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Intrinsic Equations for a Relaxed Elastic Line on an

Oriented Hypersurface in the Minkowski Space R}

N. Girbiz and A. Gorguili

Abstract
We gived the intrinsic equations for a relaxed elastic line on an oriented surface
in B ([1],]2]).
In this paper, we derived the intrinsic equations for a relaxed elastic line on an
oriented time-like hypersurface and space-like hypersurface in the Minkowski space
T and gived additional results about relaxed elastic lines on various timelike and

spacelike hypersurface in the Minkowski space RT.
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1. Introduction

In this section, we give some fundamental definitions and theorems.

Definition 1.1. Let o denote an arc on a connected oriented hypersurface M in R}
parametrized by arc length s, 0 < s <. Let k;(s) be the curvature of the first curvature
of a(s). The first total square curvature K of o in R is defined by

l

K:/k%ds. (1.1)

0

Definition 1.2. The arc « is called a relaxed elastic line if it is an extremal for the
variational problem of minimizing the value of K within the family of all arcs of length [

on M having the same initial point and initial direction as « in the Minkowski space R7.
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Definition 1.3. On an n X n matrix, the following conditions are equivalent:

(1) geOy(n)

(2) g' =egle

(3) The columns(rows) of g form an orthonormal basis for R? (first v vectors are
timelike).

(4) g carries one (hence every ) orthonormal basis for R?” to an orthonormal basis [3].

Definition 1.4. Let M be a pseudo-Euclidean hypersurface in R} and a curve «
which lies on M. Apart from the Frenet vector field system {Vi, Va, V3..., V;,_1, V,, }, there
is also exist a second orthonormal vector field system {V4,...,V,,_1, N} at every point of
the curve a. At a point a(s) of a,let Vi(s) = a'(s) denote the unit tangent vector to
a, let N(s) denote the unit hypersurface normal to M. {Vi,...,V,,_1, N} gives a basis
for all vectors at a(s) and {V4,...,V,_1, N} gives a basis for the vectors tangent to M
at a(s). Let II denote the second fundamental form of M. The orthonormal system

{WV1,...,; Va1, N} is called natural frame field for hypersurface strip (o, M) .

Definition 1.5. Let M be a pseudo-Euclidean hypersurface in R} and a curve a be

a curve on M. Then, for each i, 1 <i < n — 1, the function

kig: ICR — R

defined for se I by

hig(s) =< V{(5), Viga(s) >

is called the i geodesic curvature function of the curve o and k;,(s) is called the i

geodesic curvature of the curve o at a(s) in RY.

Theorem 1.1. Let M be a pseudo-Euclidean hypersurface in R} and « denote an

arc on M. The derivative formulas of orthonormal vector field system {V4,...,V,_1, N} is
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‘/1/ 0 Egk’lg 0 0 Enal ‘/1
Vg —Elk’lg 0 Egk’gg 0 Ena2 ‘/2
vV, 0 0 0 .. 0 Enln_1 Vi,
N’ —€1a1 —E&g902 —E€3a3 ... —E(n_l)an_l 0 N

where k;4 is the ith geodesic curvature funtion,
a; =II(Vi,Vi),1<i<n—1

and

<‘/1;‘/1 >:Ela<‘/2;‘/2 >= &2 ;"';<N;N>:ETL'

2. Obtaining the Equations

Now, assume that « lies in a coordinate patch (uq,...,up—1) — (U1, ..., up—1) Of

ox ox Ox
M and let x4, = =—, Tuy = =—> -, Tu, ;, = =—— . Then « is expressed as
Oouy Oug Ot —1

a(s) = x (ur(s), ua(s), us(s), ..., un—1(s)), 0<s<1

with

and

VQ(S) = pl(s)xul +p2(5)xm + .. +pn—1(5)xun71
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for suitable scalar functions p1(s), p2(8),....Pn—1(8).

Next, we must define variational fields for our problem. In order to obtain variational
arcs of length [, it is generally necessary to extend a to an arc a* defined for 0 < s < [*,
with {* > [, but sufficiently close to [ so that a* lies in the coordinate patch. Let p(s),

0 < s <I*, be a scalar function of class C™~!, not vanishing identically. Define

n(s) = p(s)pi(s) , m2(s) = pu(s)p5(8); -+ Nu—1(s) = p(s)pr_1(s).
Then, along a
11(8) 2y + 12(8) Ty + oo + Dn1(8) 2, = pu(s)Va(s). (2.1)

Assume also that

Now define
Blo;t) =z (ur(o) + tm (o), ..., un—1(0) + tnn_1(0)), (2.3)

for 0 < o < I*. For |t| < € (where ¢ > 0 depends upon the choice of a* and of p), the
point G(c;t) lies in the coordinate patch. For fixed ¢, 3(co;t) gives an arc with the same
initial point and initial direction as «, because of (2.2). For ¢t = 0, 8(c;0) is the same as
a* and o is arc length. For ¢ # 0, the parameter ¢ is not arc length in general.

For fixed ¢, |t| < &, let L*(¢) denote the length of the arc 5(c;¢),0 < o < 1*. Then

L) =Jﬂ<%<a;t>,%<a;t>>

do (2.4)

with
L*(0)=10" > 1. (2.5)

It is clear from (2.3) and (2.4) that L*(¢) is continuous. In particular, it follows from
(2.5) that

I+

L*(t) > >, (It] <ex) (2.6)
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for a suitable e, satisfying 0 < e, < e, Because of (2.6), we can restrict 8(o;t), 0 < [t] <
g4, to an arc of length ! by restricting the parameter o to an interval 0 < o < A(t) < I*,

by requiring

A(t) 8ﬁ 8ﬁ
0

Note that A(0) = I. The function A(¢) need not be determined explicitly, but we shall

need

X
dt

ZEl/MkilgdS. (28)
t=0 rd

The proof of (2.8) and of other results below will depend on calculations from (2.3) such

as
0
o5 =W, 0<o<lI (2.9)
o |,_g
which gives
0*p /
) = ‘/1 = EQk’lg‘/Q +epa1N. (2.10)
2l P
Also, it follows from (2.1) that
9P
— = uVs. 2.11
ot |, Kva ( )

Using (2.1), the second differentiation of (2.11) gives

0?3
otdo |,_,

= —e1pkigVi + W'Va + e3pikogVs + eqpaoN (2.12)

and the third differentiation of (2.11) gives
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% . = (—2e14/'k1g — e1pkl, — c16nparaz) Vo
+ (u" — Eleguk%g — 5253uk§g — e2eppa3) Vo
+ (2230 kog + €31k — e3enpazaz) Vs (2.13)
+(5354uk;2gk:3g — €4Enpa2aq)Vy
—(esenpasasVs + csenprazacVe + ... + en_16p 10207 —1Vn_1)

+(—e16n k1901426 1 a2 + €36n ftkagas + €npal)N.

To prove (2.8), differentiate (2.7) with respect to ¢, remembering that [ is constant,
and evaluate at t=0 using (2.9) and (2.12), with A(0) = [.

l (5], 5.
@ % - +/ 82ﬁ 80’ f/:07 80’ t=0 ds — 0
tl—o 90 |,_g 80 1o O000t|,_, B op
’ % t:07 % t=0

Now, let K(t) denote the total square curvature of the arc 8(o;t), 0 < o < A(t),

|t| < ex. Since o is not generally arc length for ¢ # 0, the total square curvature is ,

A(t) |< (o t)/\ B (o,t) 65(0 t)/\M(U t) | 1/2
) _5
K(t)— ‘Of |< (Ut),aﬁ(gt) ‘<8 ) 580 (U t)>‘ dO'

A necessary condition for « being extremal is that K’(0) = 0 for arbitrary u satisfying
(2.2). In calculating K'(t), we give explicitly only those terms which do not vanish for

0’8 0B

t = 0. The omitted terms are those with a factor { ——, —
0c2’ do

>, which vanishes at ¢t = 0,

288



GURBUZ, GORGULU

since < V{, V] >= 0. Thus

oo dx /0 ap\|T*?| /028 %8
e E{K%@ ‘<@’@>\} o
A(H) 98 o8
Ty (g el alye o
N 90’ 9o 9tdo’ 0o/ /OB 9B\ |\do2 902 /|7
0 0o’ do
A(®) o8 928
) ap ap\|"*"* ) & & <aa2’aa2>d N
+ / <aa’aa> <ataa2’aa2> 23 925\ 0t
0 (5 57)

Using (2.8), (2.9), (2.12) and (2.10), we find

!
K'(0) = & {Mklgds {|52k%g + E"aﬂ}g:)\(o)

! |52k3%g +5na%|

2 [k " — e1eopk? — eoesuk?, — e9e, a3
+ { 1g(u 1E2URT 283K, 2En I 2) Egk/’%g-i-{fna%

! / / |52k%9 + E"aﬂ
+2 f a1 (—Elenuklgal + 2ep i as + e3en pikagas + enpab) ﬁds
0 g2k, +enay

l
+3e1 f kg |52k:%g + Enaﬂ ds.
0

(2.14)
However, with integration by parts and (2.2),
l l
2/M”klgds =24/ (D)k1g(1) — 2u(1) K (1) + Q/Mk:'l'gds (2.15)
0 0
and
l l l
4/u'a1a2ds = 4pu(l)ay (1)az(1) —4/ua'1a2ds —4/ua1a'2ds. (2.16)
0 0 0
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2.1. Intrinsic equations for a relaxed elastic line on a timelike hypersurface
If Vi is timelike, V5, V3, ..., V,,_1 and N are spacelike then
<‘/1)‘/1>:351:_1) <‘/2)‘/2>252:1)"')<N)N>:ETL:1'
In the case of kz%g > a?,

|e2k?, + enal| = k3, + ai. (2.17)

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16) and (2.17) in (2.14), we find

!
K'(0)= [ p{2kY, — 20105 — 4aga) + 2kzga1a3
0
+kig (—k:%g(l) —a3(l) — kz%g —a? — 2k:§g — 2a§)}ds
24 (kg (1) — 200K o (1) + Apu(D)as (Daz ().
In order that K’(0) = 0 for all choices of the function u(s) satisfying (2.2), with

arbitrary values of u(l) and p/(1), the given timelike arc o must satisfy two boundary

conditions and differential equation:

(1) k’lg(l) =0
(2)  ki,() = 2a1(D)az(l)

(3) 2Ky, — 2a1a5 — 4aya) + 2kagaraz

+kig (—ai(l) — ki, — a} — 2k3, — 2a3) = 0.

(2.18)

2.2. Intrinsic equations for a relaxed elastic line on an spacelike hypersurface

If V1, Vi, ..., Vi, is spacelike and N is timelike,

i) In the case of kz%g <a?
|2k, + enal| = —k3, + af (2.19)

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16)and (2.19) in (2.14), K’'(0) can be

written as
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!
K'(0)= [ p{—2k{, — 2a1a}, — 4aza} + 2kzga1a3
0

+kig (—k:2 (1) + a3(l) — kzlg +a? +2k:2g 2a§)}ds
=24 (kg (1) + 20()k1 (1) + 4pl)ar (Daz(1).

In order that K’(0) =

0 for all choices of the function p(s) satisfying (2.2), with

arbitrary values of u(l) and p'(l), the given timelike arc o must satisfy two boundary

conditions and differential equation

ii) In the case of ki, > af

Substituting (2.8), (2.9),

written as

kig(l) =0
16(1) = —2a1(l)az(1) (2.20)
—2k{, — 2a1a5 — 4aya) + 2kagaiaz
+kg (af(l) — k3, + af + 2k3, — 2a3) = 0.
|e2k?, + enal| = k3, — ai. (2.21)

(2.12), (2.13), (2.15), (2.16)and (2.21) in (2.14), K’(0) can be

f p{ 2k, + 210} + dazal — 2kz4a1a3

+k:1g (kzlg(l) —a3(l) + kz%g —a? — 2k:§g + 2a%)}ds
o (kg (1) — 200K o (1) — Apu(D)as (Daz().

In order that K’(0) = 0 for all choices of the function p(s) satisfying (2.2), with arbitrary

values of p(l) and p/(1), the given timelike arc o must satisfy two boundary conditions

and differential equation
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(1) k/’lg(l) =0
(2)  Ki()) = —2a1(D)az(l)

(3)  2kY, + 2a1a5 + dayal — 2kaga1a3
+k1g (k:%g(l) —a3(l) + k’%g —a? — 2kzgg + 2a%) =0.

(2.22)

3. Applications

Theorem 3.1. An arc of a geodesic on hyperbolic n-space H™(r) is a relaxed elastic
line .

Proof. For a geodesic arc on hyperbolic n-space H"(r), kiz = 0 (so kg = 0),

1
af = ¢? = = and ag = az = 0. Therefore (2.20) and (2.22) are satisfied.
T

Theorem 3.2. In the spacelike hyperplane in R}, an arc is a relaxed elastic line if
and only if it lies on a geodesic.
Proof. In the spacelike hyperplane in R}, ka4, a2, as vanishes for all curves and

a; = 0. Then the third equation in (2.20) and (2.22) reduces to
2k, + k3, = 0. (3.1)

With integrating factor k7, the first integral is

!
1g>

( 'lg)Q + ikz‘llg = const.

The boundary conditions in(2.20) and (2.22), which reduces to kj,(l) = 0, require that
the constant be zero. But then we must have k14, = 0.

Conversely, any arc of a geodesic in the spacelike hyperplane satisfies (3.1), (2.20) and
(2.22), trivially.

Theorem 3.3. On the spacelike hypersurface in R}, an arc of a geodesic is a relaxed

elastic line if and only if it satisfies

a%ag =0.
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Proof. If k1y = 0 (so kgg = 0), then the third equation in (2.20) and (2.22) reduces

to
ajay + 2alas = 0.
The first integral is
a%ag = const

and the constant must vanish because of the second equation in (2.20), (2.22). The
boundary conditions in (2.20) and (2.22) are trivial.

Theorem 3.4. An arc of a geodesic on a pseudo-hypersphere S} (r) is a relaxed
elastic line.

Proof. For a geodesic arc on hyperbolic n-space S7(r), kig = 0 (so kgy = 0),

ai =c¢* = %2 and as = ag = 0. Therefore (2.18) is satisfied.

Theorem 3.5. In the timelike hyperplane in R}, an arc is a relaxed elastic line if
and only if it lies on a geodesic.

Proof. In the timelike hyperplane, ks, a2, as vanishes for all curves and a? = ¢* = 0.

The third equation in (2.18) reduces to
2k}, — k3, =0. (3.2)

With integrating factor ki, the first integral is

!
1g’
2 1 4
(Kiy)" — Zklg = const.

The boundary conditions in (2.18), which reduces to %} (I) =0 , require that the con-

stant be zero. But then we must have k£, =0 .

Conversely, any arc of a geodesic in the timelike hyperplane satisfies (26) and (20),
trivially.

Theorem 3.6. On the timelike hypersurface in R}, an arc of a geodesic is a relaxed

elastic line if and only if it satisfies

a%ag =0.
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Proof. If k1, = 0, then the third equation in (2.18) reduces to
ajab + 2alas = 0.

The first integral is

a% ao = const

and the constant must vanish because of the second equation in (2.18). The boundary

conditions in (2.18) are trivial.
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