# 电子碰撞 Li<sup>+</sup>(ls)电离的三重微分截面

<u>费祥富</u> 梁景辉 潘念东 (山西师苑大学物理系 临汾 041004)

D572.5

摘要利用修正的 BBK 理论,考虑入射道的库仑相互作用及出射道电子的交换对称性,在共面-等能分享-垂直角度碰撞几何中,计算了能量分别为85.6、105.6、227.6和375.6 eV 的入射电子碰 撞 L1<sup>+</sup>(ls)电离的三重微分截面,讨论了干涉效应、关联效应及入射道库仑场对截面的影响. 关键词 <u>L1" 电离</u> 三重微分截面 中子子子子子 尔子子子子 多子子个子

1 引言

1499 年 6 月

电子与离 子碰撞电离截面不仅是当前聚 变研究迫切需要的原子物理数据,而且在天 体物理、等离子体物理及 X 射线激光等高新 技术领域有极强的应用背景.近几年,实验 与理论的研究大多集中在电离总截面和能量 微分截面的测量与计算[1],然而,电子与离子 碰撞单电离的三重微分截面更详细地反映了 这个过程的运动学性质,但文献上目前还未 见到这方面的实验研究报告。随着现代测量 技术与手段的不断提高,我们相信进行这种 反应的实验研究并不是很遥远的未来。现在 或许是先从理论上进行详细计算与研究的适 当时机、随着近年来原子(e, 2e)反应实验与 理论的日趋成熟,离子(e,2e)反应理论研究 最近又有了较大进展。Biswas 和 Sinha 基于 他们成功的理论模型<sup>[2]</sup>提供了电子碰撞类 氢、类氦离子(e, 2e)反应的三重微分截面 (简称 TDCS)计算模型<sup>[9]</sup>。由于这种模型对 碰撞几何的特殊要求,使其进一步的应用受 到了很大限制,为了处理任意几何条件下的 碰撞问题,本文第一作者和其合作者们已将 Braunner-Briggs-Klar(BBK)模型<sup>[4]</sup>推广到了 电子与离子碰撞的新体系<sup>[5]</sup>,并得到了一些

收稿时期: 1998 - 05 - 12.

新的理论结果<sup>[6~10]</sup>.应该指出的是,离子电 离反应与原子电离反应的主要区别是在人射 道增加了靶离子对人射电子的长程库仑力的 作用.文献[5、8 和 10]计算结果都表明,人 射道库仑场对 TDCS 的主要影响是集中在低 人射能量范围.所以区别于文献[3和10],本 文研究电子碰撞 Li<sup>+</sup>(ls)电离的三重微分截 面时,计算仅限于慢(与玻尔速度相比)入射 电子.同时考虑人射道电子与靶离子的库仑 相互作用及出射道的交换效应,出射电子在 共面等能分配、固定相对角度(即两出射电子 互相垂直)几何条件下,计算了电子碰撞 Li<sup>+</sup> (e, 2e)反应的 TDCS,并研究了关联效应、 干涉效应及人射道库仑场对截面的影响.

### 2 理论模型

在原子单位(u)中,将电子碰撞Li<sup>+</sup>(ls) 电离的跃迁矩阵元定义为

$$T_{f}(k_{1}, k_{2}, k_{i}) = \langle \Psi_{f}^{-} | \frac{1}{r_{12}} + \frac{1}{r_{13}} - \frac{(z_{t} - 1)}{r_{1}} | \Psi_{i}^{+} \rangle$$
$$= T_{t} + T_{t} + T_{tr}, \qquad (1)$$

其中  $k_1$ 、 $k_2$ 和  $k_1$ 分别是散射、电离和入射电 子的动量; $r_{12} = |r_1 - r_2|$ ,  $r_{13} = |r_1 - r_3|$ ,  $r_1$ 、 $r_2$ 和  $r_3$ 分别是入射、散射和  $L_1^{2+}$ 的束缚电子关 于靶核的位置矢量;  $z_i$ 是靶核电荷数,  $Y_i^+$ 和  $Y_i^-分别是初末道波函数; T_ex, T_eh和 T_m分别$ 为入射电子与敲出电子、束缚电子和靶核相互作用的散射矩阵元,如果入射电子和靶离子是非极化的,而且对终态自旋不作观测,又由于出射电子的不可区分性, TDCS 是单态散射矩阵元 T, 和三重态散射矩阵元 T, 的统计平均,考虑了出射电子的交换效应后,TDCS 可定义为

$$TDCS = (2\pi)^4 \frac{k_1 k_2}{k_1} \left( \frac{1}{4} |T,|^2 + \frac{3}{4} |T_1|^2 \right), \qquad (2)$$

单态和三重态跃迁矩阵元分别为

$$T_{t} = T_{ft}(k_{1}, k_{2}, k_{1}) + T_{ft}(k_{2}, k_{1}, k_{1})$$
$$T_{t} = T_{ft}(k_{1}, k_{2}, k_{1}) - T_{ft}(k_{2}, k_{1}, k_{1}) .$$
(3)

因为入射电子和靶离子存在长程库仑相 互作用,所以初态波函数 ¥,\*是入射电子的 库仑波函数

$$F_{1}(\mathbf{k}_{i}, \mathbf{r}_{1}) = (2\pi)^{-3/2} e^{\pi a_{i}/2} P(1 - ia_{i}) \cdot e^{i\mathbf{k}_{i} \cdot \mathbf{r}_{1}} F_{1}[ia_{i}; 1; i(\mathbf{k}, \mathbf{r}_{1} - \mathbf{k}_{i} \cdot \mathbf{r}_{1})] \quad (4)$$

和类氦离子  $Li^+$  基态波函数  $\sigma_i(r_2, r_3) = (\lambda^2/\pi) \exp[-\lambda(r_2+r_3)]$ 的乘积

$$\mathcal{F}_{i}^{+}(r_{1}, r_{2}, r_{3}) = F_{i}(k_{i}, r_{1})\Phi_{i}(r_{2}, r_{3}) ,$$
(5)

其中 $a_i = (z_i - 2)/k_i, \lambda = (z_i - 1) + 0.6875, F_i 是合流超几何函数, P 是伽马函数,$ 

末态是由两个出射电子与 Li<sup>2+</sup>组成, 波 函数  $\Psi_{f}^{-}(r_{1}, r_{2}, r_{3})$  可近似取为类氢离子 Li<sup>2+</sup>波函数  $\phi_{lon}(r_{3}) = (z_{1}^{3}/\pi)^{1/2} \exp(-z_{1}r_{3})$ 、  $(z_{r}=3)$ 和描述两出射电子的 BBK 波函数  $\Psi_{DDX}(r_{1}, r_{2})$ 组成. 对低出射电子速度, 还应 考虑敲出电子和剩下的束缚电子的交换对称 性、可表为

其中 BBK 波函数<sup>[5]</sup>为

$$\Psi_{BBR}(\mathbf{r}_{1}, \mathbf{r}_{2}) = (2\pi)^{-3} e^{i\mathbf{k}_{1} \cdot \mathbf{r}_{1}} e^{i\mathbf{k}_{2} \cdot \mathbf{r}_{2}}$$

$$\prod_{i} e^{i\mathbf{k}_{i}/2} P(1 + i\alpha_{i})_{1} F_{1}$$

$$[-i\alpha_{i}; 1; -i(\mathbf{k}, \mathbf{r}_{i} + \mathbf{k}_{i} \cdot \mathbf{r}_{i})], \quad (7)$$

其中 $k_{12} = (k_1 - k_2)/2$ ,  $a_i(i = 1, 2, 12)$ 为 Sommerfeld 参数,  $a_j = z/k_1$ ,  $a_2 = z/k_2$ ,  $a_{12} = -1/2k_{12}$ . 对中高入射能量来说、它们正确地 描述了远场处两体库仑相互作用<sup>[C]</sup>, 而对较 低的入射能量, 两体相互作用受到第3个粒子 的影响变得重要. 按照 Berakdar 理论<sup>[11]</sup>, -般情况下 a, 是较复杂的空间坐标和动量的函 数, 在共面等能几何条件下(即 $k_1 = k_2 = k$ )可 表示为如下简单形式<sup>[12]</sup>:

$$a_1 = a_2 = \frac{4z - \sin\theta}{4k},$$
$$a_{12} = \frac{1 - \sin^2\theta}{2k\sin\theta},$$
(8)

式中 $\theta = \cos^{-1}(\hat{k}_1 \cdot \hat{k}_2)/2$ ,从 $\pi/2$ (两电子沿相 反方向出射)到零(两电子沿同一方向出射) 变化.当 $\theta = \pi/2$ 时, $\alpha_{12} = 0$ ,靶核在两出射的 电子连线之间、电子完全处在一有效电荷为 z - 1/4的核库仑场中.当 $\theta$ 从 $\pi/2$ 减小到零 时,核逐渐偏离电子间的连线,电子之间的 相互作用逐渐增强,在 $\theta = 0$ 时达到最大.对 Sommerfeld 参数的这种修正、反应了末态波 函数中的动量关联效应.从本质上来说,它 描述了由于第3个粒子的存在而对两体库仑 波函数的影响、从而表示了3个两体库仑相互 作用彼此间的动力学屏蔽(DS)效应,其正确 性已被文献[12、13 和 14]的结果所证明,所 以,将此时的 BBK 波函数称为 DSBBK.按 照(5)式和(6)式计算(2)式中的 TDCS 时, 可采用与文献[5和8]大体相同的方法,此处 从略。

### 3 结果和讨论

基于上节公式(2),选择共面、出射电子 等能分享和垂直碰撞几何,即 $k_1$ 、 $k_2$ 和 $k_i$ 在 同一平面, $k_1 = k_2 = k$ 及 $k_1 \cdot k_2 = 0$ 、并取靶核 为极点, $k_i$ 为极轴方向.我们对电子碰撞Li<sup>+</sup> (1s)电离反应做了一些典型的数值计算,碰 撞能量(Li<sup>+</sup>的电离**阏**能为75.6 eV)从85.6 eV(两出射电子能量 $E_1 = E_2 = 2$  eV)增加到 375.6 eV( $E_1 = E_2 = 150$  eV),计算结果如图1 所示.图中径向表示 TDCS,极角 $\theta_2$ 表示敵 出电子角度,极轴方向为入射电子方向 $k_i$ .对 入射能量375.6 eV,在 $\theta_2 = 45^{\circ}$ 时,TDCS = 0.001 8 u、



图1 在共面、等能分配和垂直角度几何 中,电子碰撞Li<sup>+</sup>(ls)电离TDCS的 角度分布

入射能量 B, 分别为85.6 eV --、105.6 eV --、145.6 eV ···、227.6 eV ···和375.6 eV ----.

从图1中可以看出,在各入射能下、TD-CS 都是以 θ<sub>2</sub>=45°的轴为对称的,大于90°时 的两极大值,先是随着入射能量的增加而增 加、在入射能量增加到145.6 eV 时,则开始 迅速减小,并且两峰与对称轴方向的夹角不 断减小,小于90°时的峰,随着入射能量的增 加而增加,且峰在不断变窄,有关这些角度 分布的特征,可从图2和图3得到说明,假设 最初靶核是静止的,由动量守恒关系可知,碰 撞过程中靶核的反冲动量  $k_{im} = k_i - k_1 - k_2$ 

且是角度 θ<sub>2</sub>的函数.从图 2 可看出, k<sub>100</sub>在



 $\theta_2 = \theta_{12}/2 = 45°$ 处对各入射能量都表现为极小 (或动量吸收),从关于45°处的对称性可知, 电子出射的几率绕其对称分布、因碰撞过程 此时受核的影响最小,可认为是一次两体碰 撞(SB)<sup>[2]</sup>,即入射电子直接和电离电子碰 撞,进而敲出电离电子, 靶核可被近似地看 作一旁观者,入射能量越低, 靶核的动量吸 收就越大,对SB碰撞的影响就越大,但值得 注意的是,即使入射能量接近电离阈能(85.6 eV)时,也能看见SB碰撞(图1),入射能量越 高, 靶核的动量吸收就越小. SB 碰撞就越典 型,而在  $\theta_2 = \theta_{12}/2 = 225°$ 处,对各入射能量 都有一范围较宽的极大反冲动量(或动量吸 收),即出射电子绕其对称向后散射。与前述 相反,碰撞过程在此方向受核的影响最大, 可认为是二次两体碰撞(DB)<sup>[2]</sup>,即入射电子 和柬缚电子碰撞后散射出去, 但柬缚电子并 未被直接敲出, 而是被靶核的多次弹性散射 后出射,入射能量越高,反射动量 kim 此时就 越大,整个碰撞过程中核的影响就越大,DB

碰撞就越典型,同时在图示的能量范围内, 对应的 k<sub>ion</sub> 谐表明大于90°时,DB 碰撞是主要的,小于90°时,则SB 是主要的,入射能量越低,k<sub>ion</sub>曲线越趋于平坦,就越不易区分 SB 与 DB 碰撞,



图3 散射振幅对 TDCS 的贡献 *E*、= 145.6 eV.非干涉的独立贡献 *T*<sub>w</sub>---、*T*<sub>w</sub>---、*T*<sub>w</sub>...;干涉和---、

图3所示是(1)式中各散射振幅对 TDCS 非干涉的独立贡献,及干涉和(实线)、可以 看出当 $\theta_2 \alpha 0^\circ \sim 90^\circ$ 之间时,电子与电子碰撞 的散射振幅  $T_{es}$ 是 TDCS 的主要贡献者,电子 与靶核碰撞的散射振幅  $T_{es}$ 及电子与靶离子 中束缚电子碰撞的散射振幅  $T_{es}$ 的贡献并不 明显,正是上边谈到的 SB 碰撞. $\theta_2$ 大于90° 时, $T_{es}$ 对截面的贡献较大、另外的计算也表 明,入射能量越低、 $T_{es}$ 的贡献就越大,可归 于 DB 碰撞.而在 $\theta_2$ 为0°和90°时,3个散射振 幅对截面的贡献都是极大的,而  $T_{es}$ 、 $T_{en}$ 和  $T_{es}$ 的强烈干涉使得 TDCS 在此处却为极小, 整个 TDCS 的角度分布正是这种干涉的结 果.

从图1还可看出,对接近电离阈能的入射 能量85.6 eV (如图1实线),在 $\theta_2 > 90^\circ$ , TD-CS 有两个极大值,近似地位于 $135^\circ$ 和 $315^\circ$ (方向相反).对现在选定的碰撞几何,则表 示在接近阈能时的碰撞中,两出射电子之间 的连线与入射电子方向平行时,是一优惠的 辐射方向.在 $\theta_2 = 45^\circ$ 处的小峰,对应于 SB 碰撞.在225°处,是 DB 碰撞.随着入射能量 的提高,双叶极大的夹角不断减小, $\theta_2 = 45^\circ$ 

的峰不断加强。在入射能量为375.6 eV时, 大于90°的方向几乎没有或很少有电子出射. 说明随着入射能量的增加,大于90°的出射电 子几率不断减少,SB 碰撞逐渐加强,表明入 射能量增加时动量转移的一种趋势,使得电 子被限制在向前散射,因此,对接近电离阈 能的电子-离子碰撞,两出射电子间的连线与 入射电子方向平行时, TDCS 最大, 垂直时, TDCS 最小.碰撞能量增加到5倍的电离阈能 时,主要是 SB 碰撞,而出射电子间的连线垂 直于入射电子方向, TDCS 最大, 角度分布 紧靠45°左右,类似于 δ 函数分布,实际上是 由于束缚电子的初始动量分布随入射电子能 量的增加变得越来越不重要、电子和电子的 碰撞越来越象经典粒子间的碰撞。这些结论 支持了文献[9,13 和 15]理论与实验结果。



图4 单态散射振幅 T,(--)(已乘因子 1/4)和三重态散射振幅 T,(...)(已 乘因子3/4)对 TDCS(入射能量 B, =145.6 eV)的独立贡献 实线(TDCS)代表它们的统计平均,

图4是我们就单态 T,和三重态  $T_1$ 散射 对截面 TDCS 贡献的计算结果. $\theta_2$ 大于90° 时,它们有类似的角度分布,两叶极大.三 重态散射的角度分布呈蝴蝶状;在 $\theta_2$ =45° 时,TDCS 为零,这是碰撞体系空间波函数 反对称性的必然结果.单态散射在此处为一 极大,所以 SB 碰撞主要是单态散射的贡献. 可见,当碰撞能量超出3倍的电离阈能(174.4 eV)时,电子碰撞电离几乎只产生自旋为零 原子核物理评论

的等能双电子反对称态. 而在 θ<sub>2</sub>=15°处, TDCS 的极小,则是单态和三重态散射统计 平均的结果. 值得一提的是,对氢原子情况, 三重态散射乘以大于1的因子后,与实验结果 符合得很好<sup>[13]</sup>. 所以在统计平均中,单态和 三重态散射的不同权重决定了 TDCS 的分布 形状,



[3]5 同图 1 的几何条件,对入射能量
 *B*<sub>1</sub>=145.6 eV 的 TDCS
 ···和--分别表示入射电子用平面波表示(即入射道不考虑库仑场的存在)和出射道不考虑电子间关联的 TDCS,实线表示现在的 TDCS.

图5中给出了入射道库仑场和出射道电 子间关联对 TDCS 的影响.如果忽略入射道 库仑场.即入射电子用平面波表示时,给出 的截面尽管与现在的结果有基本相同的角度 分布,大小却有较大的差别,主要表现在对 SB 碰撞的影响较大,而对 DB 碰撞的影响较 小.这主要是在低能碰撞时,有较小的出射 电子速度,虽然 Briggs<sup>[16]</sup>确认了在 DB 碰撞

#### 参考文献

- 孙水盛,郑绍唐,杜祥琬,热等离子体内原子物理研究 概况与原子分子数据的联合研制,核物理动态,1995, 12(4),6~10
- 2 Sinha C, Tripathi S. Electron Impact Ionization of Atomic Hydrogen. J Phys. 1991, B24 (16): 3 659~ 3 668
- Biswas R, Sinha C. Electron-impact Ionization of a Hydrogenic Ion. Phys Rev. 1994, A50(1): 354~359;
   Triple Differential Cross Sections for Ionization of Heli-

过程中核的影响,而 SB 碰撞在这种情况下 有点"用词不当"<sup>[17]</sup>.因为敲出电子和靶核在 初末态中都有较强的相互作用,电子与电子 在这种背景下碰撞,考虑和不考虑初道的这 种相互作用自然对其有较大的影响,另一方 面,从(4)式可看出,库仑场影响 TDCS 的大 小,主要是入射库仑波的归一化因子

$$|\exp\left(\frac{\pi}{2k_{i}}\right)\Gamma\left(1-\frac{i}{k_{i}}\right)|^{2}$$
$$=\frac{2\pi}{k_{i}}\frac{1}{1-\exp\left(\frac{-2\pi}{k_{i}}\right)}.$$
(9)

计算结果表明,入射能量越高,库仑场对 TDCS 的影响就越小。当入射能量足够高时, 它趋于1,说明入射电子用平面波表示就是一 好的近似,然而,入射能量越低(大干靶离子 的电离能),这个因子就越大,表明库仑场对 TDCS 的影响也就越大,这与文献[3、5、8和 10]的结论是一致的,对于出射道电子间关 联,主要是体现在(7)式和(8)式中的 Sommerfeld 参数的表述。如果不考虑这种关联。 则只需在(7)式中取  $a_1 = z/k_1$ 、 $a_2 = z/k_2$ 和  $a_{12}$ =0. 图5中的点划线表示在这种情况下对 TDCS 的计算结果,对其它入射能量的计算 都表明,在低入射能量区,它给出了太大的 TDCS. 所以我们认为,在上述两种情况下和 在较低的碰撞能量时,入射道的库仑场及出 射道电子间的关联效应,对决定散射截面的 大小与形状是很重要的.

um-like Lithium by Electron Impact. J Phys., 1995, B28 (7):  $3311 \sim 1320$ 

- 4 Brauner M. Briggs J S. Klar H. Triply-differential Cross Sections for lonization of Hydrogen Atoms by Electrons and Positrons. J Phys, 1989, B22(14); 2 265 ~2 287
- 5 Jia X, Shi Q, Chen Z et al. Triple Differential Cross Sections for Electron-impact lonization of He<sup>+</sup>. Phys Rev, 1997, A55(3); 1 971~1 975

- 6 Chen Z, Shi Q, Chen J et al. Effective Sommerfeld Pa-s ranteters in the Three-body Coulomb Continum Problem. Phys Rev, 1997, A56; R2 514
- 7 Shi Q, Chen Z, Chen J et al. Influence of Nuclear Charges for Electron Impact Ionization of Hydrogenic lons. J Phys. 1997, B30: 2 859
- 8 贾祥富、施启存,陈长进等、低能电子碰撞 He<sup>+</sup>(c, 2e) 反应绝对三重微分截面的理论研究。物理学报,1998, 47(3);411~418
- 9 贾祥富、潘念东,陈长进等,中低能人射电子与氦离子 碰撞的 (e, 2e)反应三重微分截面,原子核物理评论, 1998、15(1):26~30
- 10 Shi Q, Chen Z, Chen J et al. Triple Differential Cross Sections for Electron Impact Ionization of Li<sup>+</sup>. 原子与 分子物理学报、1997、14(4): 539~546
- 11 Berakdar J. Approximate Analytical Solution of the Quantum-mechanical Three-body Coulomb Continuum Problem. Phys Rev, 1996, A53(4); 2 314~2 326
- 12 Berakdar J, Briggs JS. Three-body Coulomb Continu-

um Problem. Phys Rev Lett, 1994, 72(24):3 799~ 3 802

- Berakdar J, Briggs JS. Interplay of Exchange and Collisional lonization Mechanisms in (e, 2e)Processes. J Phys. 1996, B29(11); 2 289~2 303
- Berakdar J. Briggs JS. Interference Effects in (e., 2e)-Differential Cross Sections in Doubly Symmetric Geometry. J Phys. 1994, B27(18); 4 271~4 280
- 15 Brauner M, Briggs JS, Klar H et al. Triple Differential Cross Section for Ionization of Hydrogen Atoms by Electrons: the Intermediate and Threshold Energy Regions. J Phys, 1991, B24(3); 657~ 673
- 16 Berakdar J, Briggs J S, Klar H. Scaling Behaviour of the Triply Differential Cross Section for the Ionization of Atomic Hydrogen. J Phys, 1993, B26(2):285~296
- 17 Brauner M., Briggs J S. Structure in Differential Cross Sections for Positron and Electron Impact Ionization of Hydrogen. J Phys., 1993, B26(15): 2 451~2 451

# Triple Differential Cross Sections for Ionization of Li<sup>+</sup>(1s) by Electron Impact

Jia Xiangfu Liang Jinghui Pan Niandong

(Department of Physics, Shanxi Normal University, Linfen 041004)

**Abstract** Based on revised BBK theory, triple differential cross sections (TDCS) have been calculated for ionization of  $Li^+$  (Is) by electron impact. A coplaner, equal-energy, fixed-relative angle kinematics are chosen and the particular case where the scattered and ionized electrons emerge perpendicular to each other is emphasized. The incoming electron state is considered by a Coulomb wave from the long range attraction between the incident electron and the screened ionic nucleus or approximated by a plane wave. The electron exchang effect between the two continum electrons has been taken into account properly. Correlation and coherence between electron-ionized electron, electron-proton and electron-bound electron are identified and the influences on TDCS are discussed.

Key words Li<sup>+</sup> target ionization triple differential cross section

Classifying number 0562.5