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The Existence of Triple Positive Solutions of Nonlinear Four-point

Boundary Value Problem with p-Laplacian∗

Xiang-feng Li, Pei-hao Zhao

Abstract

This paper deals with the multiplicity results of positive solutions of one-dimensional singular p-Laplace

equation

(ϕp(u
′(t)))′ + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1

subject to the nonlinear boundary conditions

αϕp(u(0)) − βϕp(u
′(ξ)) = 0, γϕp(u(1)) + δϕp(u′(η)) = 0,

where ϕp(x) = |x|p−2x, p > 1. By using the Avery-Peterson fixed point theorem, sufficient conditions for the

existence of at least three positive solutions to the boundary value problem mentioned above are obtained.
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1. Introduction

In recent years, existence and multiplicity of positive solution for two-point boundary value problems
involving p-Laplacian have been broadly investigated; see [2, 7, 8, 11-13] and references therein. There is much

current attention focused on the study of nonlinear multi-point (at least three-point) boundary value problems.

We refer the reader to [3-6, 9, 10] for details.

In this paper, we consider the following nonlinear four-point singular boundary value problem with p-
Laplacian

(ϕp(u′))′ + a(t)f(t, u(t), u′(t)) = 0 0 < t < 1, (1.1)

αϕp(u(0)) − βϕp(u′(ξ)) = 0, γϕp(u(1)) + δϕp(u′(η)) = 0, (1.2)

where ϕp(x) = |x|p−2x, p > 1; α > 0, β ≥ 0, γ > 0, δ ≥ 0, ξ, η ∈ (0, 1) are prescribed and ξ < η . Let

ϕq(x) = |x|q−2x be the inverse function to ϕp ; then we have 1
p + 1

q = 1. And a(t) may be singular at t = 0

and/or t = 1.
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In [11, 12], Bai et al. studied the existence of at least three positive solutions of Eq. (1.1) together with
the two-point boundary value conditions

u(0) = u(1) = 0, or u(1) = u′(1) = 0, (1.3)

and
αϕp(u(0)) − βϕp(u′(0)) = 0, γϕp(u(1)) + δϕp(u′(1)) = 0, (1.4)

and
u(0) − g1(u′(0)) = 0, u(1)) + g2(u′(1)) = 0, (1.5)

by using a recent three-function fixed point theory and the Avery-Peterson fixed point theorem, respectively.
In [2], Sun et al. obtained the existence of positive solutions of Eq. (1.1)–(1.4) and (1.1)–(1.5) and established
the iterative schemes for the approximate solutions.

More recently, when the nonlinear term f does not depend on the first-order derivative, Eq. (1.1)

together with some multi-point boundary conditions have been studied in several papers, for example, see [5, 7,

8, 10-13]. In [8], Xiong studied the existence of positive solution of Eq. (1.1)–(1.3) by means of the variational

method. In [13], Li et al. considered the existence of at least three positive solutions of Eq. (1.1)–(1.5) by using
a three-functional fixed point theorem. Zhao et al. considered the existence of three positive solutions of Eq.
(1.1)–(1.3), the main tool is the Leggett-Williams fixed point theorem [7]. While in [5], Ji et al. studied the

existence of multiple positive solutions of Eq. (1.1) in the case of a(t) = 1, subject to the nonlinear four-point
boundary value conditions

u(0) − α(u′(ξ)) = 0, u(1) + β(u′(η)) = 0. (1.6)

The main tool is the fixed-point theorem in cones.

However, for Eq. (1.1)–(1.2), there are currently few papers dealing with the existence of positive solution.
Motivated by the papers mentioned above, in this paper we consider the existence of three positive solutions for
nonlinear singular boundary value problem (1.1)–(1.2) by using the Avery-Peterson fixed point theorem. The
purpose of this paper is to essentially improve and generalize the results in the above mentioned literatures.

In the rest of the paper, we make the following assumptions:

(H1) f ∈ C([0, 1]× (0, +∞) × (−∞, +∞), (0, +∞));

(H2) a(t) ∈ C((0, 1), [0,∞)), and
∫ 1

0
a(t)dt < ∞ . Furthermore, a(t) is not identical zero on any compact

subinterval of (0, 1). And a(t) may be singular at t = 0 and/or t = 1.

2. Preliminaries

In this section, we provide some background materials from the theory of cones in Banach spaces and
a lemma which transform the problem (1.1)–(1.2) into an integral equation, and we state a three fixed points

theorem duo to Avery and Peterson [1] for multiple fixed-points of a cone-preserving operator on ordered Banach
space.

Definition 2.1 Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex set P ⊂ E is called a cone
if it satisfies:
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(i) u ∈ P, λ ≥ 0, implies λu ∈ P ;

(ii) u ∈ P,−u ∈ P, implies u = 0 .

Definition 2.2 A map α is said to be a nonnegative continuous concave functional on cone P of real Banach
space E if

α : P → [0,∞)

is continuous and
α(tu + (1 − t)v) ≥ tα(u) + (1 − t)α(v)

for all u, v ∈ P and t ∈ [0, 1] . Similarly, we say the map β is a nonnegative continuous convex functional on
cone P of real Banach space E if

β : P → [0,∞)

is continuous and
β(tu + (1 − t)v) ≤ tβ(u) + (1 − t)β(v)

for all u, v ∈ P and t ∈ [0, 1] .

Let γ and θ be nonnegative continuous convex functional on P , α be a nonnegative continuous concave
functional on P , and ψ be a nonnegative continuous functional on P . Then for positive real numbers a, b, c ,
and d , we define the following convex sets:

P (γ, d) = {u ∈ P : γ(u) < d},

P (γ, d) = {u ∈ P : γ(u) ≤ d},

P (γ, α, b, d) = {u ∈ P : b ≤ α(u), γ(u) ≤ d},

P (γ, θ, α, b, c, d) = {u ∈ P : b ≤ α(u), θ(u) ≤ c, γ(u) ≤ d},
and a convex closed set

R(γ, ψ, a, d) = {u ∈ P : a ≤ ψ(u), γ(u) ≤ d}.

Lemma 2.3 Suppose that conditions (H1 ),(H2 ) hold, then u(t) ∈ C[0, 1]
⋂

C2(0, 1) is a solution of boundary

value problem (1.1)–(1.2), if and only if u(t) is a solution of the following integral equation:

u(t) =

⎧⎨
⎩

ϕq

(
β
α

∫ σ

ξ a(r)f(r, u(r), u′(r)) dr
)

+
∫ t

0 ϕq

(∫ σ

s a(r)f(r, u(r), u′(r)) dr
)

ds, 0 ≤ t ≤ σ

ϕq

(
δ
γ

∫ η

σ
a(r)f(r, u(r), u′(r)) dr

)
+

∫ 1

t
ϕq

(∫ s

σ
a(r)f(r, u(r), u′(r)) dr

)
ds, σ ≤ t ≤ 1.

(2.1)

where σ ∈ [ξ, η] ⊂ (0, 1) and u′(σ) = 0 .

Proof. Firstly, assume that(2.1)holds, thus, we have

u′(t) =

{
ϕq

(∫ σ

t
a(r)f(r, u(r), u′(r)) dr

)
≥ 0, 0 ≤ t ≤ σ

−ϕq

(∫ t

σ a(r)f(r, u(r), u′(r)) dr
)
≤ 0, σ ≤ t ≤ 1.

(2.2)

Hence, thanks to (2.2), we have (ϕp(u′(t)))′ + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1, i.e., equation (1.1) holds.

Furthermore, let t = 0 and t = 1 in (2.1) and let t = ξ, t = η in (2.2), we can show the boundary conditions

(1.2) is satisfied. Consequently, sufficiency is proved.
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Next, by the boundary conditions (1.2), we have u′(ξ) ≥ 0, u′(η) ≤ 0. Then there exists a constant

σ ∈ [ξ, η] , such that u′(σ) = 0. Thus, for t ∈ (0, σ), integrating the two side of the equation (1.1) over (0, σ),

and notice that u′(σ) = 0, we have

ϕp(u′(σ)) − ϕp(u′(t)) = −
∫ σ

t

a(s)f(s, u(s), u′(s)) ds. (2.3)

Then u′(t) = ϕq

(∫ σ

t
a(s)f(s, u(s), u′(s)) ds

)
. Hence,

u(σ) − u(t) =
∫ σ

t

ϕq

(∫ σ

s

a(r)f(r, u(r), u′(r)) dr

)
ds. (2.4)

Let t = ξ in (2.3) and notice that u′(σ) = 0, we have

ϕp(u′(ξ)) =
∫ σ

ξ

a(s)f(s, u(s), u′(s)) ds.

With the boundary condition (1.2), we have

ϕp(u(0)) =
β

α
ϕp(u′(ξ)).

Then

u(0) = ϕq

(
β

α

∫ σ

ξ

a(s)f(s, u(s), u′(s)) ds

)
. (2.5)

Let t = 0 in (2.4), by (2.4) and (2.5), we can obtain that for any t ∈ (0, σ)

u(t) = ϕq

(
β

α

∫ σ

ξ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ t

0

ϕq

(∫ σ

s

a(r)f(r, u(r), u′(r)) dr

)
ds.

Similarly, for t ∈ (σ, 1), by integrating the two sides of equation (1.1) over (σ, 1), we can obtain that for any

t ∈ (σ, 1)

u(t) = ϕq

(
δ

γ

∫ η

σ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ 1

t

ϕq

(∫ s

σ

a(r)f(r, u(r), u′(r)) dr

)
ds.

This ends the proof of Lemma 2.1. �

In order to fulfil the proof of the main result, the following fixed point theorem, due to Avery and
Peterson, will be fundamental.

Theorem A [1]. Let P be a cone in a real Banach space E . Let γ and θ be nonnegative continuous convex
functional on P , α be a nonnegative continuous concave functional on P , and ψ be a nonnegative continuous
functional on P satisfying ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1 , such that for some positive numbers M and d ,

α(u) ≤ ψ(u), and ‖u‖ ≤ Mγ(u), for all u ∈ P (γ, d). (2.6)
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Suppose T : P (γ, d) → P (γ, d) is completely continuous and there exist positive numbers a, b and c with a < b

and such that
(C1){u ∈ P (γ, θ, α, b, c, d) : α(u) > b} 
= ∅ , and α(Tu) > b , for u ∈ P (γ, θ, α, b, c, d);

(C2)α(Tu) > b , for u ∈ P (γ, α, b, d) with θ(Tu) > c ;

(C3)0 /∈ R(γ, ψ, a, d) and ψ(Tu) < a for u ∈ R(γ, ψ, a, d) with ψ(u) = a .

Then T has at least three fixed points u1, u2, u3 ∈ P (γ, d) such that

γ(ui) ≤ d, for i = 1, 2, 3,

b < α(u1),

a < ψ(u2), with α(u2) < b,

and
ψ(u3) < a.

3. Existence of three positive solutions of problem(1.1)–(1.2)

In this section, we define two appropriate Banach spaces and the two cones, and provide two technical
lemmas which need in the proof of our main result, then present our main result and its proof.

Let E1 = C1[0, 1] , endowed with the norm

‖u‖1 = max
{

max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|
}

,

and E2 = C[0, 1], endowed with the maximum norm

‖u‖2 = max
0≤t≤1

|u(t)|.

It is easy to check that if u(t) satisfy

(ϕp(u′(t)))′ = −a(t)f(t, u(t), u′(t)) ≤ 0

then u is concave on [0, 1] . Thus, we can define cone P1 ⊂ E1 by

P1 = {u ∈ E1 : u(t) is nonnegative and concave on [0, 1], and satisfying

αϕp(u(0)) − βϕp(u′(ξ)) = 0, γϕp(u(1)) + δϕp(u′(η)) = 0}

and define cone P2 ⊂ E2 by

P2 = {u ∈ E2 : u(t) is nonnegative and concave on [0, 1]}.

Obviously, E1 ⊂ E2, P1 ⊂ P2 .
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Let the nonnegative continuous concave functional α1 , the nonnegative continuous convex functional
θ1, γ1 , and the nonnegative continuous functional ψ1 be defined on the cone P1 given by

α1(u) = min
ω≤t≤(1−ω)

u(t), for ω ∈ (0,
1
2
),

γ1(u) = max
0≤t≤1

|u′(t)|, ψ1(u) = θ1(u) = max
0≤t≤1

u(t).

In order to prove our main result, we will make use of the following technical lemmas.

Lemma 3.1 [4, Lemma 2.1]. Let u ∈ P2 and ω ∈ (0, 1
2) , then

u(t) ≥ ω‖u‖2, t ∈ [ω, 1 − ω].

Apparently, the conclusion is also true for u ∈ P1 .

Lemma 3.2 Let u ∈ P1 , then there exists a positive constant L, such that

max
0≤t≤1

|u(t)| ≤ L max
0≤t≤1

|u′(t)|.

Proof. By u(t) − u(0) =
∫ t

0
u′(s) ds , we have

max
0≤t≤1

|u(t)| ≤ |u(0)|+ max
0≤t≤1

|u′(t)|.

On the other hand, by the first equation of (1.2), we have

|u(0)| = ϕq(
β

α
)|u′(ξ)| ≤ ϕq(

β

α
) max

0≤t≤1
|u′(t)|.

Thus, we have

max
0≤t≤1

|u(t)| ≤
(

1 + ϕq(
β

α
)
)

max
0≤t≤1

|u′(t)|.

Similarly, by the second equation of (1.2), we have

max
0≤t≤1

|u(t)| ≤
(

1 + ϕq(
δ

γ
)
)

max
0≤t≤1

|u′(t)|.

Therefore, setting

L = min
{

1 + ϕq(
β

α
), 1 + ϕq(

δ

γ
)
}

,

the proof of Lemma 3.2 ends. �

For convenience, we introduce the following constants:

N = max
{

ϕq

(∫ η

0

a(r) dr

)
, ϕq

(∫ 1

ξ

a(r) dr

)}
,
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M = max

{
ϕq

(
β

α

∫ η

ξ

a(r) dr

)
+

∫ η

0

ϕq

(∫ η

s

a(r) dr

)
ds, ϕq

(
δ

γ

∫ η

ξ

a(r) dr

)
+

∫ 1

ξ

ϕq

(∫ s

ξ

a(r) dr

)
ds

}
,

m = min

{∫ ξ

0

ϕq

(∫ ξ

s

a(r) dr

)
ds,

∫ 1

η

ϕq

(∫ s

η

a(r) dr

)
ds

}
.

Our main result is as follows.

Theorem 3.3 Assume that (H1 ), (H2 ) hold, and suppose that there exist positive constants a, b, d such that
0 < a < b < ωLd . Also assume that f satisfies the following conditions:

(H3) f(t, u, u′) ≤ ϕp( d
N

) , for (t, u, u′) ∈ [0, 1]× [0, Ld]× [−d, d] ;

(H4) f(t, u, u′) > ϕp( b
ωm) , for (t, u, u′) ∈ [ω, 1 − ω] × [b, b

ω ] × [−d, d] ;

(H5) f(t, u, u′) < ϕp( a
M

) , for (t, u, u′) ∈ [0, 1]× [0, a]× [−d, d] .

Then the boundary value problem (1.1)–(1.2) has at least three positive solutions u1, u2 , and u3 such that

max
0≤t≤1

|u′
i(t)| ≤ d, for i = 1, 2, 3.

b < min
ω≤t≤1−ω

|u1(t)|, with max
0≤t≤1

|u1(t)| ≤ Ld,

1 < max
0≤t≤1

|u2(t)| <
b

ω
, with min

ω≤t≤1−ω
|u2(t)| < b,

max
0≤t≤1

|u3| < a.

Proof. We define the operator T : P1 → E1 given by

(Tu)(t) =

⎧⎨
⎩

ϕq

(
β
α

∫ σ

ξ
a(r)f(r, u(r), u′(r)) dr

)
+

∫ t

0
ϕq

(∫ σ

s
a(r)f(r, u(r), u′(r)) dr

)
ds, 0 ≤ t ≤ σ

ϕq

(
δ
γ

∫ η

σ
a(r)f(r, u(r), u′(r)) dr

)
+

∫ 1

t
ϕq

(∫ s

σ
a(r)f(r, u(r), u′(r)) dr

)
ds, σ ≤ t ≤ 1.

(3.1)

First, it follows from Lemma 2.1 that operator T is well-defined. Next, because

(Tu)′(t) =

{
ϕq

(∫ σ

t
a(r)f(r, u(r), u′(r)) dr

)
≥ 0, 0 ≤ t ≤ σ

−ϕq

(∫ t

σ
a(r)f(r, u(r), u′(r)) dr

)
≤ 0, σ ≤ t ≤ 1 , (3.2)

it is obvious that the operator (Tu)′ is continuous monotone decreasing on [0, 1] , and (Tu)′(σ) = 0. Meanwhile,
it follows from the definition of operator T that for each u ∈ P1, Tu ∈ E1 is nonnegative continuous, and with
(3.1), (3.2), we can obtain

αϕp((Tu)(0)) − βϕp((Tu)′(ξ)) = 0, γϕp((Tu)(1)) + δϕp((Tu)′(η)) = 0

These show that Tu ∈ P1, i.e., T (P1) ⊂ P1 , and we can obtain (Tu)(σ) = ‖Tu‖2 with

ϕq

(
β

α

∫ σ

ξ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ σ

0

ϕq

(∫ σ

s

a(r)f(r, u(r), u′(r)) dr

)
ds
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= ϕq

(
δ

γ

∫ η

σ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ 1

σ

ϕq

(∫ s

σ

a(r)f(r, u(r), u′(r)) dr

)
ds.

In what follows, we will prove that T : P1 → P1 is completely continuous operator. The continuity of T

is obvious because of the the continuity of f and a . Now, we prove T is compact. Let D ⊂ P1 be a
bounded set, then, there exists R > 0, such that D ⊂ {u ∈ P1|‖u‖ ≤ R} . For any u ∈ D , we have

0 ≤
∫ 1

0
a(s)f(s, u(s), u′(s)) ds ≤ sup

s∈[0,1]

a(s)f(s, u(s), u′(s)) = K . Then, we have

‖Tu‖ ≤ ϕq(K)max{ϕq(
β

α
) + 1, ϕq(

δ

γ
) + 1},

‖(Tu)′‖ ≤ ϕq(K),

‖(ϕp(Tu)′)′‖ ≤ K.

Thus, the Arzela-Ascoli theorem implies that T : P1 → P1 is completely continuous. and it follows from Lemma
2.1 that each fixed point of T in P1 is a positive solution of (1.1)–(1.2).

We now verify that the other conditions of Theorem A are satisfied.

Firstly, we choose u ∈ P1(γ1, d), then γ1(u) = max
0≤t≤1

|u′(t)| ≤ d . By Lemma 3.2, there is max
0≤t≤1

|u(t)| ≤

Ld , thus, assumption (H3) yields f(t, u(t), u′(t)) ≤ ϕp( d
N

), for arbitrary 0 ≤ t ≤ 1. Note that max
0≤t≤1

|(Tu)′(t)| =

max{(Tu)′(0), |(Tu)′(1)|} , and from (3.2),we have

γ1(Tu) = max
0≤t≤1

|(Tu)′(t)|

= max
{

ϕq

(∫ σ

0 a(r)f(r, u(r), u′(r)) dr
)
, ϕq(

∫ 1

σ a(r)f(r, u(r), u′(r)) dr)
}

≤ max
{

ϕq

(∫ η

0
a(r)f(r, u(r), u′(r)) dr

)
, ϕq(

∫ 1

ξ
a(r)f(r, u(r), u′(r)) dr)

}
≤ d

N max
{
ϕq

(∫ η

0 a(r) dr
)
, ϕq(

∫ 1

ξ a(r) dr)
}

= d .

This shows that T : P1(γ1 , d) → P1(γ1, d), and by the previous proof, we know that T : P1(γ1 , d) → P1(γ1 , d)
is completely continuous.

In addition, thanks to Lemma3.1, Lemma3.2 and the definition of α1, γ1, θ1, ψ1 , we have

ωθ1(u) ≤ α1(u) ≤ θ1(u) = ψ1(u), (3.3)

‖u‖1 = max{θ1(u), γ1(u)} ≤ Lγ1(u), for arbitrary u ∈ P1, (3.4)

and
ψ1(λu) = max

0≤t≤1
|λu(t)| = λ max

0≤t≤1
|u(t)| = λψ1(u), 0 ≤ λ ≤ 1.

Therefore, the condition(2.6) of Theorem A is satisfied.

Secondly, we take u(t) ≡ b
2ω , for t ∈ [0, 1] , we have

α1(u(t)) = min
ω≤t≤1−ω

u(t) =
b

2ω
> b,
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γ1(u(t)) = max
0≤t≤1

|u′(t)| = 0 < d,

θ1(u(t)) = max
0≤t≤1

u(t) =
b

2ω
<

b

ω
,

hence u(t) ≡ b
2ω ∈ P1(γ1 , θ1, α1, b,

b
ω , d) and α1(u(t)) > b .

Therefore, {u ∈ P1(γ1, θ1, α1, b,
b
ω , d) : α1(u) > b} 
= ∅ , and for any u ∈ P1(γ1 , θ1, α1, b,

b
ω , d), there is

b ≤ u(t) ≤ b
ω
, |u′(t)| ≤ d , for t ∈ [ω, 1− ω] .

Thus, by condition (H4) and Lemma 3.1, we have

α1(Tu) = min
ω≤t≤1−ω

|(Tu)(t)| ≥ ωθ1((Tu)(t)) = ω(Tu)(σ)

= ω

(
ϕq

(
β

α

∫ σ

ξ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ σ

0

ϕq

(∫ σ

s

a(r)f(r, u(r), u′(r)) dr

)
ds

)

= ω

(
ϕq

(
δ

γ

∫ η

σ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ 1

σ

ϕq

(∫ s

σ

a(r)f(r, u(r), u′(r)) dr

)
ds

)

≥ ω min

{ ∫ ξ

0

ϕq

(∫ ξ

s

a(r)f(r, u(r), u′(r)) dr

)
ds,

∫ 1

η

ϕq

(∫ s

η

a(r)f(r, u(r), u′(r)) dr

)
ds

}

> ω
b

ωm
min

{∫ ξ

0

ϕq

(∫ ξ

s

a(r) dr

)
ds,

∫ 1

η

ϕq

(∫ s

η

a(r) dr

)
ds

}
= b.

Thereupon, α1(Tu) > b , for arbitrary u ∈ P1(γ1, θ1, α1, b,
b
ω , d).

Consequently, condition (C1) of Theorem A is satisfied.

Thirdly, we claim that condition(C2) of Theorem A is satisfied. For this, we choose u ∈ P1(γ1, α1, b, d)

with θ1(Tu) > b
ω , it follows from Lemma3.1 that

α1(Tu) ≥ ωθ1(Tu) > ω
b

ω
= b.

Thus, condition (C2) of Theorem A is satisfied.

Finally, we show that condition(C3) of Theorem A is also satisfied. It is easy to see that ψ1(0) = 0 < a ,

hence 0 /∈ R(γ1, ψ1, a, d). Now assume that u ∈ R(γ1 , ψ1, a, d) with ψ1(u) = a , thus, by the condition (H5),
we have

ψ1(Tu) = max
0≤t≤1

|(Tu)(t)| = (Tu)(σ)

= ϕq

(
β

α

∫ σ

ξ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ σ

0

ϕq

(∫ σ

s

a(r)f(r, u(r), u′(r)) dr

)
ds

= ϕq

(
δ

γ

∫ η

σ

a(r)f(r, u(r), u′(r)) dr

)
+

∫ 1

σ

ϕq

(∫ s

σ

a(r)f(r, u(r), u′(r)) dr

)
ds
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≤ max

{∫ η

0

ϕq

(∫ η

s

a(r)f(r, u(r), u′(r)) dr

)
ds + ϕq

(
β

α

∫ η

ξ

a(r)f(r, u(r), u′(r)) dr

)
,

∫ 1

ξ

ϕq

(∫ s

ξ

a(r)f(r, u(r), u′(r)) dr

)
ds + ϕq

(
δ

γ

∫ η

ξ

a(r)f(r, u(r), u′(r)) dr

) }

<
a

M
max

{ ∫ η

0

ϕq

(∫ η

s

a(r) dr

)
ds+ϕq

(
β

α

∫ η

ξ

a(r) dr

)
,

∫ 1

ξ

ϕq

(∫ s

ξ

a(r) dr

)
ds+ϕq

(
δ

γ

∫ η

ξ

a(r) dr

)}
= a

Consequently, condition(C3) of Theorem A is satisfied.

Thus, it follows from Theorem A that the boundary value problem (1.1)–(1.2) has at least three positive solutions
u1, u2 , and u3 satisfying

max
0≤t≤1

|u′
i(t)| ≤ d, for i = 1, 2, 3;

b < min
ω≤t≤1−ω

|u1(t)|, max
0≤t≤1

|u1(t)| ≤ Ld;

a < max
0≤t≤1

|u2(t)| <
b

ω
with min

ω≤t≤1−ω
|u2(t)| < b;

max
0≤t≤1

|u3| < a.

The proof of Theorem 3.1 is completed. �

4. An Example

In order to illustrate our result, we present an example as follows.
example. Consider the singular boundary value problem with p-Laplacian

{
(ϕp(u′(t)))′ + 1

2t−
1
2 f(t, u(t), u′(t)) = 0, 0 < t < 1,

αϕp(u(0)) − βϕp

(
u′(1

4)
)

= 0, γϕp(u(1)) + δϕp

(
u′(1

2)
)

= 0.
(4.1)

where

p =
3
2
, α = β, γ = δ, ξ =

1
4
, η =

1
2
, ω =

1
4
, a(t) =

1
2
t−

1
2

and

f(t, u, u′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t2

4 + 5
2u + sin u′

100 , (t, u, u′) ∈ [0, 1]× [0, 1]× (−∞,∞),
t2

4 + 5
2u4 + sin u′

100 , (t, u, u′) ∈ [0, 1]× [1, 2]× (−∞,∞),
t2

4 + 40 + sin u′

100 , (t, u, u′) ∈ [0, 1]× [2, 104] × (−∞,∞),
t2

4
+ 40 + u−104

√
u

+ sin u′

100
, (t, u, u′) ∈ [0, 1]× [104, +∞) × (−∞, +∞).

Then (4.1) has at least three positive solutions.

Proof. It follows from a direct calculation that

L = 2, N =
1
2
, M =

79 − 48
√

2
96

, m =
1
96

.
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Clearly, condition (H1), (H2) hold.
Let a = 1, b = 2, d = 5000, thus, we have

f(t, u, u′) < ϕp(
d

N
) = ϕ(2d) = 100, for (t, u, u′) ∈ [0, 1]× [0, 10000]× [−5000, 5000],

f(t, u, u′) > ϕp(
b

ωm
) = 16

√
3, for (t, u, u′) ∈ [

1
4
,
3
4
] × [2, 8]× [−5000, 5000],

and

f(t, u, u′) < ϕp(
96

79 − 48
√

3
), for (t, u, u′) ∈ [0, 1]× [0, 1]× [−5000, 5000].

Consequently, conditions (H3), (H4), (H5) of Theorem 3.1 are satisfied. Thus, by Theorem 3.1, the singular

boundary value problem with p-Laplacian (4.1) has at least three positive solutions, and such that

max
0≤t≤1

|u′
i(t)| ≤ d, for i = 1, 2, 3.

b < min
ω≤t≤1−ω

|u1(t)|, with max
0≤t≤1

|u1(t)| ≤ Ld,

1 < max
0≤t≤1

|u2(t)| <
b

ω
, with min

ω≤t≤1−ω
|u2(t)| < b,

max
0≤t≤1

|u3| < a.

Remark 4.1 Problem (4.1) is singular at t = 0.

Acknowledgement

The author is very grateful to the referee for her/his important comments and suggestions.

References

[1] Avery, R. I., and Peterson, A. C.: Three positive fixed points of nonlinear operators on ordered Banach spaces,

Comput.Math.Appl. 42, 313-322 (2001).

[2] Bo, S., and Weigao, G.: Existence and iteration of positive solutions for some p-Laplacian boundary value problems,

Nonl. Anal. 67(6), 1820-1830 (2007).

[3] Bo, S. and Weigao, G.: Successive iteration and positive pseudo-symmetric solutions for a three-point second-oder

p-Laplacian boundary value problems, Appl.Math.Comput. 188(2), 1772-1779 (2007).

[4] Dehong, J., and Weigao, G.: Multiple positive solutions for some p-Laplacian boundary value problems,

Appl.Math.Comput. 187(2), 1315-1325 (2007).

[5] Dehong, J., and Weigao, G.: Existence of multiple positive solutions for Sturm-Liouville-like four-point boundary

value problem with p-Laplacian,Nonl. Anal. 68, 2638-2646 (2008).

141



LI, ZHAO

[6] Dexiang, M., J., Han, and Xuegang, Chen: Positive solutions of three-point boundary value problem for the one-

dimensional p-Laplacian with singularities,J.Math.Anal.Appl. 324, 118-133 (2006).

[7] Dongxia, Z., Hongzhou, W., and Weigao, G.: Existence of triple positive solutions to a class of p-Laplacian boundary

value problems, J.Math.Anal.Appl. 328, 972-983 (2007).

[8] Ming, X., and Shaorong, W.: The existence of positive solution for the one-dimensional p-Laplacian, Acta

Mathematica Sinica,(Chinese Series) 49, 162-168 (2006).

[9] Xiangfeng, L.: Multiple positive solutions for some four-point boundary value problems with p-Laplacian ,

Appl.Math.Comput. 202(1) 413-426 (2008).

[10] Youyu, W., and Weigao, G.: Multiple positive solutions for multipoint boundary value problems with one-

dimensional p-Laplacian, J.Math.Anal.Appl. 327, 1381-1395 (2007).

[11] Zhanbing, B., and Weigao, G.: Existence of three positive solutions for the one-dimensional p-Laplacian, Acta

Mathematica Sinica,(Chinese Series) 49, 1045-1052 (2006).

[12] Zhanbing, B., Zhanji, G., and Weigao, G.: Multiple positive solutions for some p-Laplacian boundary value

problems, J.Math.Anal.Appl. 300, 477-490 (2004).

[13] Zhiyan, L., Shulin, Y., and Weigao, G.: Multiple positive solutions to a nonlinear two-point boundary value problem

with p-Laplacian, J.Math.Research and Exposition, 26, 480-488 (2006).

Xiang-feng LI
Department of Mathematics,
Longdong University,
Gansu,Qingyang 745000,
P.R. of CHINA
e-mail: lxf66006@sina.com

Pei-hao ZHAO
Department of Mathematics,
Lanzhou University,
Gansu, Lanzhou 730000,
P. R. of CHINA
e-mail: zhaoph@lzu.edu.cn

Received 12.02.2008

142


