

第 15 巻 第2期 1998年6月

0571.3

沿 Z=0.743N+11.6 质子滴线分布 的稀土区新核素的合成与研究

李占奎 徐树成 谢元祥 马瑞昌 (中国科学院近代物理研究所 兰州 730000;

摘 要利用与延发质子符合的子核中已知的第一个 2+→0+(基态)的 γ 跃迁来鉴别其 β 延发质子 先驱核的方法已在实验中得到证实,并在兰州重离子加速器 SFC 上用氮喷嘴快速带传输系统成功 地合成与研究了沿 Z=0.743N+11.6 质子滴线分布的稀土区新β延发质子先驱核¹¹⁵Gd 和¹²Ce、该 鉴别方法在缺中子稀土区新核素合成中将具有很大的应用前景。 新核素合成

关键词 p-y符合 氮喷嘴快速带传输系统 以延发质子先驱核

分类号 0571.3

1 引 言

合成与研究极限状态下的原子核是当代 原子核物理基础研究的前沿领域之一,故而 在新核素合成与研究这一重大课题中,中质 比(N/Z)处于极端值,即极丰中子或极丰质 子的滴线区核素及其奇异衰变性质的研究尤 为引人注目、在缺中子稀土区,原子核形状经 历极复杂的变化,在其质子滴线附近可观测 到直接质子发射、重离子集团发射和 β 延发 质子衰变等奇异衰变模式,研究这些模式可 得到丰富多样的核结构信息,可研究形变对 奇异衰变的影响这一新的物理机制, 经过国 外核实验室近 30年的努力,这个区域的研究 进展很快,已发现了几十个具有奇异衰变性 质的新核素,其研究前锋直逼质子滴线.Betaud 等人[1]认为:在研究缺中子稀土区时确 定质子滴线位置是最有兴趣的,并指出 Hofmann^[2]预言的 Z=0.743N+11.6 公式可以 用来推测这个区域中质子放射性的最丰中子 的候选核,目前在核素图上就此预言的质子 滴线距离缺中子稀土区已知核素的边缘线平 均来说,仅相差两个质量数单位(如图1所

示),有望取得突破性的进展。所以率先进入 Z=0.743N+11.6 质子滴线区, 就成为众多 研究者所关注的问题,并且进行了一些有益 的尝试[1~1].

2 鉴别方法的改进

由于滴线区核素半衰期很短,生成截面 非常小,而其奇异衰变道分截面更小,所以 为了合成和鉴别某些未知核素,并能研究它 们的弱分支比的奇异衰变性质,就需要一套 高灵敏度的实验方法,这对于实验物理学家 来说,无疑是一种挑战.

前人鉴别缺中子稀土区的日延发质子先 驱核所采用的基本工具是在线同位素分离器 (ISOL) 经 ISOL 分离后, 在同一质量数链 中核反应产生的先驱核往往多于一个,来自 不同先驱核的质子连续能谱彼此重叠,要识 别这些先驱核或测量某一先驱核的缓发质子 能谱就需要作进一步的区分,比如采用特征 X 射线和β缓发质子(X-p)符合等方法,由于 ISOL 的分离效率低, 缺中子稀土区核素特 征 X 射线的发射几率也低,研究生成截面小 的目标核就会碰到困难^[4]. 看来寻求新的分

^{1998 - 01 - 14} 收稿, 1998 - 04 - 03 收到修改稿,

^{*} 国家自然科学基金(项目号 19475055)和中国科学院八五重大项目子课题资助。

离鉴别手段是必要和有益的.

本小组采用一种别具特色的核素鉴别方 法——"p- γ "符合方法,成功地合成了稀土 区沿 Z = 0.743N + 11.6 质子滴线分布的新 核素¹³⁵Gd 和¹²¹Ce^[8](图 1 中以★表示的核 素).一般来说,质子滴线区核(先驱核)有很 大的EC/ β ⁺衰变能(Q_{EC}),其衰变子核的质子 分离能(S_p)又很小(略大于零),故衰变后处 于激发态的子核很容易发射质子而成为质子 发射体.分析前人有关 β 延发质子衰变的实 验数据^[5]则不难发现:当偶 Z-奇 N 的延发质 子先驱核发生 EC/ β ⁺衰变后,其奇(Z-1)-偶(N+1)质子发射体以一定的分支几率发 射质子而成为偶(Z-2)-偶(N+1) 子核. 根 据 β 衰变选择定则和角动量耦合的相加规则, 布局到偶-偶子核激发态的几率将相当 大, 并最终经其低位能级的第一个 2+态退激 到基态(0⁺)、因此, 与延发质子符合的子核 中已知的第一个 2⁺→0⁺(基态)的 γ 跃迁既 可用来识别其延发质子先驱核, 又可给出其 先驱核衰变的诸多物理信息, 如半衰期、延 发质子谱、 β 延发质子分支比等. 利用这种 "p- γ "符合方法直接鉴别核素时, 延发质子测 量的灵敏度相对 ISOL 分离方法将提高 1~2 个数量级, 使有效计数大于本底水平, 从而 能够进行可靠的鉴别、

图 1 稀土区核素图

粗实线代表已知核素的边缘, 虚线 a 为 Hofmann 预言的 Z=0.743N+11.6 质子滴线, 虚 线 b 和 c 代表用最佳融合蒸发反应产生截面分别为 100 mb 和 1 mb 的区域,★为已合成的 延发质子先驱核¹³⁶Gd 和¹²¹Ce, ☆表示有望合成的延发质子先驱核.

我们提出的利用氦喷嘴带传输系统、跟 踪与延发质子符合的子核中已知的第一个 2⁺ →0⁺的γ跃迁来分离和鉴别延发质子先驱核 的方法,原则上适合于鉴别偶 2-奇 N 的β延 发质子先驱核,有些奇 2-奇 N 的先驱核亦有 类似的衰变规律,采用类似的实验方法与鉴别手段,如利用兰州 SFC 加速器提供的低能 重离子束³⁸S、³⁵Ar 和⁴⁰Ca 赛击缺中子同位素 靶⁸²Mo、⁹⁶Ru、¹⁰⁶Cd 等,可望通过类似的 3n、 p3n 或 a3n、ap3n 等粒子的蒸发反应,产生

沿 Z=0.743N+11.6 直线分布的滴线区目 标核(见图1中以☆号标记的核素) 理论预 言的这些核素的半衰期在 0.5~2.0 s 之间, 而计算的产生截面在 20~100 ub 之内, 所以 **这套快速氦喷嘴带传输装置和测量方法完全** 有能力有效地鉴别此类核素.

3 数据分析

实验是在兰州重离子加速器国家实验室 SFC 加速器上完成的. 通过¹⁰⁶Cd(³²S, 3n) ¹³⁵Gd和⁸²Mo(⁸²S, 3n)¹²¹Ce 等融合蒸发反应, 产生了目标核素,再利用氦喷嘴快速带传输 系统把反应产物迅速地传输到屏蔽好的低本 底区进行测量,利用一台同轴型 GMX 高纯 锗探测器测量 γ(X), 一台平面型 GLP 高纯 锗探测器测量 X 射线及低能 γ;在 GMX 探 测器前放置了一块全耗尽型金硅面垒半导体 探测器以测量质子(具体实验装置可参见文 献[6]). 磁带上记录了所有 p-γ(X)符合事件 和时间信息(时间分辨设定为 0.2 s),于实验 后进行离线分析,同时实验中也可进行在线 监测 稀土区其它一些滴线区新核素可用同 样的实验装置、数据获取系统和测量方法进 行合成与鉴别.

通过数据分析处理,得到如下物理结果. 3.1 半麦期

β 延发质子先驱核 EC/β+衰变后中间"发 射体"的寿命非常短(~10-16s 量级),故其子 核中低位能级间 ~ 跃迁与先驱核衰变可认为 是同时发生的,通过跟踪与延发质子符合的 子核中第一个 2⁺态到 0⁺基态的 γ 跃迁, 可 定出其偶 Z-奇 N 的 β 延发质子先驱核的半 衰期.图2给出了135Gd和121Ce实验质子开 门的 y(X)谱,其中图(a)和图(b)中强峰 163 keV 和 185.8 keV 分别为185Gd 和121Ce 的子 核¹³⁴Sm 与¹²⁰Ba 的第一个 2+态到 0+基态的 γ 跃迁^[7,6]利用最小二乘法拟合这两条 γ射线 的时间序列谱, 所提取出185Gd 和121Ce 衰变 的半衰期分别为 1.1±0.2 s 和 1.1±0.1 s, 这与理论预言的半衰期^[9]符合很好.

(D^UC)

ഹ

(¹¹¹Ca

16. 60 82

(122La)

(¹²¹Ce

(b)

280

560

(¹¹⁶Cs

(¹²²La)

图 2 不同反应中质子开门的 Y(X) 谱(强峰的能量为 keV) (a)³²S+¹⁹⁶Cd,质子能量 3.0~5.0 MeV, (b)²²S+¹²Mo,质子能量 2.5~6.0 MeV.

3.2 延发质子能谱

由于条件限制,不能在实验中测到先驱 核延发质子衰变的质子单谱 但通过对子核 中第一个 2+→0+(基态)跃迁的 γ射线开窗, 则可测到先驱核经(EC+β⁺)衰变后发射的延 发质子的能谱,但它是布居到子核低位激发 态(主要是 2+态)上的所有质子的能谱,它的 平均质子能量及能谱形状在一定程度上反映 了核结构的信息。图 3 给出了**S+**Mo 实验 中与 185.8 keV 的 y 射线符合的¹²¹Ce 延发质 子谱,它是钟型的连续谱;其平均能量 3.7 MeV 与相邻先驱核¹²⁵Ce 和¹²³Ce 的平均能量 系统性地吻合^[10].

3.3 延发质子分支比

不能从本实验中直接测量出先驱核衰变 的延发质子分支比,但由于实验中会产生多 个具有 β 延发质子衰变性质的先驱核,其中 某些核素的 β 延发质子分支比等信息已经实 验给出.这样,通过比较已知核素与目标核, 并以理论估算的生成截面为基础,就可间接 推出目标核 β 延发质子衰变的延发质子分支 比.如在¹²¹Ce 实验中,以¹¹⁸Cs 延发质子衰变 到子核¹¹⁷I中已知的三个 γ 峰 116.7、160.5 和 221.3 keV (见图 2b)为标准^[11],并假定 ¹²¹Ce衰变中有 80%的延发质子与 185.8 keV γ 射线符合(参考¹²³Ce 延发质子衰变到子核 激发态的分支比^[10]),由此可估算出¹²¹Ce 衰 变的β延发质子分支比为(1±0.5)%.同样 类推出¹³⁵Gd 衰变的β延发质子分支比约为 2%.

3.4 延发质子先驱核基态的自旋与字称

对于中重质量区的延发质子先驱核,用 统计模型^[6]可很好地模拟实验结果并给出核 结构的信息.通过拟合延发质子能谱,可选 定延发质子先驱核基态可能的自旋和字称, 并给出其β衰变强度函数的有关信息,为进 一步研究核的形变参数奠定基础.有关¹³⁶Gd 和¹²¹Ce 的统计理论拟合工作现正在进行.

综合以上 4 点内容,我们可建立先驱核 ¹²¹Ce 衰变的部分衰变纲图,如图 3 中右上角 插图所示.

图 3 ³³⁵S+³²Mo 实验中 185.8 keV γ射线开门的¹²¹Ce 延发质子
 诸,右上角插图为本实验推出的¹²¹Ce 衰变的部分衰变纲图

3.5 其它物理信息

在稀土区已合成和鉴别的 β 延发质子先 驱核中,多数核素是在在线同位素分离器上 完成的,其衰变的延发质子分支比等已经实

验给出,但先驱核衰变的延发质子与其子核 的退激 γ 射线间的符合关系却知之甚少.在 本实验中,由于延发质子测量灵敏度的大大 提高,故通过对比子核中已知的 γ 射线及三 重符合事例中 X 射线峰位的分析,可指认延 发质子先驱核衰变所对应的 γ 射线,进而可 估算出该先驱核经延发质子衰变后落到子核 不同激发态的分支几率.例如,在¹²¹Ce 实验 中,337.2、322.4、111 和 210 keV 等四条 γ 射线(见图 2b)与其相应先驱核¹¹³Ba、¹²¹Ba 和 ¹²²La 的 β 延发质子的符合是首次观测到的; 而与先驱核¹¹⁸Cs 衰变的延发质子符合的 γ 射 线,除了文献[11]报道的 117、160 和 221 keV 三条 γ 射线外,还应补充一条较弱的 γ 射线 58.6 keV.

4 结 论

国外一直在尝试合成滴线区具有质子放 射性或延发质子放射性的新核素,由于分离 鉴别方法的限制,从1983年到1994年GSI (德国)、Daresbury(英国)、Grenoble(法国) 和 Dubna(俄罗斯)等著名实验室连续发表了 搜索 Z = 0.743N + 11.6 滴线区质子放射性 不成功的实验结果,或虽提出了进一步的研 究设想,但至今仍未见有成果报道.新核素 ¹³⁵Gd 和¹²¹Ce 的首次合成与研究,无疑是朝 这个方向迈进的重要一步.通过类似反应继 续合成与研究沿 Z=0.743N + 11.6 直线分 布的滴线区新核素(见图 1 中以☆号标记的 核素),定能加深人们对稀土区质子滴线的理 解,为系统性地研究该区的核结构参数打下 基础.

感谢德国 GSI 制靶实验室为本实验无偿 提供了[№]Mo 同位素浓缩靶.对兰州重离子加 速器国家实验室全体运行与维修人员和近物 所数据获取室的帮助与合作,在此表示谢意.

参考文献

 Beraud R, Emsallem A, Arje J et al. Nuclear Spectroscopy of Exotic Nuclei with the SARA/ IGISOL Facility. In: Third IN2P3-RIKEN Symposium on Heavy Ion Collisions. Singapore: World Scientific, 1994, 102 ~130

- Hofmann S. Proton Radioactivity. In: Proc Int Conf on the Future of Nuclear Spectroscopy, Crete. Greece. Berlin: Springer, 1993: 255~286
- Larsson P O, Batisch T, Kirchner R et al. Direct Proton Decay of 0. 56 g ¹⁴⁷Tm and Search for This Decay Mode among very Neutron-deficient Isotopes with 53≤ Z≤67. Z Phys, 1983, A314(1): 9~16; Livingston K. Woods P J, Davis N J et al. Search for Proton Radioactivity in Odd Z drip-line Nuclei from Z=61 to 67. Phys Rev, 1993, C 48(6), 3113~3114
- 4 Vierinen K S. Nitchke J M, Wilmarth P A et al, Decay of Neutron-deficient Eu, Sm and Pm Isotopes near the Proton Drip Line. Nucl Phys, 1989, A 499; 1~28
- 5 Nitshke J M, Wilmarth P A, Lemmertz P K et al. Beta-delayed Proton Emission Observed in New Lanthanide Isotopes. Z Phys, 1984, A316(2): 249~250; Hornshop P, Wilsky K, Hansen P G et al. β-Delayed Proton Emission from Heavy Nuclei(II). Nucl Phys, 1972, A187(3): 609~623
- 6 Xu Shuwei, Xie Yuanxiang, Li Zhankui et al. New β-Delayed Proton Precursor ¹³⁵Gd. Z Phys, 1996, A356 (1): 227~229; LI Zhankui, Xu Shuwei, Xie Yuanxiang et al. New β-Delayed Proton Precursor ¹²¹Ce. Phys Rev, 1997, C56(2): 1157~1159;徐树威,谢元祥,李 占奎等. 合成和研究滴线区新核素--β 延发质子先驱核 ¹³⁵Gd. 中国科学, 1997, A 27(5): 434~438;谢元祥, 徐树威,李占奎等. 合成和研究滴线区新核素 β 延发质 子先驱核¹²¹Ce. 高能物理与核物理, 1997, 21 (7): 668 ~671
- Sergeenkov Yu V. Nuclear Data Sheets Update for A=
 134. Nucl Data Sheets, 1994, 71, 557~658
- 8 Cederwall B, Johnson A, Wyss R et al. High Spin States of ¹²⁹Ba. Z Phys, 1991, A 338(4): 461~462
- 9 Hirsch M, Staudt A, Muto K et al. Microscopic Predictions of β⁺/EC Decay Half-lives. At Data and Nucl Data Tables, 1993. 53(2), 165~193
- 10 Nitschke J M, Wilmarth P H, Gilat J et al. Beta-delayed Proton Decay in the Lanthanide Region. in: Proc Nuclei far from Stability, 5th International Conference, Rousseau, Ontario, Canada. New York; American Institute of Physics. 1987; 697~707
- D'Auria J M, Gruter J W, Hagberg E et al. Properties of the Lightest Known Ceslum Isotopes ^{114~118}Cs. Nucl Phys, 1978, A301(3), 397~410

Synthesis and Study of New Nuclei along the Proton-drip Line Z=0.743N+11.6 in Rare-earth Region

Li Zhankui Xu Shuwei Xie Yuanxiang Ma Ruichang

(Institute of Modern Physics, the Chinese Academy of Sciences, Lanzhou 730000)

Abstract It's more and more difficult to synthesis and study new nuclei along the proton drip-line by using on-line isotope separator because of its low efficiency. A specific method of "p- γ " coincidence measurement, using the known low-lying "2⁺ \rightarrow 0⁺ (ground state)" γ transition of the "daughter" nucleus in coincidence with its β -delayed proton, could increase the detection sensitivity effectively and was used to identify and study the precursors, new nuclei ¹³⁵Gd and ¹²¹Ce with a He-jet recoil fast tape transport system at HIRFL in China. It's prospected to synthesis and study more nuclei along the proton drip-line of Z = 0.743N + 11.6 in the rare-earth region by this technique.

Key Words p- γ coincidence He-jet recoil fast tape transport system β -delayed proton precursor