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Sections of Lefschetz fibrations and Stein fillings

András I. Stipsicz

1. Introduction

In this note we give a new proof of the following

Theorem 1.1. If f : X4 → S2 is a nontrivial Lefschetz fibration on the 4–manifold X4

with fiber genus g > 0 admitting a section σ : S2 → X4 then [σ(S2)]2 < 0.

(For definitions and basic notions regarding Lefschetz fibrations see [4, 5, 8]. Unless oth-
erwise stated, we always assume thatX is closed, hence the generic fiber of the fibration is
a closed Riemann surface.) Theorem 1.1 follows from work of McDuff [6] where symplec-
tic 4-manifolds containing symplectic spheres of nonnegative selfintersection are studied.
Theorem 1.1 has been already proved in [9] using Seiberg-Witten theory; an alternative
proof was given by I. Smith [7] in which hyperbolic arguments are applied. These proofs
will be sketched in Section 4. In Section 3 we describe a proof based on Stein fillings of
contact 3-manifolds. We hope that the diversity of these proofs demonstrate the close
interplay between the notion of Lefschetz fibrations and various other branches of low
dimensional topology.

2. Preliminaries

For sake of brevity we will omit the definition of notions like contact structures, Stein
manifolds and Stein fillings. The interested reader is advised to turn to [2, 4, 5]. We will
also deliberately use constructions and notions from the theory of Lefschetz fibrations
without explicitely describing them — all these ideas are discussed, for example, in [4].
(The word “Lefschetz fibration” is used in the sense of [4], which coincides with “positive
Lefschetz fibration” used in [5].) Our new proof of Theorem 1.1 rests on the following
results:

Theorem 2.1 (Eliashberg, [2, 3]). The standard 3-sphere S3 admits a unique Stein fill-
able contact structure ξst (called the standard contact structure). The contact 3-manifold
(S3, ξst) admits a unique Stein filling, which is diffeomorphic to the 4–dimensional disk
D4.

Theorem 2.2 (Loi-Piergallini, [5]). Suppose that f : W → D2 is a Lefschetz fibration
over the 2-disk D2 with regular fiber F having nonempty connected boundary ∂F . If the
Lefschetz fibration admits only nonseparating vanishing cycles then W is a Stein surface,
hence it is a Stein filling of some contact structure of its boundary ∂W .
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A Lefschetz fibration over the disk D2 admits a description through the monodromies
of its singular fibers. Assuming that the map f : X → D2 is injective on its critical set
(which property can be achieved by a slight perturbation of the map) the monodromy of a
singular fiber is a right-handed Dehn twist along a simple closed curve in the generic fiber.
(This curve is called the vanishing cycle corresponding to the singularity.) Therefore
the fibration can be given by a word in the mapping class group of the generic fiber
composed only from right-handed Dehn twists. A fibration over S2 corresponds to such
a word representing 1 in the mapping class group of the closed surface. A section gives a
factorization of the unit element in the mapping class group of a once punctured surface,
while a section of square n provides a factorization of δ−n into the product of right-handed
Dehn twists in the mapping class group of a surface with a unique boundary component.
Here δ denotes the right-handed Dehn twist along a simple closed curve parallel to the
boundary. (For more about relations between mapping classes and Lefschetz fibrations,
see [1, 4, 7].)

3. The proof

Theorem 1.1 turns out to be a direct consequence of the following result.

Proposition 3.1. The relatively minimal genus-g Lefschetz fibration (with g > 0) admits
a section σ : S2 → X with [σ(S2)]2 = 0 if and only if X is the trivial fibration S2×Σg →
S2.

Remark 3.2. From the point of view of monodromies Proposition 3.1 simply states that
1 in the mapping class group Γ(F, ∂F ) of a surface F with a unique boundary component
cannot be written as a product of right-handed Dehn twists.

Proof. The trivial fibration S2 × Σg → S2 (where Σg stands for the genus-g surface)
admits a section with square 0: take S2 × {pt.}, for example. Conversely, suppose that
X → S2 is a relatively minimal, nontrivial fibration with a section σ : S2 → X of square
0. Once g > 0, by modifying X we can assume that the vanishing cycles of the fibration
are all nonseparating: this follows from the fact that a right-handed Dehn twist along a
separating curve can be written as a product of right-handed Dehn twists along nonsep-
arating curves, and this equality holds in the mapping class group of the surface F with
one boundary component (for more details see the proof of Lemma 3.3 in [5]). Let f−1(t)
be a regular fiber of X → S2 and consider W = X − ν(f−1(t) ∪ σ(S2)) equipped with
the Lefschetz fibration f |W : W → D2. According to Theorem 2.2, the 4-manifold W
provides a Stein filling for ∂W . Consider the Lefschetz fibration V → D2 specified by the
2g vanishing cycles α1, β1, . . . , αg, βg where {αi, βi}gi=1 is the standard basis of H1(F ;Z)
(and F is the genus-g surface with one boundary component). Easy handlebody argu-
ment shows that V = D4, because the 2–handles provided by the vanishing cycles of the
singular fibers of the Lefschetz fibration V → D2 cancel the 2g 1–handles of D2 × F .
Notice that (because of the assumption on the self-intersection of the section of X → S2)
we have that ∂W ∼= ∂(D2 × F ). Consider now the fiber sum W#fV . The diffeomor-
phism ∂W ∼= ∂(D2 × F ) implies that ∂(W#fV ) ∼= ∂V ∼= S3 , since in both fibrations the
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2-handles corresponding to the singular fibers of V are attached to ∂(D2 ×F ). Therefore
(according to Theorem 2.2) W#fV provides a Stein filling of some contact structure on
S3. Since rkH2(W#fV ;Z) is positive, this filling contradicts Eliashberg’s Theorem 2.1.
Therefore W , and so X with the given properties cannot exist.

Remark 3.3. Here is the same story from a different angle: Let Mϕ be an open book with
monodromy ϕ : F → F . (For notations see [5]; here F denotes the genus-g surface with
one boundary component.) According to [5] a factorization of ϕ as δ1 . . . δk in Γ(F, ∂F )
gives a Stein filling of Mϕ. (Here each δi denotes a right-handed Dehn twist along some
nonseparating simple closed curve.) Now if 1 ∈ Γ(F, ∂F ) admits a factorization as 1 =
η1 . . . ηl with ηi right-handed Dehn twists (which can be chosen to be along nonseparating
simple closed curves), then (η1 . . . ηl)nδ1 . . . δk still gives ϕ, hence provides a Stein filling
for some contact structure on Mϕ. In this way we get infinitely many Stein fillings of
Mϕ with growing Euler characteristics, which (by taking, e.g., Mϕ = S3) contradicts
Theorem 2.1.

Proof of Theorem 1.1. Suppose that X → S2 is a nontrivial fibration with a section
of nonnegative square. By blowing down spheres in fibers we can assume that X is
relatively minimal. Since for any fiber-genus g there exists a relatively minimal Lefschetz
fibration Xg → S2 with a section of square (−1) (for such examples see [10]), fiber
summing X with the appropriate number of Xg (and sewing the sections together) we
get Z = X#fXg#f . . .#fXg → S2 with a section of square 0. Since X is nontrivial, Z
is nontrivial as well, contradicting the conclusion of Proposition 3.1.

4. Appendix

In this Appendix we sketch four futher proofs of Proposition 3.1; as it was shown above,
this proposition implies Theorem 1.1.

Proof (using Seiberg-Witten theory). Suppose that X → S2 is nontrivial, relatively min-
imal and admits a section of square 0. Then, according to a theorem of Gompf (which
equips any Lefschetz fibration of fiber genus g > 1 with a symplectic structure) X#fX

carries a symplectic structure ω. It follows from [8] that b+2 (X#fX) > 2 (because a
nontrivial Lefschetz fibration over S2 contains a nonseparating vanishing cycle). Sewing
the two copies of the section of square 0 together we find a homologically essential sphere
with square 0 — contradicting the adjunction inequality for the Seiberg-Witten basic
class c1(X, ω).

Proof. Alternatively, using Seiberg-Witten theory it can be shown [8] that the number of
singular fibers in a genus-g Lefschetz fibration over S2 grows linearly with g. Now along
a section of square 0 we could Gompf sum the trivial fibration Σh × S2 → S2 (along a
section of it); in this way the fiber genus increases while the number of singular fibers
remains unchanged, providing a contradiction to the above mentioned result of [8].
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Proof (using a theorem of McDuff). Suppose again that X → S2 is nontrivial, relatively
minimal and admits a section of square 0. According to the theorem of Gompf cited
above, X admits a symplectic structure, which can be chosen to make a preassigned
section symplectic. According to [6] the existence of a symplectic sphere of square 0
implies that the 4-manifold X is ruled, i.e., X is diffeomorphic to the blow-up of some
4–manifold of the form S2 × Σg. With a little more care one can also show that the
fibration itself is the trivial fibration.

Remark 4.1. By taking X#fX and using b+2 (X#fX) > 1 again, for a nontrivial fibra-
tion X we get the contradiction without any further effort: since the section of square 0 in
X provides a similar section in X#fX, according to the above it is the blow-up of a ruled
surface. This is, however, a contradiction because the b+2 invariant of a ruled surface is
1, while b+2 (X#fX) > 1.

Proof (due to I. Smith, [7]). Using the section of the fibration, each Dehn twist admits a
lift to the universal cover of the typical fiber. Since we can assume that the genus of the
typical fiber is ≥ 2, this universal cover can be identified with the hyperbolic disk. These
lifts induce maps S1

∞ → S1
∞ of the boundary of the disk, and it has been proved in [7]

that when starting from right-handed Dehn twists these induced maps on the boundary
circle “rotate” in the same direction (and not all points are fixed). Now the existence of
a Lefschetz fibration with a section of square 0 gives rise to a collection of “rotations”
with product equal to idS1

∞
— leading us to a contradiction again. (For more details see

[7].)
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