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Nonexistence of Stable Exponentially Harmonic Maps

from or into Compact Convex Hypersurfaces in R™!

Jiancheng Liu

Abstract

In this paper, we study the nonexistence problems for stable exponentially har-
monic map into or from compact convex hypersurface M™ C R™"! and show that
every nonconstant exponentially harmonic map f, between M and any compact

Riemannian manifold, is unstable if (4) holds.
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1. Introduction and Main Results

Let M, N be compact Riemannian manifolds and f : M — N be a smooth map.
Following J. Eells and L. Lemaire [2], f is an exponentially harmonic map if it represents

a critical point of the exponentially energy integral

E(f) Z/Mexp(ld??) +1. (1)

The Euler-Lagrange equation of the functional E(f) can be written as

—d* (exp (@)df) — exp (@) <T(f) +df (v (@))) =0, (2
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where 7(f) = —traceVdf = d*df is the tension field along f. Hence, if the energy density
|df|? is constant, every harmonic map is exponentially harmonic and vice versa.

From the viewpoint of variational calculus, it is natural to study the stability of
exponentially harmonic mapping (as well as harmonic or p-harmonic mapping), i.e. the
exponentially harmonic mapping with non-negative second variation.

For harmonic mapping, Y. L. Xin [6] and P. F. Leung [4] proved the nonexistence
of nonconstant stable harmonic mapping between Euclidean sphere S™(m > 2) and any
compact Riemannian manifolds, then H. Takeuchi [5] generalized those results to the case
of p-harmonic mapping.

Coming into the case of exponentially harmonic mapping, S. E. Koh [3] proved that:
every nonconstant exponentially harmonic map f : M — S™, from compact Riemannian
manifold M into the standard unit sphere S™ in R™T1 is unstable if |df|*(z) < m—2 for
every x € M. Unfortunately, that is uncorrect. For example, let f: (S™,2go) — (S™, go)
be identity mapping, it is easy to see that |df|? = 5 <m—2 for m > 4. On the other
hand, using the same argument as Theorem 7.1 in [1], we know f is a stable exponentially
harmonic mapping. That mistake comes from the uncorrected second variation formula.

In details, S. E. Koh [3] defined the exponentially energy functional as

[ expliar) <1, ®)
M

using the the corresponding second variation formula

/M exp(|df|}) {(VV, VW) — Z<Rsm (V, feei) fres, W) + (VV, df)(VW,df) } *1.

K2

In fact, the correct second variation formula corresponding to the exponentially energy

functional defined as (3) must be

2 / exp(|df){(VV, VW) = S (RS (V, fues) fues, W) + 2(VV, df VIV, df)} #1.
M i
Hence, when we replace the condition |[df|* < m — 2 in [3] by |df|? < Z — 1, the result
is also true.
However, in this paper, when the source manifold or the target manifold is the compact

convex hypersurface in R™ 1!, we can prove the following more general results.
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Proposition 1 Let M™ C R™*! be the compact convex hypersurface, m > 2.
Its principal curvatures sorted as 0 < Ay < --- < A, satisfying A, < Z;n:_ll Ajo If

f: N — M™ is a stable exponentially harmonic map, and

m

s < Aizlgglm{Ai(ZAj —aa)) (4)

j=1
then f must be constant.

Proposition 2 With the same assumptions on M™ as in Proposition 1. If f :

M™ — N is a stable exponentially harmonic map satisfying (4). Then f must be constant.
Combining Proposition 1 and Proposition 2, we have the following main result.

Theorem 1 With the same assumptions on M™ as in Proposition 1, then every
nonconstant exponentially harmonic map f, from M™ into any compact Riemannian
manifold N, or from any compact Riemannian manifold N into M™, must be unstable if
(4) holds.

In particular, when M™ = S™/ the standard unit m-sphere, then the condition (4)

becomes
|df]? <m — 2. (5)

In this case, we have the following

Corollary 1 FEvery nonconstant exponentially harmonic map f between S™ and any

compact Riemannian manifold N is unstable if f satisfies (5).

Remark 1 The condition |df|? < m — 2 is necessary. For example, let f: (S™, go) —
(8™, go) be identity mapping, it is well-known that f is stable exponentially harmonic
mapping [2]. However, at that time, [df|> =m >m — 2.

2. Proof of the Proposition 1

Throughout this paper, we shall assume that M™ is a compact convex hypersurface in
Euclidean space R™*! and N is compact Riemannian manifold without boundary. V, V,
V% represents the Riemannian connections of M™, N and R™*!, respectively. Choose an

orthonormal basis {e;, ém+1}, i = 1,---,m, in R™*! such that, restricted to M™, {e;}
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are tangent to M™ and e, 1 is normal to M™. Also, denoted by h(X,Y) = VEY -V xY

the second fundamental form of M™ in R™*! with h;; its components.

In this section, we will prove the Proposition 1, which includes the result in [3] as a

special case.

Proof of the Proposition 1 We denote T M the normal bundle over M™ in R™*! and
V+ the normal connection on T+M. Then, for X,Y € X(M) and n € T'(T+M) (the

space of sections of the normal bundle T+ M of M), we have
ApX = Vﬁ?n - VJX%
where A, is the Weingarten map corresponding to the normal section 1 which satisfies
(ApX,Y) = (W(X,Y), m).

Let V € R™*! be a parallel vector field, we decompose V = VT + VL, where VT is
the tangential part to M and V= is the normal part to M. Then we have a 1-parameter

family of mappings 1y : M™ — M™ generated by V' I.

Now, we consider the 1-parametric variation ¢; o f : N — M™ of the exponentially
harmonic map f : N — M™. Then, for a local orthonormal frame field {v;} on N, we

have

d2
de?

|dfJ?
2

t_OEWtOf):/Nexp( >'Q(V,V) .

where

QUV,V) =D (v fovi, fovi)® +2 3 (AL fovi, fovi)

K2

+ Z((VVLA)VLf*Uu favi)y — Z<Ah(VL,VL)f*Uz‘= favs).

i i

In order to compute the trace of Q(V, V) pointwise, for any x € M, we choose local

orthonormal frame field {e1,- -, em41} such that {e1, -, e} tangent to M and e, 41
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normal to M. Then we have

traceQ(-,-)( ) Z< €m+1f*U17f*UZ +Z em+1f*vi7f*vi>

1

- Z Z<Ah(€jvej)f*viv frvi)

i j=1

= Z<Aem+1 f*viu f*vi>2

+ Z Z 2A5m+1 — trace(Ae,, ., ) Ae,, 1 ) fxvi, fvi).

j=1 1

this completes the proof of Proposition 1. O

3. Proof of the Proposition 2

Let f: M™ — N be an exponentially harmonic map Given two-parameters variations

fs.t, such that V = agr , W = ag‘;’t . Then we have the second variation
s=t=0 s=t=0
formula
OPE (f s,t)

Jsot

2 m
:/ exp <M> {(VV,VW) =Y (RN(V, f.e:) foei, W)
s=t=0 M 2 i=1

(6)
H(VV,Af)N VW, df)} *1

where, RY is the curvature tensor of N: RN(X,Y) =[Vx,Vy] -V (x,y] for vector fields

X,Y on N, and V the induced connection on fITN defined by \Y z0 = Vy,zo for
tangent vector Z of M™ and the section o of f~!TN.
We put

62E(fs,t)

Ip(V,W) = 5s0t

(7)

s=t=0

An exponentially harmonic map f is called stable if I§(V,V) > 0 for any V € T'(f 1TN).
In order to prove the instability of f : M™ — N, we need to consider some special

variational vector fields along f. To do this, taking a fixed orthonormal basis E4, A =
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1,---,m+1of R™! and setting

m
Va= vaa;@i, vy = (Ba,e;), vt = (Ea,emy1),
i—1

then f.Va € I'(f~'TN). In the following, we shall use this variational vector field to

prove the instability of nonconstant exponentially harmonic map f.

Before going to prove the Proposition 2, the following basic facts will be needed:
(1) %‘:vi‘vi‘ = §<EA, ei)(Ea, ej) = 8ij. (8)

(2) With respect to the frame field {e;, emy1} of R™H1 let {w;, w1} be a field of

dual frames. Then, we have from the structure equations of R™ 1,

m

de; = Z(wz‘jea‘ + hijwjem+1). 9)

j=1

Furthermore, taking covariant derivative of vy and using (9), we obtain

Ve Va=)Y (Veh)e; + 14 Vee

(10)
= Zd<EA, 6i>6i = ’UZL—Hhijej.
(3) Ve,(Ve,Va) = —vhhirhije; + v (Ve  hij)e;. (11)
(4)
Ve (Ve Va) = = vhhichijfue; + 03T (Ve hij) fue
(12)

+ ’UZL—’_lhiij*eif*ej.

Proof.  (of Proposition 2) Suppose that f : M™ — N is a nonconstant exponentially

harmonic map. Then exponentially harmonicity condition d* ( exp (%)d f) = 0 implies
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that

2
Z/M exp @) (D LV, £.Va) #1
< Jas

2 )
=% [ e (B0 e s g
A m
f

(13)
dff?
= exp D) <Af*eiuf*ei> *
2
= [, o (oo (B5E)ar) ).
It follows from Weitzenbock formula that
—RN(f.Va, fres) fuei + [ RIEM ™ (V) = AL VA + V21 VA (14)

with respect to the variational vector fields f.Va along f. Using (6), (13) and (14), we

compute the relation

2 ~ ~
S I (A Va, £ V) =Z/ exp (M> {IVLVal? + (V£Va, df)?
A a oM ? (15)
+ (V2F.Va, fuVa) = (FRicM” (Va), fVa)} 1

where 62f*VA = 661.%61.]“*1/,4 — 6Veie¢f*VA' For any fixed point P € M, choose {e;}
such that V.,e;|p = 0. Then

6Qf*VA = 6eiﬁeuf*VA - 2€ei(f* (VeiVA)) + f*(ﬁeiﬁeiVA)7 (16)

and

|df* f|2
_exp <V61Velf*VAa fVa) 1

= _/ <§eif*VA, ﬁei (exp (ld??) f*VA>> *1
~ ~ 2
e oo (4 )
2
[ () s
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Substituting (16) and (17) into (15), we get therefore

2\ ~
/1 )<Vf*VA,df>2

ST Ip(fVa, £Va) = Z/ A
7y A

(Fatva T (e (R ) b

+Z/ eXp |f|2 {<_2§ei(f*(veiVA)) (18)

+ Jo (Ve Ve Vi) = LRI (Va), foVa) |+l

= {(1)+ (D)} *1.

Mm

In the following, we shall estimate the two parts (I) and (II) on the right hand side
of (18), separately. Because trace is independent of the choice of orthonormal basis, we

can choose {e;, €41} such that h;; = X\;d;;. It follows from Gauss formula that
RiCMm = Ui‘ (hkkhij — hilhjl)ej- (19)

Using (10), (11), (12) and (19), we can easily obtain

df? ;
/ (IT) =1 =/ exp (l §| >Z{<2U§xhikhijf*ej — Vi hikhijfeej, vy feer)

A

— (v (Ve hij) frej + 207 hijﬁf*eif*ej, Uf4f*61>} *1

_ |dfJ? e o
= exp ) (2hithij feej — highyj frej, frer) %1

:/ exp (@) (2,\1- - i,\k> Ag|df)? *1.
k=1
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In order to estimate part (I) in (18), a straightforward computation then shows

~ ~ 2
Z <velf*VAa e; (GXP (|d§| >> f*VA>

2 2 S ’
(ldfl > (ldgl > <U2+1hikf*€k + ViV s.e, feer, Uf“f*ej> 1)

—exp (' /1? ><Veldf, df>

and
2 ~

> exp (@) (VfVa, df)?

A
_ w m+1yg ko \2
—ZGXP > (VAT hik frer + VAV f e, frer, fe€i)

2
(l fl > {hzkhjl f*ekuf*ez><f*eluf*€_]> +2<Vf*elf*6k,f*61><Vf*ejf*ek,f*ej>}

2 ~
:exp(l 7l >{)\)\ (fe€i, fei)(fuej, frej) + (Ve df, df)?}.

(22)
Then, it follows from (21) and (22) that

2
/m(I)*lz/ - exp('dgl >)\i)\j<f*eiuf*ei><f*ejuf*ej>*1

S/ exp('df|2>)\2 |df]* *1.

Finally, substituting (20), (23) into (18), we get

ZA: I(f.Va, f.Va) < /Mm exp (%) |df|2{)\,2n|df|2 n (2Ai - i )\j))\i} 1, (24)

j=1

(23)

which implies that > I;(f.Va, f«Va) < 0 if f is nonconstant and satisfying (4). Thus,
A
there exists at least one Vy € {V4, -+, V,41} such that

If(f*%uf*%) <0

125



LIU

That is, a nonconstant exponentially harmonic map f is unstable if (4) holds. This com-

pletes the proof of Proposition 2. O
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