is unsta-
ble.

Fig. 9 shows the drop probabilities corresponding to the
above conditions. When it is stable, the drop probabil-
ity remains around 0.005, as shown in Fig. 9 (a). When it
is critically stable, the drop probability fluctuates under
0.01, as shown in Fig. 9 (b). When it is unstable, the drop
probability oscillates between 0 and 0.02 significantly, as
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shown in Fig. 9 (c).

(a) {kp0, ki0, kd0} inside the stabilizing region

(b) {kp0, ki1, kd0} on the stabilizing boundary

(c) {kp0, ki2, kd0} outside the stabilizing region

Fig. 8 Instantaneous queue lengths for different PID
parameters

5 Conclusion

This paper discusses the stability characteristic of
TCP/AQM networks using the PID controller. It is based
on the necessary and sufficient stability criterion developed
in complex plane. The stabilizing region of AQM controller
in PID type is given. The relations between stabilizing
boundary of proportional gain and network parameters are

(a) {kp0, ki0, kd0} inside the stabilizing region

(b) {kp0, ki1, kd0} on the stabilizing boundary

(c) {kp0, ki2, kd0} outside the stabilizing region

Fig. 9 Instantaneous drop probabilities for different PID
parameters

illuminated. Simulation experiments conducted by Matlab
and NS have validated our criterion. Comparison results
show that our approach is less conservative than the pre-
vious ones. Excellence of the proposed method lies in the
lower complexity of the calculation procedure and intuition
in the complex plane. In this paper, we have just consid-
ered a simplified version of TCP/AQM model for facility.
For a complete model, we will carry on the research in our
future work.
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