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Abstract

This paper deals with the positive solutions of nonlinear boundary value problems in Banach spaces. By

using fixed point index theory, some sufficient conditions for the existence of at least one or two positive

solutions to boundary value problems in Banach spaces are obtained. An example illustrating the main

results is given.
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1. Introduction

In this paper, we consider the following boundary value problem (BVP) for third-order differential
equations in a Banach space E :

u
′′′

(t) + f(t, u(t)) = θ, 0 ≤ t ≤ 1 (1.1)

subject to the boundary conditions

u(0) = u′(0) = θ, u′(1) = αu′(η), (1.2)

where 0 < η < 1 and 1 < α < 1
η
, f ∈ C[[0, 1]×P, P ] ; P is a cone of Banach space E , θ is the zero element of

E .
Boundary value problems arise from applied mathematics and physics, and they have received a great

deal of attention in the literature. Problems of the form (1.1) subject to (1.2), for example, are used to model
such phenomena as the deflection of a curved beam having a constant or varying cross section, a three-layer
beam, electromagnetic waves or gravity driven flows and so on [1]. Third-order boundary value problems have

been studied widely in the literature (see [1-12] and references therein). However, all of the above-mentioned

references consider (1.1) only in scalar space. On the other hand, the theory of ordinary differential equations

(ODE) in abstract spaces is becoming an important branch of mathematics in last thirty years because of its

application in partial differential equations and ODE’s in appropriately infinite dimensional spaces (see, for
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example [13,14]). As a result the goal of this paper is to fill up the gap in this area, that is, to investigate the

existence of multiple positive solutions of (1.1) with (1.2) in a Banach space E .
This paper is organized as follows. Section 2 gives some preliminaries and some lemmas. Section 3 is

devoted to the proof of the main results. Finally, in Section 4, one example is worked out to illustrate our main
results.

2. Preliminaries and Lemmas

In this paper, we suppose throughout that E is a real Banach space. A nonempty closed convex subset
P in E is said to be a cone which defines a partial ordering in E by x ≤ y if and only if y − x ∈ P, P is
said to be normal if there exists a positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖ , where θ

denotes the zero element of E , and the smallest N is called the normal constant of P (it is clear, N ≥ 1). For

details on cone theory, see [15] . Let S be a bounded subset of a Banach space. α(S) denotes the Kuratowski’s

measure of noncompactness of S . In this paper, α(·) denotes the Kuratowski’s measure of noncompactness of

a bounded subset of both E and C[[0, 1], E] . Let

C[[0, 1], E] = {u : [0, 1] → E | u(t) is continuous on [0, 1]},

C3[[0, 1], E] = {u : [0, 1] → E | u(t) is third order continuously differentiable in [0, 1]}.
For u = u(t) ∈ C[[0, 1], E] , let ‖u‖C = max

0≤t≤1
‖u(t)‖ , then C[[0, 1], E] becomes a Banach space. Let P = {u ∈

C[[0, 1], E] | u(t) ≥ θ, t ∈ [0, 1]} , then P is a cone in C[[0, 1], E] . An operator u(t) ∈ C[[0, 1], E]∩ C3[[0, 1], E]

is called a positive solution of the BVP (1.1)-(1.2) if u(t) satisfies (1.1)-(1.2) and u ∈ P, u(t) �≡ θ, t ∈ [0, 1] .

Lemma 2.1 ([12]) Let αη �= 1 . Then for y ∈ C[[0, 1], E] , the BVP

u′′′ + y(t) = θ, t ∈ [0, 1],
u(0) = u′(0) = θ, u′(1) = αu′(η),

has a unique solution

u(t) =
∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) =
1

2(1 − αη)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2ts− s2)(1 − αη) + t2s(α − 1), s ≤ min{η, t},
t2(1 − αη) + t2s(α − 1), t ≤ s ≤ η,

(2ts− s2)(1 − αη) + t2(αη − s), η ≤ s ≤ t,

t2(1 − s), max{η, t} ≤ s

(2.1)

is called the Green’s function.

Lemma 2.2 ([12]) Let 0 < η < 1 and 1 < α < 1
η . Then for G(t, s) defined in (2.1) , we have estimates

(i) for any (t, s) ∈ [0, 1]× [0, 1], 0≤ G(t, s) ≤ Φ(s), where

Φ(s) =
1 + α

1 − αη
s(1 − s).
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(ii) for any (t, s) ∈ [ η
α , η] × [0, 1], G(t, s) ≥ γΦ(s) , where

0 < γ =
η2

2α2(1 + α)
min{α− 1, 1} < 1.

Let us list some conditions.

(H1) f ∈ C[[0, 1] × P, P ], f(t, u) is bounded and uniformly continuous in t on [0, 1] × Pr , where

Pr = {u ∈ P |‖u‖ ≤ r} , and there exists 0 ≤ L < 1
2M1

such that for t ∈ [0, 1] and bounded D ⊂ P ,

α(f(t, D)) ≤ Lα(D) (2.2)

holds, where M1 = max
s∈[0,1]

Φ(s).

(H2) f ∈ C[[0, 1]× P, P ], f(t, u) is bounded and uniformly continuous in t on [0, 1]× Pr for any r > 0

and there exists a h ∈ C[[0, 1], R+] with
∫ 1

0
h(t)dt < 1

2M1
such that for t ∈ [0, 1] and bounded D ⊂ P ,

α(f(t, D)) ≤ h(t)α(D) (2.3)

holds, where M1 = max
s∈[0,1]

Φ(s).

(H3)
‖f(t,u)‖

‖u‖ → 0 as u ∈ P and ‖u‖ → 0 uniformly in t ∈ [0, 1] .

(H4)
‖f(t,u)‖

‖u‖ → 0 as u ∈ P and ‖u‖ → ∞ uniformly in t ∈ [0, 1] .

(H5) There exist u0 ∈ int(P ), and k ∈ C[[ η
α
, η], R] with

∫ η

η
α

k(t)Φ(t)dt > (γ)−1

such that f(t, u) ≥ k(t)u0 for t ∈ [ η
α , η] and u ≥ u0 .

(H6) There exist u0 ∈ P \{θ} , and k ∈ C[[ η
α , η], R] with

∫ η

η
α

k(t)Φ(t)dt ≥ (γ)−1

such that f(t, u) ≥ k(t)u0 for t ∈ [ η
α , η] and u ≥ u0 .

Remark 2.1 It is clear that (H2) is weaker than (H1), and (H6) is weaker than (H5). Also, condition (H1)
is satisfied automatically when E is finite dimensional.

Now we define

(Au)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds, ∀ u ∈ P. (2.4)

Then (Au)(t) ≥ θ, t ∈ [0, 1] , and using the Lebesgue dominated convergence theorem we know that (Au)(t) is

continuous on [0, 1] , hence the integral operator A : P → P . Further, we can easily show that

(i) If u ∈ P , then (Au)′′′(t) = −f(t, u), t ∈ [0, 1] , hence Au ∈ P ∩ C3[[0, 1], E] .
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(ii) If u ∈ P satisfies Au = u , then u is a solution of the BVP (1.1)− (1.2).

Therefore, the BVP (1.1) − (1.2) is equivalent to the operator equation Au = u, u ∈ P .

Lemma 2.3 ([15,16]) Let D be a bounded set of E and f : [0, 1]× D → E be bounded. Assume that f(t, u)
is uniformly continuous with respect to t . Then, we have

α(f([0, 1]× S)) = max
t∈[0,1]

α(f(t, S)), S ⊂ D.

Lemma 2.4 ([15,16]) If H ⊂ C[[0, 1], E] is bounded and equicontinuous, then

α(H([0, 1])) = max
t∈[0,1]

α(H(t)),

where H([0, 1]) = {u(t) : u ∈ H, t ∈ [0, 1]} .

Lemma 2.5 ([15,16]) If H ⊂ C[[0, 1], E] is countable and is bounded, then α(H(t)) ∈ L[[0, 1], R+] and

α
({∫ 1

0

u(t)dt|u ∈ H
})

≤ 2
∫ 1

0

α(H(t))dt.

Lemma 2.6 Assume that (H1) holds. Then for any r > 0 , operator A is a strict set contraction on D ⊂ Pr .

Proof. Since f is uniformly continuous and bounded on Pr , we see from (2.4) that A is continuous and

bounded on Pr . Since f(t, u) is bounded and uniformly continuous in t on [0, 1]×Pr for any r > 0, it follows

from Lemma 2.3 and (2.2) that

α(f([0, 1]× D)) = max
t∈[0,1]

α(f(t, D)) ≤ Lα(D), D ⊂ Pr. (2.5)

Let S ⊂ C[[0, 1], E] be bounded. We know that A(S) ⊂ C[[0, 1], E] is bounded and equicontinuous, so, by
Lemma 2.4,

α(A(S)) = max
t∈[0,1]

α(A(S(t))), (2.6)

where A(S(t)) = {(Au)(t)|u ∈ S} ⊂ E (t is fixed). Using the formula

∫ 1

0

y(t)dt ∈ co{y(t)|t ∈ [0, 1]} for y ∈ C[[0, 1], E],

and observing Lemma 2.2 and (2.5), we find

α(A(S(t))) = α({
∫ 1

0

G(t, s)f(s, u(s))ds)|u ∈ S})
≤ α(co{G(t, s)f(s, u(s))|s ∈ [0, 1], u ∈ S})
≤ M1α({f(s, u(s))|s ∈ [0, 1], u ∈ S})
≤ M1α(f([0, 1]× B) ≤ M1Lα(B), t ∈ [0, 1],

(2.7)
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where B = {u(s)|s ∈ [0, 1], u ∈ S} . For any given ε > 0, there is a partition S =
n⋃

j=1

Sj such that

diam(Sj) < α(S) +
ε

3
, j = 1, 2, · · · , n. (2.8)

Choose uj ∈ Sj(j = 1, s, · · · , n) and a partition of J : a = t0 < t1 < · · · < tm = b such that

‖uj(t) − uj(s)‖ <
ε

3
, ∀ j = 1, s, · · · , n; t, s ∈ [ti−1, ti], i = 1, 2, · · · , m. (2.9)

Obviously, B =
m⋃

i=1

n⋃
j=1

Bij , where Bij = {u(s)|s ∈ [ti−1, ti], u ∈ Sj} . For any u(t), u(t) ∈ Bij(t, t ∈

[ti−1, ti], u, u ∈ Sj). It follows from (2.8), (2.9) that

‖u(t) − u(t)‖ ≤ ‖u(t) − uj(t)‖ + ‖uj(t) − uj(t)‖ + ‖uj(t) − u(t)‖
≤ ‖u − uj‖C + ε

3 + ‖uj − u‖C ≤ 2diam(Sj ) + ε
3 < 2α(S) + ε.

Consequently,
diam(Bij) ≤ 2α(S) + ε, ∀ i = 1, 2, · · · , m, j = 1, s, · · · , n,

and so α(B) ≤ 2α(S) + ε, which implies, since ε is arbitrary,

α(B) ≤ 2α(S). (2.10)

It follows then from (2.6), (2.7), (2.10) that α(A(S)) ≤ 2M1Lα(S), S ⊂ Pr with 2M1L < 1, and Lemma 2.6
is proved. �

Lemma 2.7 Assume that (H2) holds. Then A defined by (2.4) is a bounded and continuous operator

from C[[0, 1], P ] into C[[0,1],P]; moreover, for any bounded and countable set S ⊂ C[[0, 1], E] , we have

α(A(S)) ≤ 2kM1α(S) , where

k = max
t∈[0,1]

∫ 1

0

h(t)dt. (2.11)

Proof. Since f is uniform continuous and bounded on Pr , we see from (2.4) that A is continuous and

bounded on Pr . Let S ⊂ C[J, E] be bounded and countable. As in the proof of Lemma 2.6, (2.6) holds. By

Lemma 2.5 and (2.3), we have

α(A(S(t))) = α({
∫ 1

0

G(t, s)f(s, u(s))ds)|u ∈ S})

≤ 2
∫ 1

0

G(t, s)α({f(s, u(s))|s ∈ [0, 1], u ∈ S})ds

≤ 2M1

∫ 1

0

h(s)dsα(S), ∀ t ∈ [0, 1].

(2.12)

It follows from (2.6) and (2.12) that α(A(S)) ≤ 2kM1α(S). �
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We will apply the following fixed point index to obtain solutions of the BVP (1.1)−(1.2).

Lemma 2.8 ([16]) Let X be a nonempty closed convex subset of E and U be a nonempty bounded open

convex subset of X . Assume that A : U → X is a strict set contraction such that A(U) ⊂ U . Then

i(A, U, X) = 1.

Lemma 2.9 ([16]) Let D be a bounded, closed and convex subset of E . Assume that the continuous operator

A : D → D has the property:

C ⊂ D countable, not relatively compact ⇒ α(A(C)) < α(C).

Then A has a fixed point in D .

3. Main Results

Theorem 3.1 Let P be a normal and solid cone in E . Suppose that conditions (H1), (H3)-(H5) are satisfied.

Then boundary value problems (1.1)−(1.2) has at least two positive solutions u1, u2 ∈ C3[[0, 1], E]∩C[[0, 1], P ]

such that u1(t) � u0 for t ∈ [ η
α , η] .

Proof. Conditions (H3) and (H4) imply that we can find two numbers r1 and r2 such that

0 < r1 <
‖u0‖
N

< r2 (3.1)

and

‖f(t, u)‖ ≤ ‖u‖
2M1

, ∀ t, s ∈ [0, 1], u ∈ P, ‖u‖ ≤ r1 and ‖u‖ ≥ r2, (3.2)

where u0 is the element in condition (H5) and N denotes the normal constant of P . Consequently,

‖f(t, u)‖ ≤ ‖u‖
2M1

+ M, ∀ t, s ∈ [0, 1], u ∈ P, (3.3)

where

M = sup{‖f(t, u)‖|t, s ∈ [0, 1], u ∈ P, ‖u‖ ≤ r2}.

Choose

r3 > max{2MM1, r2} (3.4)

and set U1 = {u ∈ C[[0, 1], P ]|‖u‖C < r1}, U3 = {u ∈ C[[0, 1], P ]|‖u‖C < r3} and U2 = {u ∈ C[[0, 1], P ]|‖u‖ <

r3 and u(t) � u0 for t ∈ [ η
α , η]} . Obviously, U1 and U2 are bounded open convex sets of C[[0, 1], P ] . Moreover,

from (3.1) and (3.4) we find

U1 ⊂ U3, U2 ⊂ U3, U1 ∩ U2 = ∅. (3.5)
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On the other hand, it is clear that U1 = {u ∈ C[[0, 1], P ]|‖u‖C ≤ r1}, U3 = {u ∈ C[[0, 1], P ]|‖u‖C ≤ r3} and

U2 ⊂ {u ∈ C[[0, 1], P ]|‖u‖ ≤ r3 and u(t) ≥ u0 for t ∈ [ η
α , η]} . Now,(3.2), (3.3) and (3.4) imply that

u ∈ U1 ⇒ ‖Au‖C ≤ 1
2

∫ 1

0

‖u(s)‖ds ≤ 1
2
‖u‖C < r1

and

u ∈ U3 ⇒ ‖Au‖C ≤
∫ 1

0

(
1
2
‖u(s)‖ + M)ds ≤ r3

2
+ M < r3,

hence
A(U1) ⊂ U1, A(U3) ⊂ U3. (3.6)

For u ∈ U2 , we have ‖u‖C ≤ r3 and u(t) ≥ u0 for t ∈ [ η
α
, η] , and so ‖Au‖C < r3 , and by (H5),

t ∈ [
η

α
, η] ⇒ (Au)(t) ≥

∫ η

η
α

G(t, s)f(s, u(s))ds ≥ γ

∫ η

η
α

k(s)Φ(s)ds u0 > u0,

which implies (Au)(t) � u0 for t ∈ [ η
α
, η] , and consequently,

A(U2) ⊂ U2. (3.7)

It follows from (3.6), (3.7) and Lemma 2.8 that the fixed point index

i(A, Uj , C[[0, 1], P ]) = 1 (j = 1, 2, 3). (3.8)

Hence, A has a fixed point u1 ∈ U2 which satisfies u1(t) � u0 for t ∈ [ η
α , η] . On the other hand, (3.8) implies

i(A, U3\(U1 ∪ U2), C[[0, 1], P ]) = i(A, U3, C[[0, 1], P ])− i(A, U1, C[[0, 1], P ])− i(A, U2, C[[0, 1], P ]) = −1 �= 0,

so A has a fixed point u2 ∈ U3\(U1 ∪ U2), and the theorem is proved. �

Remark 3.1 Condition (H3) and the continuity of f imply that f(t, θ) = θ for t ∈ [0, 1] . Hence, under

conditions of Theorem 3.1, BVP(1.1)−(1.2) has the trivial solution u(t) ≡ θ besides two positive solutions u1

and u2 .

Theorem 3.2 Suppose that the conditions (H2), (H4) and (H6) are satisfied. Then boundary value problems

(1.1)−(1.2) has at least one positive solution u ∈ C[[0, 1], P ] such that u(t) ≥ u0 for t ∈ [ η
α , η] .

Proof. By virtue of condition (H2) and Lemma 2.7, the operator A defined by (2.4) is a bounded

and continuous operator from C[[0, 1], P ] into C[[0, 1], P ] . And for any bounded and countable set S ⊂
C[[0, 1], P ], α(A(S)) ≤ 2kM1α(S), where 2kM1 < 1. On the other hand, as in the proof of Theorem 3.1,

(3.2) holds for some r2 > ‖u0‖ , and so, (3.3) holds. Choosing r3 such that (3.4) is satisfied and letting

D = {u ∈ C[[0, 1], P ]|‖u‖ ≤ r3 and u(t) ≥ u0 for t ∈ [ η
α
, η]} , we see clearly that D is bounded closed convex

set of C[[0, 1], E] and D �= ∅ since u∗ ∈ D , where u∗(t) ≡ u0 for t ∈ [0, 1] . In a similar way as for the proof

61



WANG, LU, ZHANG

of (3.7), we can show A(D) ⊂ D . Hence, Lemma 2.9 implies that A has a fixed point in D . The theorem is
proved. �

Remark 3.2 One difference between Theorems 3.1 and 3.2 is that Theorem 3.1 requires the cone P to be
both normal and solid, while Theorem 3.2, by contrast, does not.

4. One Example

In this section, in order to illustrate our results, we consider an example.

Example 4.1 Consider the following one dimensional BVP

{
−u′′′(t) = et sin2 u + 12

√
tu ln(1 + tu), 0 ≤ t ≤ 1,

u(0) = u′(0) = 0, u′(1) = 3
2
u′(1

2
).

(4.1)

Conclusion BVP (4.1) has two positive solutions u1, u2 ∈ C3[[0, 1], R] such that u1(t) > 0, u2(t) > 0 for

0 < t ≤ 1 and u1(t) > 1 for 1
3 ≤ t ≤ 1

2 .

Proof. Let E = R
1, P = [0,∞), then P is a normal solid cone in E and (4.1) can be regarded as a BVP

of the form (1.1), where

f(t, u) = et sin2 u + 12
√

tu ln(1 + tu),

f : [0, 1] × P → P is continuous. Taking η = 1
2 , α = 3

2 , the Green’s function satisfies G(t, s) ≤ Φ(s) =

10s(1 − s), (t, s) ∈ [0, 1]× [0, 1] .

It is clear that (H1), (H3), (H4) are satisfied and it is easy to see that condition (H5) of Theorem 3.1 is

satisfied for u0 = 1 and k(t) = 12(ln 3
2 )
√

t . Observing f(t, u) > 0 for t > 0 and u > 0, our conclusion follows

from Theorem 3.1. �
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