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Nonexistence of Stable Exponentially Harmonic Maps

from or into Compact Convex Hypersurfaces in R
m+1

Jiancheng Liu

Abstract

In this paper, we study the nonexistence problems for stable exponentially har-

monic map into or from compact convex hypersurface Mm ⊂Rm+1, and show that

every nonconstant exponentially harmonic map f , between Mm and any compact

Riemannian manifold, is unstable if (4) holds.
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1. Introduction and Main Results

Let M, N be compact Riemannian manifolds and f : M → N be a smooth map.
Following J. Eells and L. Lemaire [2], f is an exponentially harmonic map if it represents
a critical point of the exponentially energy integral

E(f) =
∫

M

exp
( |df |2

2

)
∗1. (1)

The Euler-Lagrange equation of the functional E(f) can be written as

−d∗
(
exp

( |df |2
2

)
df
)

= exp
( |df |2

2

)(
τ (f) + df

(
∇
( |df |2

2

)))
= 0, (2)
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where τ (f) = −trace∇df = d∗df is the tension field along f . Hence, if the energy density
|df |2 is constant, every harmonic map is exponentially harmonic and vice versa.

From the viewpoint of variational calculus, it is natural to study the stability of
exponentially harmonic mapping (as well as harmonic or p-harmonic mapping), i.e. the
exponentially harmonic mapping with non-negative second variation.

For harmonic mapping, Y. L. Xin [6] and P. F. Leung [4] proved the nonexistence
of nonconstant stable harmonic mapping between Euclidean sphere Sm(m > 2) and any
compact Riemannian manifolds, then H. Takeuchi [5] generalized those results to the case
of p-harmonic mapping.

Coming into the case of exponentially harmonic mapping, S. E. Koh [3] proved that:
every nonconstant exponentially harmonic map f : M → Sm, from compact Riemannian
manifold M into the standard unit sphere Sm in R

m+1, is unstable if |df |2(x) < m−2 for
every x ∈ M . Unfortunately, that is uncorrect. For example, let f : (Sm , 2g0) → (Sm , g0)
be identity mapping, it is easy to see that |df |2 = m

2 < m− 2 for m > 4. On the other
hand, using the same argument as Theorem 7.1 in [1], we know f is a stable exponentially
harmonic mapping. That mistake comes from the uncorrected second variation formula.
In details, S. E. Koh [3] defined the exponentially energy functional as∫

M

exp(|df |2) ∗1, (3)

using the the corresponding second variation formula∫
M

exp(|df |2){〈∇̃V, ∇̃W 〉 −
∑

i

〈RSm

(V, f∗ei)f∗ei,W 〉+ 〈∇̃V, df〉〈∇̃W, df〉} ∗1.
In fact, the correct second variation formula corresponding to the exponentially energy
functional defined as (3) must be

2
∫

M

exp(|df |2){〈∇̃V, ∇̃W 〉 −
∑

i

〈RSm

(V, f∗ei)f∗ei,W 〉+ 2〈∇̃V, df〉〈∇̃W, df〉} ∗1.

Hence, when we replace the condition |df |2 < m − 2 in [3] by |df |2 < m
2 − 1, the result

is also true.

However, in this paper, when the source manifold or the target manifold is the compact
convex hypersurface in R

m+1, we can prove the following more general results.
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Proposition 1 Let Mm ⊂ R
m+1 be the compact convex hypersurface, m > 2.

Its principal curvatures sorted as 0 < λ1 ≤ · · · ≤ λm, satisfying λm <
∑m−1

j=1 λj. If
f : N → Mm is a stable exponentially harmonic map, and

|df |2 < 1
λ2

m

min
1≤i≤m

{
λi(

m∑
j=1

λj − 2λi)
}
. (4)

then f must be constant.

Proposition 2 With the same assumptions on Mm as in Proposition 1. If f :
Mm → N is a stable exponentially harmonic map satisfying (4). Then f must be constant.

Combining Proposition 1 and Proposition 2, we have the following main result.

Theorem 1 With the same assumptions on Mm as in Proposition 1, then every
nonconstant exponentially harmonic map f, from Mm into any compact Riemannian
manifold N , or from any compact Riemannian manifold N into Mm, must be unstable if
(4) holds.

In particular, when Mm = Sm , the standard unit m-sphere, then the condition (4)
becomes

|df |2 < m− 2. (5)

In this case, we have the following

Corollary 1 Every nonconstant exponentially harmonic map f between Sm and any
compact Riemannian manifold N is unstable if f satisfies (5).

Remark 1 The condition |df |2 < m−2 is necessary. For example, let f : (Sm , g0) →
(Sm , g0) be identity mapping, it is well-known that f is stable exponentially harmonic
mapping [2]. However, at that time, |df |2 = m > m− 2.

2. Proof of the Proposition 1

Throughout this paper, we shall assume that Mm is a compact convex hypersurface in
Euclidean space R

m+1 and N is compact Riemannian manifold without boundary. ∇, ∇,
∇R represents the Riemannian connections of Mm, N and R

m+1 , respectively. Choose an
orthonormal basis {ei, em+1}, i = 1, · · · , m, in R

m+1 such that, restricted to Mm, {ei}
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are tangent to Mm and em+1 is normal to Mm. Also, denoted by h(X, Y ) = ∇R
XY −∇XY

the second fundamental form of Mm in R
m+1 with hij its components.

In this section, we will prove the Proposition 1, which includes the result in [3] as a
special case.

Proof of the Proposition 1 We denote T⊥M the normal bundle over Mm in R
m+1 and

∇⊥ the normal connection on T⊥M . Then, for X, Y ∈ X(M) and η ∈ Γ(T⊥M) (the
space of sections of the normal bundle T⊥M of M), we have

AηX = ∇R
Xη −∇⊥

Xη,

where Aη is the Weingarten map corresponding to the normal section η which satisfies

〈AηX, Y 〉 = 〈h(X, Y ), η〉.

Let V ∈ R
m+1 be a parallel vector field, we decompose V = V � + V ⊥, where V � is

the tangential part to M and V ⊥ is the normal part to M . Then we have a 1-parameter
family of mappings ψt : Mm → Mm generated by V �.

Now, we consider the 1-parametric variation ψt ◦ f : N → Mm of the exponentially
harmonic map f : N → Mm. Then, for a local orthonormal frame field {vi} on N , we
have

d2

dt2

∣∣∣∣
t=0

E(ψt ◦ f) =
∫

N

exp
( |df |2

2

)
·Q(V, V ) ∗1,

where

Q(V, V ) =
∑

i

〈AV ⊥f∗vi, f∗vi〉2 + 2
∑

i

〈A2
V ⊥f∗vi, f∗vi〉

+
∑

i

〈(∇V ⊥A)V ⊥f∗vi, f∗vi〉 −
∑

i

〈Ah(V ⊥,V ⊥)f∗vi, f∗vi〉.

In order to compute the trace of Q(V, V ) pointwise, for any x ∈ M , we choose local
orthonormal frame field {e1, · · · , em+1} such that {e1, · · · , em} tangent to M and em+1
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normal to M . Then we have

traceQ(·, ·)(x) =
∑

i

〈Aem+1f∗vi, f∗vi〉2 +
∑

i

〈A2
em+1

f∗vi, f∗vi〉

−
∑

i

m∑
j=1

〈Ah(ej ,ej)f∗vi, f∗vi〉

=
∑

i

〈Aem+1f∗vi, f∗vi〉2

+
m∑

j=1

∑
i

〈(2A2
em+1

− trace(Aem+1 )Aem+1 )f∗vi, f∗vi〉.

this completes the proof of Proposition 1. �

3. Proof of the Proposition 2

Let f : Mm → N be an exponentially harmonic map Given two-parameters variations

fs,t, such that V = ∂fs,t

∂t

∣∣∣
s=t=0

, W = ∂fs,t

∂s

∣∣∣
s=t=0

. Then we have the second variation

formula

∂2E(fs,t)
∂s∂t

∣∣∣∣
s=t=0

=
∫

M

exp
( |df |2

2

){〈∇̃V, ∇̃W 〉 −
m∑

i=1

〈RN(V, f∗ei)f∗ei,W 〉

+ 〈∇̃V, df〉〈∇̃W, df〉} ∗1,
(6)

where, RN is the curvature tensor of N : RN (X, Y ) = [∇X ,∇Y ]−∇[X,Y ] for vector fields

X, Y on N , and ∇̃ the induced connection on f−1TN defined by ∇̃Zσ = ∇f∗Zσ for
tangent vector Z of Mm and the section σ of f−1TN .

We put

If(V,W ) =
∂2E(fs,t)
∂s∂t

∣∣∣∣
s=t=0

. (7)

An exponentially harmonic map f is called stable if If(V, V ) ≥ 0 for any V ∈ Γ(f−1TN).

In order to prove the instability of f : Mm → N , we need to consider some special
variational vector fields along f . To do this, taking a fixed orthonormal basis EA, A =
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1, · · · , m+ 1 of R
m+1 , and setting

VA =
m∑

i=1

vi
Aei, vi

A = 〈EA, ei〉, vm+1
A = 〈EA, em+1〉,

then f∗VA ∈ Γ(f−1TN). In the following, we shall use this variational vector field to
prove the instability of nonconstant exponentially harmonic map f .

Before going to prove the Proposition 2, the following basic facts will be needed:

(1)
∑
A

vi
Av

j
A =

∑
A

〈EA, ei〉〈EA, ej〉 = δij . (8)

(2) With respect to the frame field {ei, em+1} of R
m+1, let {ωi, ωm+1} be a field of

dual frames. Then, we have from the structure equations of R
m+1 ,

dei =
m∑

j=1

(ωijej + hijωjem+1). (9)

Furthermore, taking covariant derivative of vi
A and using (9), we obtain

∇eiVA =
∑

(∇eiv
j
A)ej + vj

A∇eiej

=
∑

d〈EA, ei〉ei = vm+1
A hijej .

(10)

(3) ∇ei(∇eiVA) = −vk
Ahikhijej + vm+1

A (∇eihij)ej . (11)

(4)

∇̃ei(f∗(∇eiVA)) =− vk
Ahikhijf∗ej + vm+1

A (∇̃eihij)f∗ej

+ vm+1
A hij∇̃f∗eif∗ej.

(12)

Proof. (of Proposition 2) Suppose that f : Mm → N is a nonconstant exponentially

harmonic map. Then exponentially harmonicity condition d∗( exp ( |df|2
2

)
df
)
= 0 implies
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that ∑
A

∫
Mm

exp
( |df |2

2

)
〈�f∗VA, f∗VA〉 ∗1

=
∑
A

∫
Mm

exp
( |df |2

2

)
vi

Av
j
A〈�f∗ei, f∗ej〉 ∗1

=
∫

Mm

exp
( |df |2

2

)
〈�f∗ei, f∗ei〉 ∗1

=
∫

Mm

〈
d∗df, d∗

(
exp

( |df |2
2

)
df
)〉

∗1.

(13)

It follows from Weitzenböck formula that

−RN(f∗VA, f∗ei)f∗ei + f∗RicMm

(VA) = �f∗VA + ∇̃2f∗VA (14)

with respect to the variational vector fields f∗VA along f . Using (6), (13) and (14), we
compute the relation

∑
A

If (f∗VA, f∗VA) =
∑
A

∫
M

exp
( |df |2

2

){|∇̃f∗VA|2 + 〈∇̃f∗VA, df〉2

+ 〈∇̃2f∗VA, f∗VA〉 − 〈f∗RicMm

(VA), f∗VA〉
} ∗1, (15)

where ∇̃2f∗VA = ∇̃ei∇̃eif∗VA − ∇̃∇ei
eif∗VA. For any fixed point P ∈ M , choose {ei}

such that ∇eiei|P = 0. Then

∇̃2f∗VA = ∇̃ei∇̃eif∗VA − 2∇̃ei(f∗(∇eiVA)) + f∗(∇̃ei∇̃eiVA), (16)

and ∫
Mm

exp
( |df |2

2

)
〈∇̃ei∇̃eif∗VA, f∗VA〉 ∗1

= −
∫

Mm

〈
∇̃eif∗VA, ∇̃ei

(
exp

( |df |2
2

)
f∗VA

)〉
∗1

= −
∫

Mm

〈
∇̃eif∗VA, ∇̃ei

(
exp

( |df |2
2

))
f∗VA

〉
∗1

−
∫

Mm

exp
( |df |2

2

)
|∇̃f∗VA|2 ∗1.

(17)
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Substituting (16) and (17) into (15), we get therefore

∑
A

If (f∗VA, f∗VA) =
∑
A

∫
Mm

{
exp
( |df |2

2

)
〈∇̃f∗VA, df〉2

−
〈
∇̃eif∗VA, ∇̃ei

(
exp
( |df |2

2

))
f∗VA

〉}
∗1

+
∑
A

∫
Mm

exp
( |df |2

2

){〈
− 2∇̃ei(f∗(∇eiVA))

+ f∗(∇ei∇eiVA) − f∗RicMm

(VA), f∗VA

〉}
∗1

:=
∫

Mm

{(I) + (II)} ∗1.

(18)

In the following, we shall estimate the two parts (I) and (II) on the right hand side
of (18), separately. Because trace is independent of the choice of orthonormal basis, we
can choose {ei, em+1} such that hij = λiδij . It follows from Gauss formula that

RicMm

= vi
A(hkkhij − hilhjl)ej . (19)

Using (10), (11), (12) and (19), we can easily obtain

∫
Mm

(II) ∗1 =
∫

Mm

exp
( |df |2

2

)∑
A

{〈
2vk

Ahikhijf∗ej − vi
Ahkkhijf∗ej , v

l
Af∗el

〉
− 〈vm+1

A (∇eihij)f∗ej + 2vm+1
A hij∇̃f∗eif∗ej , v

l
Af∗el

〉} ∗1

=
∫

Mm

exp
( |df |2

2

)
〈2hilhijf∗ej − hkkhljf∗ej , f∗el〉 ∗1

=
∫

Mm

exp
( |df |2

2

)(
2λi −

m∑
k=1

λk

)
λi|df |2 ∗1.

(20)
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In order to estimate part (I) in (18), a straightforward computation then shows

∑
A

〈
∇̃eif∗VA, ∇̃ei

(
exp

( |df |2
2

))
f∗VA

〉

=
∑
A

exp
( |df |2

2

)
∇̃ei

( |df |2
2

)〈
vm+1

A hikf∗ek + vk
A∇̃f∗eif∗ek, v

j
Af∗ej

〉

=exp
( |df |2

2

)〈
∇̃eidf, df

〉2

,

(21)

and ∑
A

exp
( |df |2

2

)
〈∇̃f∗VA, df〉2

=
∑
A

exp
( |df |2

2

)
〈vm+1

A hikf∗ek + vk
A∇̃f∗eif∗ek, f∗ei〉2

=exp
( |df |2

2

){
hikhjl〈f∗ek, f∗ei〉〈f∗el, f∗ej〉 + 2〈∇f∗eif∗ek, f∗ei〉〈∇f∗ejf∗ek, f∗ej〉

}
=exp

( |df |2
2

){
λiλj〈f∗ei, f∗ei〉〈f∗ej , f∗ej〉+ 〈∇̃eidf, df〉2}.

(22)
Then, it follows from (21) and (22) that∫

Mm

(I) ∗1 =
∫

Mm

exp
( |df |2

2

)
λiλj〈f∗ei, f∗ei〉〈f∗ej , f∗ej〉 ∗1

≤
∫

Mm

exp
( |df |2

2

)
λ2

m|df |4 ∗1.
(23)

Finally, substituting (20), (23) into (18), we get

∑
A

I(f∗VA, f∗VA) ≤
∫

Mm

exp
(

|df|2
2

)
|df |2

{
λ2

m|df |2 +
(
2λi −

m∑
j=1

λj

)
λi

}
∗1, (24)

which implies that
∑
A

If (f∗VA, f∗VA) < 0 if f is nonconstant and satisfying (4). Thus,

there exists at least one V0 ∈ {V1, · · · , Vm+1} such that

If (f∗V0, f∗V0) < 0.
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That is, a nonconstant exponentially harmonic map f is unstable if (4) holds. This com-
pletes the proof of Proposition 2. ✷
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