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Abstract. SCIAMACHY, the Scanning Imaging Absorption
spectroMeter for Atmospheric CHartographY has provided
measurements of limb-scattered solar radiation in the 220 nm
to 2380 nm wavelength range since summer of 2002. Mea-
surements in the UV spectral range are well suited for the
retrieval of particle sizes of noctilucent clouds (NLCs) and
have been used to compile the largest existing satellite data
base of NLC particle sizes. This paper presents a compari-
son of SCIAMACHY NLC size retrievals with the extensive
NLC particle size data set based on ground-based LIDAR
measurements at the Arctic LIDAR Observatory for Mid-
dle Atmosphere Research (ALOMAR, 69◦ N, 16◦ E) for the
Northern Hemisphere NLC seasons 2003 to 2007. Most of
the presented SCIAMACHY NLC particle size retrievals are
based on cylindrical particles and a Gaussian particle size
distribution with a fixed width of 24 nm. If the differences in
spatial as well as vertical resolution between SCIAMACHY
and the ALOMAR LIDAR are taken into account, very good
agreement is found. The mean particle size derived from
SCIAMACHY limb observations for the ALOMAR over-
passes in 2003 to 2007 is 56.2 nm with a standard devia-
tion of 12.5 nm, and the LIDAR observations yield a value
of 54.2 nm with a standard deviation of 17.4 nm.

1 Introduction

Noctilucent clouds (NLCs) – which are also known as polar
mesospheric clouds (PMCs) – are a summertime high lati-
tude phenomenon occurring at altitudes of about 83 – 85 km.
The NLC particles mainly consist of H2O ice (Hervig et al.,
2001) and the particle sizes reach values of several tens of
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nanometers (e.g.,von Savigny and Burrows, 2007; Baum-
garten et al., 2008). Although the scientific understanding of
many NLC characteristics has improved in recent years, sev-
eral important aspects are only poorly understood or not un-
derstood at all. For example, the shape of the NLC particles
is not fully established (e.g.,Baumgarten et al., 2002; Ere-
menko et al., 2005; Hervig et al., 2009), there is still debate
on the correct NLC particle size distribution, and the gener-
ally accepted particle formation mechanism – heterogeneous
nucleation on meteoric smoke particles – has recently been
questioned (e.g.,Megner et al., 2008).

NLC particle sizes are derived from the ground using
multi-color LIDAR systems (e.g.,von Cossart et al., 1999;
Baumgarten et al., 2008), from rockets using photometers
– exploiting both the spectral dependence of the NLC scat-
tering cross section as well as the scattering phase function
(e.g., Gumbel and Witt, 2001) – and from satellites using
spectroscopic observations. Most of the existing satellite ob-
servations of NLC particle sizes rely on observing the spec-
tral dependence of scattering or extinction by NLC parti-
cles in limb-scatter (e.g.,Rusch et al., 1991; Karlsson and
Rapp, 2006; Robert et al., 2009) or occultation (e.g.,De-
brestian et al., 1997; Lumpe et al., 2008) geometry, but par-
ticle size retrievals based on phase function measurements
were also made using limb-scatter (e.g.,Thomas and McKay,
1985; Rusch et al., 2008) and nadir observations (Bailey
et al., 2009). Most of the recently published NLC particle
size observations are in good agreement (see, e.g., Fig. 6 in
von Savigny and Burrows, 2007), with the exception ofCar-
bary et al.(2004), who presented indications for a bi-modal
NLC particle size distribution based on UVISI/MSX satellite
observations with a large mode at radii exceeding 200 nm.
The studies byDeLand et al.(2005) andvon Savigny et al.
(2007) contradict the hypothesis of a large particle mode near
200 nm, and are consistent with a mono-modal particle size
distribution with sizes of several tens of nanometers.
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In most of these previously published studies on NLC par-
ticle sizes the retrieved radii were only qualitatively com-
pared to independent measurements often made at differ-
ent locations in different seasons, different parts of the
solar cycle, even different solar cycles, and local times.
In this study we attempt for the first time the compari-
son of NLC particle radii measured from space – with the
SCIAMACHY (Scanning Imaging Absorption spectroMe-
ter for Atmospheric CHartographY) instrument on the En-
visat spacecraft – with spatially co-located ground-based ob-
servations made with the ALOMAR RMR (Rayleigh-Mie-
Raman) LIDAR. A comprehensive validation of the SCIA-
MACHY NLC particle sizes is difficult, due to the large spa-
tial and temporal variability observed in NLCs (e.g.,Baum-
garten et al., 2009) and the large differences in the sam-
pled air volumes between SCIAMACHY and the ALOMAR
LIDAR.

2 Instrumentation

2.1 SCIAMACHY on Envisat

SCIAMACHY (Bovensmann et al., 1999) is one of ten sci-
entific instruments aboard the European Space Agency’s En-
visat spacecraft. Envisat was launched on 1 March 2002 from
Kourou (French Guiana) into a polar, sun-synchronous orbit
with a 10:00 LST (local solar time) descending node. SCIA-
MACHY measures solar radiation scattered by and transmit-
ted through the atmosphere in nadir, solar/lunar occultation
and limb-scatter mode. For this study only limb-scatter ob-
servations – fully calibrated Level 1 data with Level-0-to-1
processor version 6.03 – are employed. In limb observation
mode SCIAMACHY scans the Earth’s limb from the surface
up to about 92 km in steps of 3.3 km for the data used here.
The geometrical field of view (FOV) is about 2.8 km in the
vertical direction and about 110 km in the horizontal direc-
tion. Azimuthal scanning at every tangent height leads to
an effective spatial smearing over a distance of 960 km per-
pendicular to the viewing direction. In viewing direction the
spatial smearing corresponds to about 400 km.

2.2 The ALOMAR RMR LIDAR

NLC particle properties are retrieved from active remote
sensing measurements with the ALOMAR RMR-LIDAR in
Northern Norway (69◦ N, 16◦ E). Throughout the NLC sea-
son (1 June to 15 August) the LIDAR is operated 24 h per
day to measure whenever weather permits. The LIDAR emits
laser pulses at three widely separated wavelengths (355 nm,
532 nm, 1064 nm). The laserpulses are scattered back by air
molecules and particles in the atmosphere and are collected
by telescopes with a diameter of 1.8 m. The light received
is recorded by single photon counting detectors. After sep-
aration of particle and molecular signal, the particle proper-
ties are calculated by comparison to modelled optical parti-

cle signals. Here we use the vertically resolved NLC particle
size retrievals described byBaumgarten and Fiedler(2008),
that provide particle size information for up to three indepen-
dent layers. The center layer is characterized by backscatter
signalsβ532 nmexceeding 0.7×βmax, whereβmax is the maxi-
mum of the observed NLC backscatter signal at 532 nm. Fur-
thermore, particle sizes are retrieved above and below the
center layer including altitudes were the measurement signal
is greater than two times the measurement uncertainty. Fur-
ther information on the NLC particle size retrievals from the
ALOMAR RMR-LIDAR can also be found inBaumgarten
et al.(2008).

3 NLC particle size retrievals from SCIAMACHY limb
observations

A detailed description of the method to retrieve NLC parti-
cle sizes from SCIAMACHY limb-scatter observations in the
UV spectral range was recently given byRobert et al.(2009).
Therefore, only the most important aspects will be briefly
discussed here. NLC scattering spectra are extracted for the
tangent height with the maximum NLC radiance, which has a
mean value of 82.2 km for the SCIAMACHY limb measure-
ments considered in this comparison. The NLCÅngstrøm
exponents are determined from NLC scattering spectra in the
265–300 nm spectral range. The NLC particle sizes are then
retrieved from these̊Angstrøm exponents using look-up ta-
bles determined with a T-matrix method (Mishchenko and
Travis, 1998) for specific particle shapes and size distribu-
tions. Unlike the ALOMAR RMR LIDAR measurements,
the SCIAMACHY limb observations do not allow the re-
trieval of 2 size distribution parameters. Therefore, the width
of a normal or log-normal particle size distribution has to be
assumed, and then the mean or mode radius can be retrieved.
For most results presented here a Gaussian size distribution
was used

f (r) =
1

√
2πσ

e−(r−r0)
2/(2σ2) (1)

with r0 being the mean radius, andσ being the width of the
size distribution.

Furthermore, cylindrical NLC particles were assumed, and
particle size retrievals were performed for the following as-
pect ratios: 0.2, 0.5, 1, 2, and 5. The aspect ratio is 1 if
not stated otherwise. The LIDAR observations presented by
Baumgarten et al.(2007) (their Table 2) indicated that for
cylindrical particle shape and a Gaussian particle size distri-
bution the fraction of observed color ratios that was compat-
ible with modelled color ratios was larger than for spheres
and spheroids. Cylindrical particles are also assumed for
the NLC particle sizes derived from the LIDAR observations
used in this study.
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The width of the particle size distribution employed for the
size retrievals from SCIAMACHY measurements was cho-
sen based on the following considerations: the LIDAR ob-
servations byBaumgarten et al.(2008) resulted in a width
of σLIDAR ≈17 nm. However, the horizontal area (at NLC
altitude) sampled for individual particle size measurements
is typically about 20 m×30 km for the LIDAR measure-
ments (for an integration time of 14 min), hence significantly
smaller than for the SCIAMACHY observations, i.e., about
1000 km×400 km. In order to take the variability of the mean
NLC radii within the air volume sampled by SCIAMACHY
into account, we use as width (σSCIA) of the assumed Gaus-
sian particle size distribution the square root of the sum of
σ 2

LIDAR
and the squared standard deviation of the mean radii

observed by the LIDAR (σ ≈17 nm):

σSCIA =

√
σ 2

LIDAR
+ σ 2 ≈ 24 nm (2)

In other words, we can imagine the air volume sampled by
SCIAMACHY to be composed of the much smaller air vol-
umes sampled by the LIDAR for which the width of the size
distribution isσLIDAR =17 nm, and the standard deviation of
the mean sizes is alsoσ=17 nm. In order to back up this ap-
proach numerically, we performed Monte-Carlo simulations,
where we superimposed normally distributed random vari-
ables with 17 nm width and with mean sizes which are also
normally distributed with 17 nm width. Using this approach
the effective width in Eq. (2) can be confirmed with arbitrary
accuracy, if the ensemble size is chosen large enough.

Finally, we note that the SCIAMACHY limb spectra
in the spectral range used for the NLC particle size re-
trieval are affected by a spectrally non-uniform degrada-
tion. The instrumental throughput for all SCIAMACHY
channels is monitored on a daily basis and daily instru-
mental transmission spectra (without atmospheric absorp-
tion signatures) are determined by the SCIAMACHY Op-
erations Support Team (SOST) and provided via inter-
net (http://www.iup.physik.uni-bremen.de/sciamachy/LTM/
LTM spectral/LTMspectral.html). These transmission spec-
tra are employed to determine the spectral exponent of the
instrumental degradation, which is applied as a correction to
the derived NLCÅngstrøm exponent. A detailed description
of the approach can be found inRobert et al.(2009).

4 Comparisons

We note again, that all SCIAMACHY NLC particle size re-
trievals shown in Figs.3–6 are based on cylindrical particles,
and a Gaussian particle size distribution of width 24 nm.

4.1 Subset selection

For the comparison with the LIDAR observations above
ALOMAR only SCIAMACHY limb observations made dur-
ing the descending part (pole to equator) of the Envisat orbit
were used. This restriction was imposed, because the scat-
tering angles of the ascending part observations are relatively
small (23◦–27◦) at a latitude of 69◦ N and for these scatter-
ing angles the expected̊Angstrøm exponents are only weakly
dependent on the mean particle radius (see Fig.1). As Fig.1
illustrates, the̊Angstrøm exponent for the ascending part ob-
servations will only change by 0.5 when increasing the mean
radius from 20 to 70 nm. For the descending part observa-
tions this radius change will lead to a difference in Angstrom
exponent of 1.5. This implies that the retrieval for the as-
cending part observations is less sensitive to NLC particle
size than for the descending part of the orbit, where scatter-
ing angles are typically 47◦–55◦ at 69◦ N latitude.

The following coincidence criteria were chosen: The cen-
ter point of the SCIAMACHY limb ground swath has to be
within −4◦/+3◦ in terms of latitude and±16◦ in terms of
longitude of the geolocation of ALOMAR (69◦ N, 16◦ E).
The asymmetrical latitudinal criterion was chosen in order
to ensure that the mean latitude of the SCIAMACHY obser-
vations corresponds to the latitude of the LIDAR site (there
are more SCIAMACHY particle size retrievals at higher lat-
itudes). Figure2 shows the locations of the SCIAMACHY
ground swath center points of all co-locations used in this
comparison, together with an example of a SCIAMACHY
limb ground swath.

4.2 Altitude weighting

SCIAMACHY’s vertical field of view corresponds to about
2.8 km at the tangent point, whereas the LIDAR observations
allowed the retrieval of the vertical variation of particle sizes
within the NLC. As described inBaumgarten and Fiedler
(2008) NLC particle sizes were retrieved below, at and above
the NLC brightness peak with the mean altitudes of the cor-
responding layers being 81.7 km, 82.6 km, and 83.3 km (see
Table 1 inBaumgarten and Fiedler, 2008). SCIAMACHY
is not capable of resolving the vertical variation of particle
sizes within the NLC. Figure3 shows the comparison of an-
nually averaged SCIAMACHY size retrievals above ALO-
MAR with the LIDAR observations at (left panel) and below
(right panel) the NLC brightness peak. The SCIAMACHY
radii are on average about 9 nm larger than the LIDAR radii
at the peak, and about 7 nm smaller than the LIDAR radii
below the peak.

Because of the different vertical resolutions of SCIA-
MACHY and the LIDAR the comparison of the SCIA-
MACHY retrievals with either the LIDAR values at the peak
or below the peak only is not appropriate. Therefore, a
weighted average of the vertically varying sizes derived from
the LIDAR observations was determined prior to comparison
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Fig. 1. Ångstrøm exponent in the 265 nm to 300 nm spectral win-
dow for a Gaussian particle size distribution withσ=24 nm, cylin-
drical particles with an aspect ratio ofε=1.0 as a function of scat-
tering angle and mean radius. The white dashed lines indicate the
scattering angles of SCIAMACHY limb observations above ALO-
MAR (69◦ N) for the ascending and descending parts of the orbit.
The scattering angles for Southern Hemisphere observations at po-
lar latitudes are about 130◦–160◦.

Fig. 2. Illustration of the size of the SCIAMACHY limb ground-swath (blue dashed line). Also shown are

the geolocations of the ground swath center points (black dots) of all SCIAMACHY observations used in this

comparison, and of the ALOMAR observatory (solid red circle).

Fig. 3. Comparison of annually averaged SCIAMACHY NLC particle sizes observed above ALOMAR with the

LIDAR measurements of NLC particle sizes at the NLC brightness peak (left panel) and below the brightness

peak (right panel). The retrievals are based on a normal particle size distribution with σ = 24 nm and cylindrical

particles with an aspect ratio of ε = 1.0, and only descending leg observations are employed. The large error

bars show the standard deviations about the annual mean values, and the small error bars correspond to the

errors of the mean.

6

Fig. 2. Illustration of the size of the SCIAMACHY limb ground-
swath (blue dashed line). Also shown are the geolocations of the
ground swath center points (black dots) of all SCIAMACHY obser-
vations used in this comparison, and of the ALOMAR observatory
(solid red circle).

with the SCIAMACHY retrievals. The weighting factorswl ,
wp, andwu (l=lower, p=peak, u=upper) for the three layers
as observed by the LIDAR were modelled in order to repre-
sent the contributions of each layer to the total observed limb

signal, i.e., they were assumed to be proportional to the mean
NLC particle number density (nl , np, nu as taken from Ta-
ble 1 inBaumgarten and Fiedler, 2008) and the 5th power of
the mean radius for each of the three layers.

wi = ni × rα
i , i ∈ {u, p, l} (3)

α=5.0 was used here, because Mie-simulations showed that
for particle radii of 30–60 nm, the differential scattering cross
sections do not follow the∝ r6 scaling expected for the
Rayleigh regime, but scale with exponents between about
4.5 and 5.5. Below we will also test the sensitivity of the
derived weighted averages to the assumed scaling exponent
(see Sect.5).

The vertically weighted average radius derived from the
LIDAR observations is then given by:

rLIDAR =
wlrl + wprp + wuru

wl + wp + wu

(4)

Due to the limited number of direct co-locations between
SCIAMACHY and the LIDAR observations (i.e., spatially
co-located observations made on the same day), we start
comparing mean particle sizes averaged over the individual
NLC seasons 2003 to 2007. Figure4 shows the compari-
son of annually averaged NLC radii retrieved with SCIA-
MACHY for the geolocation criteria mentioned above and
the vertically weighted LIDAR observations derived from
Eq. (4) for the Northern Hemisphere NLC seasons 2003 to
2007. The NLC particle sizes for the individual years are also
presented in Table 1. The mean difference (SCIAMACHY
− LIDAR) for all years is only 2.0 nm. If 2007 – which
shows the largest differences between SCIAMACHY and the
weighted LIDAR radii – is omitted, then the mean differ-
ence is only−0.7 nm. The reason for the larger difference
in 2007 is not yet established. It must be pointed out that
the LIDAR NLC size retrievals shown in Figs.3 and4 cor-
respond to observations made at all local times. However,
the SCIAMACHY limb observations at 69◦ N during the de-
scending part of the orbit are all made at a constant local
time of about 11:30, because of the Envisat orbit being sun-
synchronous. If we restrict the times of the LIDAR observa-
tions to the time of the SCIAMACHY overpass±2.5 h, then
a value ofrLIDAR =53.0 nm for the vertically weighted parti-
cle size is obtained. This is only slightly smaller than the
value ofrLIDAR =54.2 nm obtained without local time restric-
tion. Note that the number of co-locations for these restricted
temporal conditions is rather limited. This is partly caused by
the local time dependence of NLC occurrence which shows
reduced NLC occurrence around 11:00 local time (Fiedler et
al., 2005).

5 Discussion

The altitude weighting of the LIDAR NLC particle sizes de-
scribed in Sect.4.2 relied on the assumption of the depen-
dence of the NLC scattering cross section on particle size.
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Fig. 2. Illustration of the size of the SCIAMACHY limb ground-swath (blue dashed line). Also shown are

the geolocations of the ground swath center points (black dots) of all SCIAMACHY observations used in this

comparison, and of the ALOMAR observatory (solid red circle).

Fig. 3. Comparison of annually averaged SCIAMACHY NLC particle sizes observed above ALOMAR with the

LIDAR measurements of NLC particle sizes at the NLC brightness peak (left panel) and below the brightness

peak (right panel). The retrievals are based on a normal particle size distribution with σ = 24 nm and cylindrical

particles with an aspect ratio of ε = 1.0, and only descending leg observations are employed. The large error

bars show the standard deviations about the annual mean values, and the small error bars correspond to the

errors of the mean.
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Fig. 3. Comparison of annually averaged SCIAMACHY NLC particle sizes observed above ALOMAR with the LIDAR measurements of
NLC particle sizes at the NLC brightness peak (left panel) and below the brightness peak (right panel). The retrievals are based on a normal
particle size distribution withσ=24 nm and cylindrical particles with an aspect ratio ofε=1.0, and only descending leg observations are
employed. The large error bars show the standard deviations about the annual mean values, and the small error bars correspond to the errors
of the mean.

Table 1. SCIAMACHY and LIDAR NLC particle size retrievals.
Shown are the annual mean vertically weighted LIDAR and the
SCIAMACHY NLC particle sizes, the standard deviation about the
annual mean values and the total number of observations per year
for the Northern Hemisphere NLC seasons 2003–2007 above ALO-
MAR.

Year LIDAR SCIAMACHY
Annual mean Std. dev. # obs. Annual mean Std. dev. # obs.

2003 57.6 nm 19.6 nm 51 52.2 nm 13.1 nm 15
2004 57.2 nm 18.7 nm 77 58.0 nm 13.5 nm 20
2005 51.6 nm 15.7 nm 43 54.7 nm 11.6 nm 20
2006 59.5 nm 19.6 nm 60 58.2 nm 10.6 nm 20
2007 45.3 nm 13.5 nm 182 57.7 nm 13.6 nm 24
Total 54.2 nm 17.4 nm 413 56.2 nm 12.5 nm 99

We assumed that the scattering cross section scales with the
5th power of NLC particle radius. This choice appears rea-
sonable, but it is somewhat arbitrary. Therefore, we briefly
discuss the effect of changing the exponent on the inferred
vertically weighted LIDAR particle sizes. The exponent was
increased from 3.0 to 6.0 in steps of 0.5 and the effect on the
derived vertically weighted LIDAR particle sizes is shown
in Fig. 5, both averaged over all local times, and for local
times between 09:00 and 14:00 only (LT of SCIAMACHY
overpass±2.5 h). Apparently, the dependence of vertically
weighted particle sizes on the assumed exponent is relatively
small, changing by less than 1 nm if the exponent is changed
by 1.0. We therefore conclude that the effect of a variableα

on the weighted LIDAR particle sizes is much smaller than
the standard deviation of the observations, and can be ne-
glected.

Fig. 4. Comparison of annual mean SCIAMACHY NLC particle sizes above ALOMAR with the weighted

LIDAR particle sizes calculated using equation 4. The large error bars correspond to the standard deviations.

affected by tropospheric clouds, making a particle size retrieval impossible; (b) although the LIDAR

is operated continuously, only 1 in 5 (1 in 10 before 2005) observations is a multi-color observations215

allowing to retrieve particle size; (c) SCIAMACHY particle size retrievals are not available for

each day during the season due to measurement interruptions or NLC signatures being to weak for

particle size retrievals (see Robert et al. (2009)). The left panel in Fig. 6 shows a comparison without

altitude weighting of the LIDAR observations, and the particle sizes retrieved below, at, and above

the brightness peak are shown separately. The error bars of the SCIAMACHY NLC particle sizes220

are the error estimates for individual size retrievals (see Robert et al. (2009) for more details). The

LIDAR sizes for the different altitudes are averages over all LIDAR observations available for any

given day on which co-locations exist, and the error bars on the LIDAR sizes correspond to the

standard deviation of these multiple measurements per day. Note that LIDAR measurements are not

always available at all three altitudes for days with co-locations. This could for example be caused225

by narrow cloud layers with large vertical gradients at cloud top or bottom, or by weak signals due

to weak NLCs or possibly large variability on temporal scales smaller than the integration time of

10

Fig. 4. Comparison of annual mean SCIAMACHY NLC particle
sizes above ALOMAR with the weighted LIDAR particle sizes cal-
culated using Eq. (4). The large error bars correspond to the stan-
dard deviations.

The SCIAMACHY and LIDAR NLC sizes compared
above were seasonally averaged values co-located in the spa-
tial domain, but the observations were not necessarily per-
formed on the same days during the NLC seasons. In Fig.
6 we show comparisons only for spatially co-located obser-
vations made on the same day. Note that unfortunately no
local time restriction of the LIDAR observations is possible,
because of the small number of coincidences. The number of
co-located observations on the same day is quite limited for
the following reasons: (a) about 60% of the LIDAR observa-
tions are affected by tropospheric clouds, making a particle
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Fig. 5. Dependence of the vertically weighted LIDAR NLC radii on exponent α (equation 3). The red dashed

line shows the SCIAMACHY NLC particle sizes averaged over all years, which are of course independent of

α.

14 minutes. The larger scatter of the LIDAR NLC particle radii in the left panel of Fig. 6 is partly

due to the fact, that the three altitude regimes are shown separately, in combination with the known

vertical variation of particle size within the cloud. Another likely reason for the larger scatter of230

the LIDAR particle sizes is the small size of the air volume sensed – compared to SCIAMACHY –

together with the variability of NLCs on small scales.

In a next step, only those observations are used for which measurements at all three altitudes

were available, and the LIDAR retrievals were altitude averaged as described in section 4.2. A

comparison with the SCIAMACHY particle sizes is shown in the right panel of Fig. 6. The average235

SCIAMACHY size for these 15 co-locations is 57.5 nm, and the average LIDAR particle size is

about 7 nm larger. This agreement is slightly worse than for the comparison presented in section 4.2,

which was based on a much larger sample, because the condition, that SCIAMACHY and LIDAR

11

Fig. 5. Dependence of the vertically weighted LIDAR NLC radii on
exponentα (Eq. 3). The red dashed line shows the SCIAMACHY
NLC particle sizes averaged over all years, which are of course in-
dependent ofα.

size retrieval impossible; (b) although the LIDAR is oper-
ated continuously, only 1 in 5 (1 in 10 before 2005) obser-
vations is a multi-color observations allowing to retrieve par-
ticle size; (c) SCIAMACHY particle size retrievals are not
available for each day during the season due to measurement
interruptions or NLC signatures being to weak for particle
size retrievals (seeRobert et al., 2009). The left panel in
Fig. 6 shows a comparison without altitude weighting of the
LIDAR observations, and the particle sizes retrieved below,
at, and above the brightness peak are shown separately. The
error bars of the SCIAMACHY NLC particle sizes are the
error estimates for individual size retrievals (seeRobert et al.
(2009) for more details). The LIDAR sizes for the different
altitudes are averages over all LIDAR observations available
for any given day on which co-locations exist, and the error
bars on the LIDAR sizes correspond to the standard devia-
tion of these multiple measurements per day. Note that LI-
DAR measurements are not always available at all three alti-
tudes for days with co-locations. This could for example be
caused by narrow cloud layers with large vertical gradients at
cloud top or bottom, or by weak signals due to weak NLCs or
possibly large variability on temporal scales smaller than the
integration time of 14 min. The larger scatter of the LIDAR
NLC particle radii in the left panel of Fig.6 is partly due to
the fact, that the three altitude regimes are shown separately,
in combination with the known vertical variation of particle
size within the cloud. Another likely reason for the larger
scatter of the LIDAR particle sizes is the small size of the air
volume sensed – compared to SCIAMACHY – together with
the variability of NLCs on small scales.

In a next step, only those observations are used for which
measurements at all three altitudes were available, and the
LIDAR retrievals were altitude averaged as described in
Sect.4.2. A comparison with the SCIAMACHY particle
sizes is shown in the right panel of Fig.6. The average SCIA-
MACHY size for these 15 co-locations is 57.5 nm, and the
average LIDAR particle size is about 7 nm larger. This agree-
ment is slightly worse than for the comparison presented in
Sect.4.2, which was based on a much larger sample, because
the condition, that SCIAMACHY and LIDAR observations
were made on the same days during the NLC seasons, was
not imposed. The larger differences in Fig.6 may be due
to the fact that differences caused by the markedly different
sizes of the sampled air volumes become smaller if a larger
number of measurements is considered.

Both panels of Fig.6 show a bifurcation in the SCIA-
MACHY NLC particle sizes with values in the intervals
[35 nm, 50 nm] and [60 nm, 70 nm] and none in between.
This bifurcation is likely caused by the small number of di-
rect collocations, because it disappears if the size retrievals
for all ALOMAR overpasses are considered. We attribute the
relatively large range of LIDAR particle sizes to the intrin-
sic variability of NLC particle sizes in combination with the
small (compared to SCIAMACHY) horizontal scales sam-
pled by individual LIDAR observations (20 m×30 km).

Previously published NLC particle size retrievals were of-
ten based on spherical particles and a log-normal particle size
distribution. Therefore, we briefly discuss the dependence of
the SCIAMACHY NLC particle size retrievals (over ALO-
MAR) on the assumed particle size distribution and particle
shape for a few selected cases (see Table 2). A comprehen-
sive compilation of the dependence of NLC particle sizes on
all possible combinations of particle shape, particle size dis-
tribution, distribution width, and aspect ratio is beyond the
scope of this study. We first note that the mean particle size
for spherical particles with a Gaussian particle size distribu-
tion andσ=24 nm differs by less than 1 nm from the particle
sizes for cylindrical particles with the same distribution type
and width. For a log-normal particle size distribution with
σ=1.4 – often used in previous publications – the mean parti-
cle size is slightly smaller (about 51 nm on average). Finally,
if the aspect ratioε for cylindrical particles is set to 0.5 or
2.0, the mean particle sizes change by up to 6 nm from the
standard case with an aspect ratio of 1.0. Settingε to 0.2
leads to significantly larger particles sizes (about 78 nm on
average).

It must also be mentioned that the retrieved mean radii
strongly depend on the assumed width of the particle size
distribution. As outlined above, we assumedσSCIA=24 nm−

in order to take the very different sizes of the air volumes
sampled by SCIAMACHY and the LIDAR into account. If
we assume the width of the normal particle size distribu-
tion to be identical to the value retrieved from the LIDAR
observations (σ=17 nm), then the mean SCIAMACHY par-
ticle size averaged over all ALOMAR co-locations for the
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Fig. 6. Comparison of SCIAMACHY and LIDAR NLC particle sizes for spatially co-located observations

made on the same day. Left panel: The LIDAR observations above the brightness peak, at, and below the peak

are shown separately. Right panel: Only LIDAR observations are used for which NLC particle sizes below, at,

and above the brightness peak are available; the LIDAR sizes were vertically weighted according to equation 4

and the weighting factors in equation 3 were determined with α = 5.0.
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shape for a few selected cases (see Table 2). A comprehensive compilation of the dependence of
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Fig. 6. Comparison of SCIAMACHY and LIDAR NLC particle sizes for spatially co-located observations made on the same day. Left panel:
the LIDAR observations above the brightness peak, at, and below the peak are shown separately. Right panel: only LIDAR observations
are used for which NLC particle sizes below, at, and above the brightness peak are available; the LIDAR sizes were vertically weighted
according to Eq. (4) and the weighting factors in Eq. (3) were determined withα=5.0.

Table 2. Averaged SCIAMACHY NLC particle sizes for all ALO-
MAR overpasses 2003–2007 for different aspect ratios of the cylin-
drical particles, and for spherical particles with a normal and log-
normal particle size distribution.

Particle size Particle Aspect Mean/mode
distribution shape ratio radius

Gaussian,σ=24 nm cylinder 1.0 56.2 nm
Gaussian,σ=24 nm spheroid 1.0 55.6 nm
Log-normal,σ=1.4 spheroid 1.0 50.7 nm
Gaussian,σ=24 nm cylinder 0.2 78.4 nm
Gaussian,σ=24 nm cylinder 0.5 58.1 nm
Gaussian,σ=24 nm cylinder 2.0 50.5 nm
Gaussian,σ=24 nm cylinder 5.0 45.5 nm

years 2003–2007 is 74.3 nm, i.e., significantly larger than for
24 nm width. We note, that the difference in mean radii is
certainly not identical to the difference in width if the latter
is changed.

High resolution images of NLCs taken from the ground
or with the CIPS (Cloud Imaging and Particle Size) experi-
ment (Rusch et al., 2009) on the AIM (Aeronomy of Ice in
the Mesosphere) satellite (Russell et al., 2009) show a re-
markable fine structure in the NLC brightness field on spa-
tial scales as low as several kilometers, and temporal scales
of minutes. While the time required to form a 60 nm NLC

particle is typically on the order of tens of hours (e.g.,Berger
and von Zahn, 2002), it only takes several tens of minutes to
sublimate the large particles, if the temperature is perturbed
(e.g.,Rapp et al., 2002). Therefore, we must expect that the
strong small scale variations in NLC brightness are also as-
sociated with small scale variations in the local NLC particle
size distribution, and the mean radius in particular. SCIA-
MACHY and the ALOMAR RMR LIDAR sample air vol-
umes of very different sizes. As mentioned already above,
the horizontal extent of the air volume sampled by SCIA-
MACHY is about 1000 km×400 km, whereas the instanta-
neous field of view of the LIDAR at NLC altitude is about
20 m×30 km. Therefore, a validation of the SCIAMACHY
NLC particle size retrievals using the LIDAR observations
may not be possible in a strict sense. However, the compari-
son of averaged particle sizes (in the spatial sense for SCIA-
MACHY or other satellite instruments, and in the temporal
sense for the LIDAR) is still valuable and provides insight in
the quality of the satellite retrievals of NLC particle size.

6 Conclusions

NLC particle sizes retrieved from SCIAMACHY obser-
vations of limb-scattered solar radiation are compared to
spatially co-located ground-based NLC size measurements
made with the ALOMAR RMR LIDAR. Because of the
much larger horizontal extension of the air volume sampled
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by SCIAMACHY the width of particle size distribution as-
sumed for the SCIAMACHY retrievals was adjusted to ac-
count for the variability of the local NLC particle size distri-
bution. The poorer vertical resolution of SCIAMACHY was
taken into account by determining weighted vertical mean
LIDAR NLC particle sizes. Once these aspects are consid-
ered, we obtain very good agreement between the averaged
SCIAMACHY and LIDAR radii with a mean difference of
only about 2 nm. Considering the differences in spatial (i.e.,
horizontal and vertical) resolution between different instru-
ments will be crucial in future comparisons of NLC particle
size observations.
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