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Abstract
A new method and application is proposed to characterize intensity and pitch of human heart
sounds and murmurs. Using recorded heart sounds from the library of one of the authors, a visual
map of heart sound energy was established. Both normal and abnormal heart sound recordings
were studied. Representation is based on Wigner-Ville joint time-frequency transformations. The
proposed methodology separates acoustic contributions of cardiac events simultaneously in pitch,
time and energy. The resolution accuracy is superior to any other existing spectrogram method.
The characteristic energy signature of the innocent heart murmur in a child with the S3 sound is
presented. It allows clear detection of S1, S2 and S3 sounds, S2 split, systolic murmur, and intensity
of these components. The original signal, heart sound power change with time, time-averaged
frequency, energy density spectra and instantaneous variations of power and frequency/pitch with
time, are presented. These data allow full quantitative characterization of heart sounds and
murmurs. High accuracy in both time and pitch resolution is demonstrated. Resulting visual images
have self-referencing quality, whereby individual features and their changes become immediately
obvious.

1.0 Background
1.1 Cardiac auscultation
Cardiac auscultation is a difficult skill to acquire and
today most medical students graduate without the ability
to determine whether a heart sound or murmur is normal
or abnormal [1,2]. Evidence also indicates that this skill is
not acquired later in practice [3,4]. There is question that
despite improved heart sound teaching methods [5]
whether improvement in this clinical skill has occurred.
This diagnostic deficit results in, (a) certain patients with
an undiagnosed organic cardiac lesion will suffer ill health
or possible death at a later date, or (b) in the case of the
innocent murmur, present in at least 72% of normal chil-
dren [6,7], expensive cardiac investigation must be carried
out to reach this diagnosis. The availability of a new quan-

titative digitally based computer method, such as herein
described, and which with high accuracy can determine
and quantify key heart sound variations (i.e. frequency/
pitch, intensity, timing, energy, sound split and ejection
click), will present a valuable asset to the delivery of
health care.

The approach used is based on spectrograms representing
a dynamic graphic image of heart sound intensity in time
and frequency. At present, current methods of spectral dis-
play are not generally understood or even employed in
clinical medicine. We propose new method and format
that will enable better characterization of heart sounds
and hopefully will present a new foundation for subse-
quent clinical implementation and testing.
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1.2 Phonocardiograms (PCG)
The PCG is a display of the heart sound signal showing
that heart sounds and murmurs can provide useful infor-
mation to the physician by complementing cardiac aus-
cultation. Basic methodology of distinguishing cardiac
murmurs from the PCG is the same as interpreting mur-
murs from auscultation. However, it provides additional
information about timing of cardiac phases and events as
well as serving as a digital record that can be utilized to
characterize dynamic changes associated with therapy and
course of the disease. PCG complements auscultation.

The major PCG clinical drawback is that it does not
present information on frequency (pitch) of heart sounds
and their components, one of the major deciding factors
for murmur clinical interpretation. It does not have the
ability to differentiate separate multiple (folded) frequen-
cies of various sounds and presents no information con-
cerning dynamic changes of energy (power) stored in the
sound. Other deficiencies arguably include signal filtra-
tion effects (change of visual representation due to filtra-
tion) and presence of artifacts and noises that can visually
mask weak sounds. Challenges in pinpointing start and
end points of certain sounds have been reported. End
point positions will also depend on the applied filter,
which add additional uncertainty. Manual segmentation
(separation of heart sound components) may be another
problem as well.

PCG never achieved acceptance as a routine clinical inves-
tigative method [8], but did find a valuable place in clini-
cal investigation and research. However current newly
developed "system science" [9] and signal processing
computational technologies in combination with a digital
sound recording technologies, electronic recording steth-
oscopes, advanced new vibration sensors [10] and finally
extraordinary computing power now afforded to PDA's,
tablet PCs, palm PCs, laptops and MP3 players/recorders
make it now possible to completely revitalize old PCG-
based approaches.

1.3 Heart sound spectrography
The concept of heart sound spectral display was first intro-
duced by McKusick in 1955 [11] and in a subsequent
series of his clinical publications [12-14]. (Victor A. McK-
usick, M.D., Professor of Medical Genetics and Cardiolo-
gist by training, The Johns Hopkins University School of
Medicine and a physician-scientist widely acknowledged
as the father of genetic medicine, is a recipient of the
National Medal of Science, 2002.) This display provides
added frequency (pitch) dimension to the PCG signal dis-
play. While this work did not receive significant reception
by clinicians, there is now a renewed interest in this
approach both in clinical medicine and in biomedical
engineering research. Using spectrograms obtained by

McKusick, Don Michael [15] illustrated the intrinsic prop-
erties of various heart lesions in his monograph "Auscul-
tation of the Heart". Similar works has been recently
reported by Balster et al. [16], Nopponen and Lukkarinen
[18,19]. Tovar-Corona et al. [20,21], Bhatikar et al. [22],
Tuchinda and Thompson [26,27] utilized wavelet-based
transform to obtain time varying scalogram maps. The
spectrogram offers additional insight into time dependent
change of murmur frequency. Donnerstein [17] correlated
spectrogram frequency characteristics with Doppler echo
velocity. Tavel & Katz [23,24] reported a method of clini-
cal differentiation of aortic stenosis from innocent mur-
mur using spectrogram measurements. Finally, Tavel [25]
indicated great promise for this approach for clinical diag-
nosis.

Unfortunately methods presented in [9-19,23-25] use var-
ious forms of the Short Term Fast Fourier Transform
(STFT) to obtain instantaneous frequency characteristics
of signals, and all these methods are subject to the "quan-
tum uncertainty" theorem, which states that a signal and
its Fourier transform can not both have small support
[32], and that frequency and time and both can not be
determined to arbitrary precision [45,47]. The resulting
outcome of this drawback is a non-unique, low fidelity
image, which changes depending on its frequency resolu-
tion [29,30]. Also, heart sounds are nonlinear, non-sinu-
soidal and exponential signals, and it has been
demonstrated in signal processing literature [43] that Fou-
rier transform is not mathematically appropriate method
to study such signals.

Tuchinda and Thompson [26], Tovar-Corona et al.
[20,21], Bhatikar et al. [22] utilized continuous wavelet
based transformation (CWT) to develop spectrogram
looking maps that present wavelet scale variation in time
(scaleograms). CWT approach is not as well established in
clinical studies as traditional spectrogram approach [8-
19] and is presently emerging. Unlike for STFT spectro-
grams, time and frequency resolution of the CWT is non-
uniform in the entire time-frequency domain [31]. At
high frequencies, there is good time resolution and bad
frequency resolution. At low frequencies, we have better
frequency resolution and bad time resolution. Accord-
ingly, this results in smearing the time-frequency repre-
sentation of the signal in time at low frequencies. The
speed of wavelet transform computation and improved
resolution over the STFT are the primary reasons that the
wavelet transforms have become a popular analysis tool
[32]. Graphic results presented by Tuchinda and Thomp-
son [26] also fail to provide sufficient qualitative resolu-
tion and have a strong visual "skewness" as compared to
traditional spectrograms.
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There are numerous recent publications on the subject of
digital recording and analysis of heart sounds. Green et al.
[33] discuss optimal ways of recording heart murmur
findings using SNOMED templates, DeGroff et al. [22]
suggest a potential for computerized frequency analysis to
further improve the accuracy of murmur assessment and
Nigam et al. [34,35] introduce new ways of segmenting
heart sound signal. Finley et al. [36] demonstrated that
email digital recordings of children's heart sounds are of
diagnostic quality and allow accurate distinction between
innocent and pathologic murmurs in >90% of cases. Mar-
cus et al. [37] and Collins et al. [38] use heart sound
recordings to correlate S3 estimates, BNP levels and CHF
diagnosis, demonstrating very high specificity (85–90%)
of digital heart sound recordings for CHF diagnosis in
patients over 50 years old. Kudriavtsev et al. [39] demon-
strated that Still's murmurs have narrow spectral band-
width, with this being a significant feature differentiating
them from abnormal murmurs.

We conclude that there is a clear upsurge of clinical inter-
est in spectrographic representation of heart sounds.
However existing signal processing methods lack in accu-
racy and resolution. Unlike other short term Fourier trans-
form based approaches [15-19] and Gabor's
transformation [32,48,49], which offer approximation to
instantaneous energy distribution of a signal, the Wigner-
Ville distribution [45,46] has been derived to compute the
signal energy at each time instant, exactly utilizing knowl-
edge of the entire signal to compute time-frequency prop-
erties for each moment in time. The method used in this
study is based on the Wigner-Ville distribution and is
called Heart Energy Signature (HES).

HES represents a unique state of dynamically changing
multi-component signal of the heart beat. It can be visual-
ized as an image of the instantaneous heart pulsation
energy distribution in both frequency and time domains.
It is intended for use as an individual biometric character-
istic for heart sound interpretation.

2.0 Methods
2.1 Wigner-Ville distribution function
The pseudo Wigner Ville Distribution [40-42] is a form of
the spectrogram, which is based on joint time-frequency
distribution (Eugene Paul Wigner (1902–1995), Nobel
prize laureate in Physics, introduced quasi-probability
distribution in 1932 study quantum corrections to classi-
cal statistical mechanics). Wigner's probability function
[44,45] addresses a question of the Heisenberg quantum
uncertainty [47] – that momentum and position of the
particle can not be determined to arbitrary precision
(quantum physics theory). For a quantum particle
described by its probability function of coordinates,
Wigner has developed a probability distribution of the

particle to simultaneously have particular coordinates and
momentum [45]. Ville [46] further developed Wigner's
function to compute the instantaneous frequency of the
signal at each time instant. The resulting Wigner-Ville dis-
tribution of time and frequency [32,40,41] attempts to
express frequency as a function of time. Since signal fre-
quency is related to signal energy, one can interpret
Wigner-Ville distribution as the energy map of a signal in
time and frequency.

2.2 Heart energy signature (HES)
A Heart Energy Signature is essentially a high-resolution
2D spectrographic image of the heart sound signal that is
based on the Wigner-Ville joint time frequency distribu-
tion [40] of recorded heart sound signal. Schematic details
are shown in Fig. 1, where the corresponding heart sound
components (Fig. 1A) and matching elements on the
energy signature map (Fig. 1B) are identified. This image
stores comprehensive information concerning time aver-
aged and instantaneous changes in mechanical energy of

(A, B). Schematics of the Heart Sound Structure and Energy Signature MapFigure 1
(A, B). Schematics of the Heart Sound Structure and Energy 
Signature Map. A) Schematic heart sound s wave form display 
(phonocardiogram -PCG). Second heart beat shows sche-
matically S2 split. B) Energy Signature joint time-frequency 
map.

A)

B)
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the heart beat. These changes are characterized by fre-
quency and intensity. Unlike previous attempts to charac-
terize heart sounds in this manner (based on Short Term
Fourier Transform) STFT (and/or Gabor transform) the
HES method is unique in its ability to resolve heart energy
accurately in both time and frequency simultaneously.
STFT spectrogram can only resolve accurately in time or
frequency, but not both time and frequency [28]. Figs.
2(A,B) presents a typical example of a HES obtained from
a patient (showing two heart beats) and can be compared
with spectrograms obtained using traditional short term
window Fourier transform (Figs. 9(A,B), 10(A–D)) and
Table 2. This is of a pediatric patient with innocent heart
murmur recorded at the apex, sampling frequency of 11
kHz. Binary wave file with the sound is attached [see Addi-
tional file 1]. Other comparisons are shown on Figs. 5(A–
E), 6(A–E), 7(A–C), 8(A–D) and Table 1. We have thus a
method having accurate time-frequency resolution and
which satisfies the many mathematical properties, includ-
ing energy, time and frequency marginals and instantane-
ous frequency [32,49,53].

Tovar-Corona et al. [20,21] described similarly appearing
contour graphs obtained using the continuous wavelet
(CWT) based method. This method is now gaining accept-
ance in signal processing and mathematical details of this
method are discussed elsewhere [30-32]. The CWT
method presents results in wavelet scale – time map, and
not on frequency (pitch) time map. Thus, accurately cor-
relating wavelet scales with frequencies is difficult and for
this reason is beyond the scope of this study.

2.3 Mathematical method and computational 
implementation
2.3.1 Preprocessing
The flowchart for computation of Heart Energy Signature
(HES) is shown in the Appendix A [see Figure 15]. The
first step in pre-processing heart sounds is normalization
of the data. By doing so, the heart sounds obtained from
different instruments and measurements may be com-
pared. That is, normalization makes data instrument and
measurement independent. The amplitude of heart
sounds may vary widely, depending upon the location of
the sensor used and the measurement system, e.g. phono-
cardiograph (PCG) vs. electronic stethoscope. To stand-
ardize the comparison of heart sounds in the time
domain, they are normalized to have their amplitude vary
between [-1,+1]. The process of normalization of the sig-
nal x(t) to [-1,+1] amplitude range is well known in signal
processing. The basic steps include:

1. find the minimum xmin and the maximum xmax values of
the signal

2. divide the signal by 0.5*|xmax - xmin|

Presentation of the time signal in the normalized form is
important, since the same signal can appear differently at
different amplitude scales. Furthermore, normalization of
the heart signal creates the signal presentation with easily
computed proportionality relationships between the
amplitudes of the signal at various time instances.

After normalization, the next step in the heart sound
processing is computation of heart sound energy, as
described in the following section.

2.3.3 HES derivation using joint time frequency transformation
The energy of a signal x(t), including both acoustic and
PCG signals, is proportional to the squared amplitude of
the signal. The signal energy E, contained at the time inter-
val [t, t+T] is computed as

The time plot of the heart sound PCG displays the ampli-
tude of the sound at each instant, i.e. no information
about the energy is displayed. An accepted principle in
acoustics is that the energy of the single frequency acoustic
signal at each instant is proportional to the squared
amplitude of the signal and the squared frequency of the
signal. Computation of the acoustic energy is particularly
difficult where the acoustic signal consists of many signals
with fast changing frequency components. In this case, the
acoustic energy must be presented in the form reflecting
its energy content at each instant at the various frequen-
cies contained in the signal. Thus, one must compute
acoustic energy as a function of both time and frequency:
E = E(t, f).

The best method to compute heart sound energy is to uti-
lize joint time-frequency distribution (JTFD). JTFD
reflects the distribution of the signal energy in the time-
frequency plane [51,52]. However, JTFD may not mathe-
matically satisfy energy properties, i.e. to be positive
throughout time-frequency plane. In order for distribu-
tion to have the same properties as energy, the chosen dis-
tribution has been modified to be a real positive value at
each point of the time-frequency plane. Steps to obtain
such distribution are outlined below.

A large number of time-frequency distributions of a signal
x(t) are given by Cohen's class as

E x t dt
t

t T

=
+

∫ | ( )|2 (1)

C t, f   x t   x t   e  * j t j f j u( ) ( , ) ( ) ( )= + −∫∫∫ − − −1
2π

φ θ τ τ τ θ π τ θ
2 2

2 dd dudτ θ ,

(2)
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(A, B). Heart Energy Signature Spectrogram obtained using pseudo Wigner-Ville joint time frequency distributionFigure 2
(A, B). Heart Energy Signature Spectrogram obtained using pseudo Wigner-Ville joint time frequency distribution. A) Two con-
secutive heart beats showing S1 heart sound, innocent murmur, S2 heart sound and S3 heart sound. Period between S1 and S2 
is systolic and between the S2 and neighboring S1 diastolic. For display purposes 0.4 sec of diastolic period (between S3 and S1 
were cut out of the image [see Additional file 1]. B) "Zoom in" on the first heart beat showing end of S1, murmur, S2 and S3 
sounds. C) Image Detail – Same Spectrogram as shown in Figs. 2(A,B).

                         S1      Murmur          S2(sp)       S3                                 S1       murmur                S2

A)

                          Murmur                                   Split S2                         S3 

B)

Power
S1:     (1)  (2)       S1 shows split

Power
S2:  A2   P2                   S3   

S2 shows clear A2 and P2 on the same 

plot, S3 is clearly visible

C)
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where t is time, f is frequency and τ is the running time.
The function φ(θ, τ) is the kernel defining distribution
properties. If the kernel φ(θ, τ) = 1, we obtain the Wigner-
Ville Distribution (WVD):

The WVD can be regarded as theoretically optimal in that
a maximum number of desirable mathematical properties
are satisfied [51]. In the field of the signal processing all
time-frequency distributions of Cohen's class can be com-
puted by means of convolution of the Wigner distribution
with a two-dimensional impulse response function [52].

For the kernel φ(θ, τ) = μ(τ), we obtain the pseudo WVD
(PWVD). The Gaussian sliding window function μ(τ) is
used having an optimal time-frequency concentration:

h(τ) = A exp(-σ2τ2), (6)

where A and σ are real positive constants.

The WVD and PWVD may not necessary be positive func-
tions at each point on the time-frequency domain for gen-
eral signals. From the energy concept, it would be more
convenient to work with a positive function, as in the case
of magnitude of FFT. The WVD can artificially be made
positive by simply calculating its absolute value at each
point. The common interpretation of WVD as an energy
density can thus be allowed, or the intensity of a signal, to
be simultaneous in time and frequency.

Since for general signals, the WVD takes on negative val-
ues, the absolute positive form |PWVDxx(t,f)| of the
PWVD is used in the format for the HES. This guarantees
the distribution to be positive in the time-frequency plane
and makes straightforward interpretation of the distribu-
tion as the signal energy in the time-frequency.

The absolute positive form of the PWVD is used for com-
putation of the HES. Thus, the preferred method to com-
pute heart sound energy distribution is as follows:

E(t, f) = |PWVDxx(t, f, A, σ)|, (7)

where A = 1.0, σ2 = 10-5, t ∈ [τ, τ + T], f ∈ [f1, f2].

The description of PWVD implementation is given in [42]
and is implemented in a commercial software package
BSIGNAL [56], both being developed by the present
authors. Computational flowchart is given in the Appen-
dix A [see Figure 15]. The WVD distribution satisfies the
frequency marginal condition [52,54])

WVD t, f   x t   x t   e dxx
* j f( ) ( ) ( )= + − −

−∞

∞

∫
1

2π
τ τ τπ τ
2 2

,2  

(3)

PWVD t, f   x t x t  e  dxx
* j f( ) ( ) ( ) ( )= + − −

−∞

∞

∫
1

2π
τ τ μ τ τπ τ
2 2

,2

(4)

μ τ τ τ
( ) ( ) ( ),*= −h h

2 2
(5)

Table 1: Murmur frequency resolution for STFT (Fig. 4A, and Figs. 7(A-D))

Window size, w Mean frequency, Hz Half-bandwidth, Hz Peak frequency, Hz Low Frequency, Hz High frequency, Hz

HES 107.5 53.7 112.9 53.76 161.29
16 114.4 114.4 37.68 0 228.79
256 113.0 24.22 99.59 88.8 137.3
1024 113.0 21.53 102.28 91.5 123.6

Sampling frequency – 11 kHz. Half bandwidth, low frequency and high frequency are estimated from the spectral plot at 50% of maximum 
magnitude.

Table 2: Quantitative comparisons of murmur frequency resolution as presented on Fig. 2B

Murmur S1 S2

HES STFT HES STFT HES STFT

Half-bandwidth HB, Hz 20 101 36 80 28 84
Low frequency LF, Hz 80 0 32 0 48 0
High frequency HF, Hz 120 201 104 161 105 169
Page 6 of 22
(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:16 http://www.biomedical-engineering-online.com/content/6/1/16
where |X (ω)|2 is the energy density spectrum, and ω = 2πf
is the angular frequency. This equation means that the
integral of the WVD over the time variable at a certain fre-
quency ω yields the energy density spectrum of x(t) at this
frequency. This property of the WVD is expanded here to
compute the energy density spectrum for the HES format
(part E1 of the format, outlined in Sect. 2.4).

The WVD also satisfies the time marginal condition [5]

Accordingly the integral of the WVD over the frequency
variable at a certain time t yields the instantaneous signal
power at that time. Using the energy density interpreta-
tion of the PWVD, the signal energy at time t and fre-
quency f contained in a cell dt by df can be found as
|PWVDxx(t, f)|dtdf [42]. Other important signal character-
istics that can be defined from the PWVD include the
instantaneous energy of the signal, or signal power [42]

P(t) = ∫|PWVDxx(t, f)|df. (11a)

Thus, the instantaneous energy of the heart sound signal,
or the heart sound signal power, is computed for the HES
format (part C1 of the format, outlined in Sect. 2.4) as

The equation for Short Term Fourier Transform STFT is
given by

where h(t) is the analysis window function. The transform
given by the Equation (18) with the Gaussian window
function is called Gabor Transform. Since the STFT is com-
plex-valued in general, the spectrogram is used for display
purposes. The spectrogram is computed as the squared
magnitude of the STFT:

2.4 Heart energy signature (HES) format
The HES format utilizes several additional averaged and
instantaneous characteristics which may be extracted from
the HES image and source signal. The components of the
format to present heart sound energy are schematically
illustrated in Figs. 1(A,B) and in the graphic form of Figs.
2(A,B). Figs. 1(A,B) illustrate schematically generic PCG
(oscillographic heart sound display) of two heart beats
and its HES spectrogram reflection. It includes S1, S2, S3
sounds and also illustrate S2 split as well as systolic and
diastolic intervals. Fig. 1B demonstrates (maps) heart
sound components as energy contours, with shape
depending upon energy distribution in time and fre-
quency. Thus, additional heart sounds or murmurs as well
as normal S1 and S2 will be manifested as additional
energy contours and missing sounds will lead to signifi-
cant reduction or complete disappearance of these con-
tours. Contour values inside the dark zones always exceed
certain predefined energy threshold, for example 20% of
maximum energy or 50% of maximum energy.

In the majority of heart conditions a single heart beat is
sufficient to define format. Let us assume that the heart
beat is recorded during the time interval [τ, τ + T] with
measurement instrument capable of capturing frequency
range [f1, f2]. Thus, HES format includes (see also Figs.
3(A–E) and Figs. 4(A–B)):

A1. The distribution of the heart sound energy simultane-
ously in time and frequency

E = E(t, f), t ∈ [τ, τ + T], f ∈ [f1, f2] (13)

where E is heart sound energy distribution, t is time, f is
frequency.

B1. The normalized heart sound corresponding to the
heart sound energy

x = x(t), t ∈ [τ, τ + T], x(t) ∈ [-1, +1] (14)

C1. The instantaneous energy of the heart sound signal, or
heart sound power, corresponding to x(t)

P = P(t) t ∈ [τ, τ + T] (15a)

D1. Instantaneous heart sound power, corresponding to
x(t) at a particular frequency f

P = P(t) t ∈ [τ, τ + T] (15b)

| ( )| ( , )X WVD t dtxxω
π

ω2 1
2

=
−∞

+∞

∫ , (8)

D X f PWVD t f dtxx

T

= =
+

∫| ( )| | ( , )|2

τ

τ
(9)

| ( )| ( , ) .x t WVD t dxx
2 1

2
=

−∞

+∞

∫π
ω ω (10)

P t PWVD t f df t Txx
f

f

( ) | ( , )| , [ , ]= ∈ +∫
1

2

 τ τ (11b)

STFT t f x t h t e dtx
j ft( , ) ( ) ( )= − −

−∞

+∞

∫ τ π2 (12a)

S t f STFT t f x t h t e dtx x
j ft( , ) | ( , )| | ( ) ( ) |= = − −

−∞

+∞

∫2 2 2τ π

(12b)
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(A-E). Heart Energy Signature (HES) Format and Display [see Additional file 2]Figure 3
(A-E). Heart Energy Signature (HES) Format and Display [see Additional file 2]. A) Heart Energy Signature Spectrogram, cross 
hair shows locations of instantaneous extraction lines (A1: Eq. 13). B) Signal Plot (B1: Eq. 14). C) Normalized square root of 
Power (C1: Eq.15a). D) Instantaneous square root of Power, frequency = 107 Hz (D1: Eq.15b). E) Frequency Distributions (E1: 
Eq. 16). E2. Peak frequency 124 Hz, High frequency 133 Hz, Low frequency 111 Hz, half-bandwidth 11 Hz. E3. Peak frequency 
128 Hz, High frequency 153 Hz, Low frequency 107 Hz, half bandwidth 23 Hz. All measured at 50% of maximum amplitude. 

                   S1         Murmur                      Split S2

A)

B)

C)

D)

E1. Integral-murmur              E2.  FFT-murmur             E3. Instant -murmur
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(A-F). Heart Energy Signature (HES) Format and Innocent Murmur Details [see Additional file 2]Figure 4
(A-F). Heart Energy Signature (HES) Format and Innocent Murmur Details [see Additional file 2]. A) Instantaneous Peak Fre-
quency (IPF) extracted from HES (F1: Eq. 17). B) Instantaneous Mean Frequency (IMF) extracted from HES (F1: Eq. 18). C) 
Murmur Signal Plot. D) Murmur HES. E) Murmur normalized square root of power, time duration is measured 118 ms, using 
10% threshold value. F) Murmur IPF Plot. At time t = 0.263 s frequency is measured equal to 127.1 Hz.

A)

B)

C)

D)

E)

F)
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(A,B,C,D,E). Comparison of HES and STFT frequency resolution on the spectrogram, chirp functionFigure 5
(A,B,C,D,E). Comparison of HES and STFT frequency resolution on the spectrogram, chirp function. A) Three pulses of nor-
malized chirp function, linear change in frequency is shown by the darker line, on this line "-1" frequency corresponds with 60 
Hz and "+1" corresponds with 109.8 Hz. B) HES Energy Signature Spectrogram obtained using present method. C) Spectro-
gram obtained using STFT with window size w = 32. D) Spectrogram obtained using STFT with window size w = 16. Same 
color scale was utilized all three figures. E) Comparison of Frequency Resolution in the energy density spectrum between HES 
and STFT given for the same signal and moment of time (LF - low frequency, HF = high frequency, BW - bandwidth, all meas-
ured at 50% of maximum amplitude).

A)

B)

C)

D)

HES Spectrum,  t =0.5805 

s, LF=74Hz, HF=93Hz, 

BW=19Hz 

STFT Spectrum w=32, 

t=0.5805 s, LF=46Hz, 

HF=115Hz, BW=69 Hz 

STFT Spectrum w=16, 

LF=0Hz, HF=129Hz, 

BW=129Hz 

E)
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(A,B,C,D,E). Comparison of HES and STFT frequency resolution on the spectrogram, simulated S2 split function [see Addi-tional file 3]Figure 6
(A,B,C,D,E). Comparison of HES and STFT frequency resolution on the spectrogram, simulated S2 split function [see Addi-
tional file 3]. A) Phonocardiogram: two realistic S2 narrow split test. B) HES Spectrogram (two separate energy contours are 
clearly seen). C) STFT w = 256 Spectrogram (separate counters united together, split is lost). D) HES Integral Power Plot 
showing excellent split resolution accuracy at mid point DTS1 = 14.6 % of the peak, DTS2 = 2.9% of the peak. E) STFT Spec-
trogram w = 256 Power Plot (split is completely lost) accuracy at mid point DTS1 = 78.5% of the peak, DTS2 = 66% of the 
peak.

                  DTS1=20 ms                     DTS2=41 ms 

A)

B)

C)

D)

E)
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E1. The energy density spectrum of the heart sound, cor-
responding to x(t)

D = |X(f)|2, f ∈ [f1, f2] (16)

F1. Instantaneous mean and peak frequency of the heart
sound signal, corresponding to E(t,f). Instant peak fre-
quency (IPF) = frequency f* for given t*, for which

E(t*,f*) = Max(E(t*,f)) (17)

Instant mean frequency, or IMF, defined as

The HES can be stored as a digital file and displayed visu-
ally. Its visual representation consists of a following set of
quantitative plots and images (Figs. 3(A–E), Figs. 4(A,B)):

• a two-dimensional image (2D) representing the distri-
bution of the heart sound energy simultaneously in time
and frequency as defined in A1 (Fig. 3A)

• a time plot of the normalized heart sound correspond-
ing to the heart sound energy as defined in B1 (Fig. 3B)

• a plot of the instantaneous energy of the heart sound, or
heart sound power, as defined in C1 (Fig. 3C)

• a plot of the instantaneous energy of the heart sound at
a given frequency, or heart sound power at a given fre-
quency, as defined in D1 (Fig. 3D)

• a plot of the energy density spectrum of the heart sound,
as defined in E1 (Fig. 3E).

• a plot of the time averaged energy density spectrum
computed by Fast Fourier Transform FFT (Fig. 3E2)

• a plot of the instantaneous peak (Fig. 4A) and mean
(Fig. 4B) frequencies, as defined in F1

These plots help to provide a comprehensive description
and quantitative differentiation of heart abnormalities.
For example, Fig. 3A provides qualitative visualization of
every cardiac sound event, including S2 split and gives
instantly visual ranges of change in frequency and time.
Fig. 3C provides us with precise estimation of S2 split
duration (time distance between peaks is equal to 30 ms)
and S2 duration (75 ms) and provides relative scale of
intensity for systolic murmur (30% of maximum power).
Fig. 3D provides the same measure, but at the dominant
murmur frequency of 125 Hz (horizontal line on Fig. 3A).
On that frequency murmur power is increased to 45% of
maximum. Fig. 3E1 shows the energy density spectrum of
murmur obtained from HES for entire murmur time dura-
tion (murmur peak is at 125 Hz and half-bandwidth at
50% magnitude is 21 Hz), same spectrum obtained by
FFT is shown on Fig. 3E2 (peak frequency 124 Hz, half-
bandwidth 11 Hz and on Fig. 3E3 we show instant energy
density spectrum obtained at murmur intensity peak (ver-
tical line on Fig. 3A), showing peak at 128 Hz and half-
bandwidth of 23 Hz. This instantaneous frequency distri-
bution can be obtained at any time instant for murmur or
any other sound component. We also measure effective
frequency bandwidth (lower frequency LF and high fre-
quency HF) at 50% of the magnitude on the spectrum dis-
tribution. Instantaneous peak and mean frequencies
extracted from HES are shown on Figs. 4(A,B) where we
can clearly see dominant frequencies of S1, S2 and mur-
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(A,B,C). STFT Heart Sound Resolution (same heart sound that is shown in Figs. 3(A-E))Figure 7
(A,B,C). STFT Heart Sound Resolution (same heart sound 
that is shown in Figs. 3(A-E)). A) STFT, time window w = 16, 
frequencies are overstretched, time resolution is good. B) 
STFT, time window w = 256, frequencies are crude, time 
resolution is compromised (no split), image is pixilated. C) 
STFT, time window w = 1024, frequency resolution is good, 
time resolution is completely compromised, image is pixi-
lated.

A)

B)

C)
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(A, B, C, D). STFT Heart Sound Time Resolution (same heart sound that is shown in Figs. 3A and B, sampling rate 11 kHz)Figure 8
(A, B, C, D). STFT Heart Sound Time Resolution (same heart sound that is shown in Figs. 3A and B, sampling rate 11 kHz). A) 
Power Plot HES. B) Power Plot STFT, window w = 16. C) Power Plot STFT, window w = 256. D) Power Plot STFT, window w 
= 1024.

A)

B)

C)

D)
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mur. Murmur frequency varies in time between 100 to
150 Hz; S2 frequency varies between 160 to 100 Hz and
S1 changes between 70 to 145 Hz. Instantaneous jumps in
frequency can be visualized, measured and correlated
with extra sounds(clicks, snaps, splits, etc). To further
illustrate HES format ability to characterize heart sound
we extracted murmur signal from the heart sound (Fig.
4C) and analyzed it separately. Murmur energy signature
is depicted in Fig. 4D showing narrow frequency width,
with data extraction performed at vertical and horizontal
lines. From this image mean frequency of 125 Hz, fre-
quency half-bandwidth 20 Hz, lower frequency 102 Hz
and high frequency 142 Hz are measured. On Fig. 4E the
murmur instantaneous power change at dominant fre-
quency is shown. The horizontal line drawn at 10% power
threshold shows murmur start, end points and timing of
murmur energy peak (0.262 sec). Fig. 4F shows instanta-
neous murmur frequency variation, with frequency being
125 Hz at murmur energy peak.

2.5 Heart sound data
In developing this method heart sounds that were
recorded between 1980–91 by one of the authors at the
Department of Pediatric Cardiology, IWK Center at Dal-
housie University, Canada were utilized. Heart sounds
were collected at four major auscultation positions, and
subsequently documented as a database which included
auscultation position, binary wave sound track (recorded
at 11 kHz sampling rate), clinical diagnosis and ausculta-
tory diagnosis. Most of this data was subsequently
included in the educational teaching system, EarsOn [50]
which included 260 clinical recordings and which was
successfully utilized in the teaching of medical students
and physicians [3]. All heart sound recordings used in this
paper are from that database (see Additional files 1, 2, 5,
6, 7, 8, 9), and no artificial or simulated sounds have been
used.

3.0 Results and Discussion
3.1 Overview – what can we do with HES
New hardware and digital sound recording technologies
can not completely revitalize old approaches (i.e. PCG or
spectrograms) unless new methods present new advan-
tages. The HES spectrogram offers a variety of new tools
that may greatly reduce all existing disadvantages of PCG
(see Sect. 1.2). By allowing dynamic separation of signal
contributions (tones) in frequency and space intrinsic
details of signal morphology are demonstrated. The HES
spectrogram does not require special filtration. Back-
ground and line noise equally contribute to the entire
spectrogram and thus are effectively eliminated from the
visual image. The time dependent heart power plot deci-
phered from the HES spectrogram allows easy identifica-
tion of start and end points of various heart sound
components, showing as well separate peak components
when signals are split. The method allows objective char-
acterization of both time-averaged and instantaneous
murmur's mean and peak frequencies and effective band-
width, thus aiding in subsequent murmur classification.
Folded multi-component frequencies are immediately
visualized and documented on the HES image (Eq. 13).
Integral HES energy (power plot, Eq. 15a) allows provi-
sion of a very detailed characterization of murmur and
heart sound intensity (as it changes with time), offering
unlimited possibilities to introduce precise digital scores
to replace subjective Freeman-Levine system [59] of mur-
mur intensity grades. Finally, the combination of PCG,
HES image, power and frequency plots (Eqs. 13–18),
allow much easier separation and identification of heart
sounds, without the necessity of additional synchronized
ECG tracings. These data plots also offer precise ability to
measure timing of cardiac sound events, durations, delays
and documentation of arrhythmias (variation in distances
between energy peaks) if present. Additionally, HES offers
the possibility of correlating time varying frequency (Eqs.

(A,B,C). Spectrogram Method signal resolutionFigure 9
(A,B,C). Spectrogram Method signal resolution. A) Original 
Recording (PCG). Displayed using Meditron Analyzer soft-
ware (Welch-Allyn, NY). [See Additional file 1]. B) Spectro-
gram obtained using Nero Wave Editor Software. C) 
Wavelet Scaleogram (obtained using wavelet transform, 
Nero Wave Editor Software).

S1  Murmur  S2   S3                                          S1  Murmur  S2   S3

A)

   
           S1  Murmur   S2  S3                                              S1  Murmur   S2  S3          

B)

         S1  Murmur   S2  S3                                              S1  Murmur   S2  S3          

C)
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17–18) and intensity (Eqs. 15 (a,b)) of heart sounds with
time dependent C-Doppler velocity profiles or M-mode
ultrasound. This is done by a virtue of providing precisely
calculated time varying mean frequency, instantaneous
frequency and signal energy derived from the HES image.
Rabin [63] directly correlates murmur intensity and mur-
mur frequency with velocity and pressure gradient
through an obstruction.

3.2 Examples of innocent murmurs using HES 
spectrograms
An example of a HES spectrogram for the innocent Still's
murmur is presented in Fig. 2A with additional details
shown in Figs. 2(B,C). The key characteristic of this image
is the sharp resolution, making it possible to visually iden-
tify every component of the heart sound in a manner sche-
matically described in Figs. 1(A,B). This heart sound is
recorded at the apex. S1 is followed shortly by a 2+/6
systolic murmur of distinct musical quality. S1, S2 and S3
sounds are easily heard, and S2 sound is single to the
experienced auscultator. However HES indicates narrow

(A, B, C, D). Changes in the STFT Spectrogram due to change in the window sizeFigure 10
(A, B, C, D). Changes in the STFT Spectrogram due to change in the window size. PCG is shown on Fig. 9A, Spectrograms 
shown on A), B) and C) were obtained using Meditron Analyzer software distributed by Welch-Allyn, NY. Also compare 
against the Fig. 2 obtained using HES method. [see Additional file 1]. A) Window size w = 1024 points (better time resolution). 
B) Window Size w = 2048 points. C) Window Size w = 4096 points (better frequency resolution). D) HES spectrogram (see 
also in greater detail in Figs. 2(A-C)).

S1        S2                          S1          S2               S1        S2                            S1        S2 

A) B)

                 S1        S2                          S1          S2 S1 M  S2 S3                    S1 M S2 

C) D)
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splitting of A2 and P2, illustrating the capability of the
method. To illustrate the quantitative side of this method,
instantaneous mean frequency characteristics were meas-
ured for murmur at times t = 0.4 s; 0.43 s; 0.45 s and 0.47
s. Murmur mean frequency and half-bandwidth were cor-
respondingly 112.9/13.4; 106.2/14.8; 99.5/10.7; 94/13.4
(all measured in Hz) all consistently demonstrating nar-
row frequency bandwidth.

A second example of an innocent murmur recording of a
pediatric patient is shown in Figs. 3(A–E) and 4(A–F).
Sound recorded at 2nd LSB. These figures contain 13 com-
ponents and demonstrates full graphic representation of
HES image and format. The first five key elements are
shown one below the other. The HES image shows corre-
sponding flooded energy contours (Fig. 3A). The PCG of
a single heart beat shows S1, murmur and split S2 sounds
in a consecutive order (Fig. 3B). Power plots of Figs. 3C
and 3D illustrate the most significant energy components
and their gradients. Fig. 3C demonstrates the integral
power plot (energy integrated across all frequencies) and
in Fig. 3D power is extracted at a pre-selected murmur fre-
quency (shown as a horizontal line at the cross-hair, Fig.
3D), The power plot clearly shows the maximum ratio of
murmur to S2 intensity to be equal to 32%, which is con-
sistent with clinical impression of the murmur being of
2+/6 intensity [50]. The instantaneous frequency plot
(Figs. 4A and 4B) illustrates the start and end of each heart
sound. The variation of frequency of these components is
also seen. Clearly demonstrated is that the murmur fre-
quency decreases, that S3 frequency is the lowest; and that
S2 has two frequency components separated in time.

The following three components are presented in Fig. 3E
and represent:

1) energy density spectrum of the heart murmur (E1),

2) murmur time averaged frequency spectrum, obtained
using FFT (E2), and

3) instantaneous energy density spectrum of heart mur-
mur at its peak intensity (vertical cross-hair at the Fig. 3A).

Statistical characteristics of murmur frequency spectrum
(peak frequency, mean value, bandwidth around mean
value) and all numerical frequency criteria are obtained
using equations (17–18) by integrating the energy signa-
ture image. Corresponding murmur detail and its HES are
shown in Figs. 4C and 4D. Murmur oscillations are evi-
dent (basically non-musical), the frequency band of
which is shown in detail, confirming the clinical diagnosis
of innocent flow murmur [39,50].

In Figs. 4D and 4E, "zoomed in" details of the HES are
demonstrated, as well as detail of Doppler echo-like mur-
mur intensity variation plot. The detail of the instantane-
ous murmur frequency plot (Fig. 4F), showing the
murmur gradually increasing its frequency from 80 Hz to
125 Hz and then reducing it to 70 Hz, is also shown. Eas-
ily seen is that while time averaged frequency and instan-
taneous time frequency bands are narrow, the time
dependent variation of the frequency spectrum of the
murmur is significant. Abrupt start and end points of the
murmur are clearly evident in these plots.

3.3 STFT spectrogram accuracy vs. new method
Classic spectrograms display frequency on the vertical axis
and time on the horizontal, and plot sound intensity
(measured in decibel) as a color map. They utilize Short
Term Window Fourier Transform (STFT), which is a first
order method and is subject to the uncertainty principle,
whereby one cannot achieve simultaneous resolution in
both frequency and time [32]. Publications concerning
signal processing also point to the inadequacy of the STFT
method [28-30].

3.3.1 Comparison using model signals
In Figs. 5(A–E) comparison of the accuracy of newly
developed HES method vs. STFT spectrogram method
(Eqs. 12a and 12b) is shown. Labview V7.0 (National
Instruments, Austin, TX) was utilized for STFT analysis
with Hanning time window (w). In all cases frequency res-
olution window was set to be 2048 points. On Fig. 5A we
present our test signal – basic chirp (6 kHz sampling rate)
that emulates linear change in frequency between 60 Hz
and 110 Hz (Eq.19). Similar test results are also presented
in [58]. Shown also are: HES energy signature spectrogram
in Fig. 5B; two examples of STFT spectrograms with time
windows w = 32 and 16 data points in Figs. 5(C,D) and
quantitative frequency resolution comparison in Fig. 5E.
We conclude that HES frequency resolution at signal peak
is +-9.5 Hz and is 3.7 to 6.78 times better than STFT reso-
lution. At signal peak HES mean frequency estimate 82.11
Hz matches very well (3%) with analytical chirp fre-
quency of 84.9 Hz. Accuracy of temporal resolution was
studied using model function derived from real heart
sounds (Fig. 6A, sampling frequency 11 kHz). This func-
tion [see Additional file 3] includes two events (DTS1 and
DTS2), each event presenting a narrow time split cardiac
sound. DTS1 has 20 ms split and DTS2 has 41 ms split.
HES results are presented on Fig. 6B and STFT (w = 256)
results are presented on Fig. 6C. Matching power plots are
presented on Figs. 6D(HES) and 6E (STFT). Clearly seen is
that HES provides excellent visual separation of both tem-
poral events, and time split is evident and measurable on
energy contour plots and integral power plot. STFT spec-
trogram images are smeared, there is no visual separation
and split is lost on the power plot. HES temporal accuracy
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at split mid point is 14.6% for DTS1 and 2.9% for DTS2,
while correspondingly STFT temporal error is 78.5% and
66%.

In Figs. 7(A,B,C) STFT spectrograms that correspond to
the HES image of Fig. 3A are shown. Clearly seen is that
short window (Fig. 7A) overstretches frequency range,
medium size window (Fig. 7B) provides very crude visual
resolution and large size time window (Fig. 7C) com-
pletely smears all important components of the heart
sound. Matching integral power plots obtained using Eq.
15a are presented in Figs. 8(A,B,C,D). Shown also is the
excellent HES resolution of S2 time split (Fig. 8A), excel-
lent time resolution of short window STFT (Fig. 8B), the
bad time resolution for medium size STFT window (S2
split is lost, Fig. 8C) and the poor time resolution for large
size STFT window (S1,S2 and murmur are smeared
together, Fig. 8D). Corresponding quantitative frequency
resolution measures are presented in Table 1. Again seen
is that frequency resolution for STFT time windows w =
256 & 1024 is good, but image quality is pixilated, and
time resolution for these windows is grossly insufficient
(Figs. 8C and 8D). Time resolution for STFT window w =
16 is excellent, but frequency resolution is grossly overes-
timated, lower bound of frequency is completely lost
(zero Hz), upper bound is exaggerated by 41% and fre-
quency bandwidth is exaggerated by 215%.

3.3.2. Comparison using clinical heart sound and third party software
In this section comparison of the STFT spectrogram
method with our newly developed method using example
of a clinical heart sound is carried out. The original record-
ing is also presented in Figs. 3(A–E) and 4(A–F) (using
new method), the heart sound recording being that of an
innocent murmur (musical) of a child, the sound track
being recorded with 11 kHz sampling rate. To enable fur-
ther research and comparisons the sound track is attached
[see Additional file 2]. The STFT spectrograms shown were
obtained using state-of-the art Meditron Analyzer soft-
ware (FDA cleared clinical product distributed by Welch
Allyn, NY) using its default (best) transformation option
– Hanning window with 1024, 2048, 4096 data points
correspondingly. A typical clinical complaint concerning
this method is that clear separation of heart sounds is not
allowed, and that precise identification of A2 and P2 com-
ponents and their split is difficult. In Figs. 9(A,B) and
10(A,B,C), spectrograms obtained using STFT are shown,
which currently have been the only means of obtaining
dynamic content of the heart sound spectral signal. Quan-
titative data extraction is not possible as it is not possible
using current third party software.

Recent studies [16-19,23-25] show similar spectrograms,
also without presenting quantitative details. Certain
researchers (i.e. Bentley et al [55]) simply select window

function and its parameters (i.e. length) for a particular
heart signal by trial and error. This leads to ambiguity in
time-frequency resolution to the point that two STFT com-
puted for the same signal, but with different window func-
tion parameters, could hardly be identified as computed
for the same signal This is clearly demonstrated by com-
parison of Fig. 7A and Fig. 7C). Results presented in Figs.
10(A,B,C) illustrate this ambiguity as it is not clear which
resolution is correct. Window sizes w = 1024, 2048, 4096
data points with sampling rate of 11 kHz were employed.
Small size window will improve time resolution, but will
have poor frequency resolution and vise versa.

A recording of an innocent murmur of a child (Fig. 9A) is
used to demonstrate the drawbacks of the wavelet
method. The spectrogram detail is shown in Fig. 9B, while
Fig. 9C illustrates the wavelet transform based scaleogram
approach similar to one used by Kim and Tavel [24].
Wavelet results were obtained using commercial music
editing software Nero Wave Editor and are presented here
for illustration purposes. While some correspondence
between waveforms and wavelet scaleogram "splashes" is
seen, detailed resolution remains insufficient and the
image becomes highly smeared, especially at lower fre-
quency range. This behavior is typical for wavelet trans-
form and similar appearing visual images have been
reported [27,30]. It has been indicated [62] that STFT and
wavelet transform have similar resolution and that
improved localization of acoustic events will be useful.
Wavelet based visual images (contours) were also
reported by Tovar Corona et al. [20,21], however the arti-
cle presents very sketchy results and method description.
It is well established in the signal processing literature
[28,30,54] that the STFT spectrogram image is window
size dependent, as is clearly seen in the Figs. 10A,B, and
10C. As window size (number of computational points in
the sample) increases, the time resolution of the spectro-
gram decreases (increased horizontal smearing), resulting
in improved frequency resolution. These trends are mutu-
ally exclusive. Separating the murmur from S1 is very dif-
ficult, and detecting S3 with certainty is virtually
impossible, as in Fig. 10A, which initially appeared satis-
factory, Figs. 10B and 10C become unusable. Close anal-
ysis of spectrograms (Figs. 10A, 10B, 10C)) also indicates
the tendency to overestimate the upper frequency bound
of the signal, especially when improved time resolution is
sought. This in turn leads to unrealistic and significantly
overestimated conclusions about murmur frequencies.
The HES method based spectrogram of the same record-
ing is shown in Fig. 10D and in greater detail in Figs. 2A
and 2B. HES is the second order method and simultane-
ously resolves both time and frequency and separate all
key components of the heart sound. This can be seen from
Fig. 2A. Fig. 2B clearly demonstrates the detail of Fig. 2A,
focusing on the murmur at the end of S1, and on S2 and
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S3 sounds. Note a clear separation of the heart murmur,
and that aortic and pulmonary components of P2 are
clearly visible. One also sees in S1 clear separation of
mitral and tricuspid components in the power (energy)
vs. time plot (Fig. 2C). We can also identify from the plot
time the delay between S2 and S3 as well as their duration.
In Table 2 we provide further quantitative comparison of
murmur, S1 and S2 time averaged frequency resolution
using HES and STFT (obtained by the authors using
method described in Sect 3.3.1 and Eqs. 12a and 12b,
time window w = 16 data points, frequency window 2048
data points). STFT exceeds upper frequency estimation by
60 to 66% and frequency bandwidth estimation between
2.2 to 5 times.

Several other relevant issues and especially end point
detection using HES, PCG, STFT and effects of filtration
are discussed in the Additional file 4.

3.4 Analyzing heart energy signature
One common and distinctive feature for most heart
abnormalities is the appearance of additional energy con-
tours, as depicted in Fig. 1B. Here S1 and S2 contours are
"normal" (responsible for typical lub-dup sound) and
additional contours may indicate murmurs, and extra
sounds. For most of these circumstances (additional dark
contours) evaluation by the cardiologist will be required.
Figs. 11(A,B), 12(A,B), 13(A,B) and 14(A,B) show PCGs
and corresponding HES for cases of heart disorders dem-
onstrating systolic clicks and murmurs. Figs. 11(A,B) illus-
trate mitral valve prolapse (MVP) with three clicks being
elicited on cardiac auscultation. The HES figure shown in
Fig. 7B clearly indicates 3 extra energy contours located
between S1 and S2 in late systole and which are on the left

and right hand side correspondingly. Detecting the exact
number of clicks by auscultation is a challenging task.
Figs. 12A and 12B present the case of aortic stenosis of
moderate severity. Fig. 12B illustrates the appearance of a
complex energy contour (consisting of 3 components)
between S1 and S2, with S1 having two components, the
second of which represents an aortic ejection click. Note
that the S2 energy contour shows higher frequency at first
(A2 component), followed by lower frequency P2 compo-
nent. The murmur occurs in the middle of the systolic
interval, with high frequency not exceeding 150 Hz. Note,
that PCG (Fig. 12A) does not show clear separation of S1
from the murmur, while HES demonstrates a clear time
border. In the murmur of pulmonary stenosis, as dis-
played in Figs. 13A, S1 is not seen. This becomes more evi-
dent in Fig. 13B. The murmur is represented by a long and
wide energy contour, with high frequencies reaching 230
Hz, correlating with the high degree of obstruction that
was clinically diagnosed for that patient [50]. The mur-
mur begins early in systole, ending before S2. Strong cor-
respondence between the pressure gradient (obstruction)
and murmur frequency was also demonstrated clinically
by other authors [60,61,63]. Figs. 14(A,B) demonstrate an
example of Tetralogy of Fallot. This murmur is not associ-
ated with post-stenotic valvar dilatation. The murmur has
a similar appearance with pulmonary stenosis (Figs.
13(A,B)), but is longer and occupies entire systole, with
frequencies reaching 250 Hz. S1 sound is also clearly seen.

We conclude that abnormalities may be detected using
overall and immediate visual contrast i.e. self-referencing
property of HES image. By also utilizing the quantitative
nature of the above displays, the ability to demonstrate
murmur pitch, for example, is shown.

(A, B). Abnormal Heart Sound of Mitral Valve Prolapse (3 clinical clicks) [see Additional file 5]Figure 11
(A, B). Abnormal Heart Sound of Mitral Valve Prolapse (3 clinical clicks) [see Additional file 5]. A) PCG (2 heart beats). B) HES 
(single heart beat).

                 S1  Cls  S2
                             S1            Clicks  S2

A)  B)  
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4.0 Future Work
Future work will focus on documenting various important
characteristics of HES spectrograms and specifically on
their ability to characterize heart murmur frequency, S2
heart sound frequency and its split, murmur timing and
duration, murmur intensity, S3 sound presence and inten-
sity, S1 presence and intensity, presence of ejection
sounds and arrhythmias. The library of heart sounds of
one of the authors [3,50] will be utilized to conduct these
studies. The systolic ejection click is a very difficult auscul-
tatory event for the physician to elicit, yet may be the sin-
gle abnormal finding. One study currently in progress is to
study a cohort of patients with a heart murmur to deter-

mine blindly whether the murmur is innocent or abnor-
mal. A study of patients with systolic ejection clicks by
HES is in process. The ultimate goal is to have available a
low price bedside automated diagnostic tool to supple-
ment the existing problem of low auscultatory skill of the
family physician.

Conclusion
In this paper a new method and format of analyzing heart
sounds using Cohen class joint time-frequency transfor-
mation is presented. Initial results of applying these meth-
ods to normal and abnormal heart sounds are
demonstrated. This method allows detailed quantitative

(A, B). Abnormal Heart Sound of Pulmonary Stenosis (single heart beat) [see Additional file 7]Figure 13
(A, B). Abnormal Heart Sound of Pulmonary Stenosis (single heart beat) [see Additional file 7]. A) PCG (single heart beat). B) 
HES (single heart beat).

                                  Murmur    S2 

A)

                                Murmur    S2 

B)

(A, B). Abnormal Heart Sound of Aortic Stenosis (single heart beat) [see Additional file 6]Figure 12
(A, B). Abnormal Heart Sound of Aortic Stenosis (single heart beat) [see Additional file 6]. A) PCG (single heart beat). B) HES 
(single heart beat).

                    S1        Murmur     S2 

A)

                    S1           Murmur         S2 

B)
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characterization of heart sounds and uses both visual
images and a system of integral plots that characterize
time averaged and instantaneous sound intensity and fre-
quency variations. Examples of the innocent murmur,
mitral valve prolapse, pulmonary and aortic stenosis, and

Tetralogy of Fallot are presented. All heart sound compo-
nents, i.e. S1, S2, S3, murmurs and sound splits, were
clearly separated in time and frequency. High resolution
of generated heart sound images, in both time and pitch,
are demonstrated, presenting a distinctly improved qual-
ity to traditional spectrogram images (based on SFFT).
The resulting visual images have self-referencing quality,
whereby individual features and their changes become
immediately obvious.The procedure also offers a new
parameter for cardiac research, which, for example by vir-
tue of its ability to portray third heart sounds [58], may
well play a valuable part in the management of patients
with coronary artery disease. Current ACC/AHA Guide-
lines recommend that patients with unstable angina and
a concurrent auscultated S3 be classified in the group at
highest risk for adverse outcomes and considered candi-
dates for an early invasive strategy [58].

Additional material

Additional file 1
Innocent Still's Murmur 1. Binary soundtrack of an innocent murmur 
used in Figures 2 and 10. Heart sound is recorded at the apex.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S1.wav]

Additional file 2
Innocent Stills Murmur 2. Binary soundtrack of an innocent murmur 
used in Figures 3 and 4. Heart sound is recorded at LSB, 2nd space.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S2.wav]

Flowchart illustrating the basic steps for Heart Energy Signa-ture spectrogram computational implementation.Figure 15
Flowchart illustrating the basic steps for Heart Energy Signa-
ture spectrogram computational implementation.

(A, B). Abnormal heart sound of Severe Tetralogy of Fallot (acyanotic) [see Additional file 8]Figure 14
(A, B). Abnormal heart sound of Severe Tetralogy of Fallot (acyanotic) [see Additional file 8]. A) PCG (single heart beat). B) 
HES (single heart beat).
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Additional file 3
Test file for S2 split detection. Binary soundtrack of realistically simulated 
two S2 heart sound splits shown in Figure 6. Each split has its own char-
acteristic interval.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S3.wav]

Additional file 4
Clinical Recording of VSD. Supplemental study that illustrates Heart 
Energy Signature (HES) characterization of Ventricular Septal Defect 
(VSD), illustrates accuracy of end point detection using phonocardio-
gram, various filters, HES.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S4.pdf]

Additional file 5
Mitral Valve Prolapse with 3 clicks. sound track for Fig. 11.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S5.wav]

Additional file 6
Aortic Stenosis. sound track for Fig. 12.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S6.wav]

Additional file 7
Pulmonary Stenosis. sound track for Fig. 13.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S7.wav]

Additional file 8
Tetralogy of Fallot (acyanotic). sound track for Fig. 14.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S8.wav]

Additional file 9
Ventricular Septal Defect (VSD). Sound track for Additional file 4
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-6-16-S9.wav]
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