

(四川大学物理系

摘 要 采用修正的表面 à 相互作用(MSDI), 对¹⁶⁴Pd、¹⁶⁶Pd、¹¹⁶Pd、¹¹²Pd、¹¹⁴Pd和¹¹⁶Pd 等 6 个偶偶 核做了形变 HF 计算.得到了长椭球、扁椭球和一些激发态的解.结果表明,在质量数为 106 到 116 间的原子核存在形状过渡,且单粒子能级随质量数及组态的不同而不同.同时,还用近似角动量投 影形变 Hartree-Fock (PDHF)方法对¹¹¹Pd 进行了能谱计算,其计算结果与实验谱基本一致,并且发 现投影谱具有 y 软性核谱的特征. 偶偶接 Pal同你素

关键词 形变 HF态 单粒子能谱 y软性核 能量 Staggering 分类号 0571.23

1 引 言

本小组利用形变 Hatree-Fock (HF)方 法,对 fp 壳层区核的性质和能谱做了大量研 究并取得成功,这说明在低质量区使用该方 法研究核结构是可靠的[1.2] 近来,又把此方 法应用于 gds 壳层区, 研究 $Z \in \mathbb{N} = 40 \sim 70$ 的原子核的结构,发现此方法在该区域同样 有效,这里主要讨论采用修正的表面 5 相互 作用 (MSDI) 对 ¹⁰⁶ Pd、¹⁰⁸ Pd、¹¹⁰ Pd、¹¹² Pd、 ¹¹⁴Pd和¹¹⁶Pd 等 6 个偶偶核的研究结果, 首先 计算出它们的一些 HF 内禀态, 然后对¹¹⁰Pd 核的内禀态用单参量 Gauss 近似方法进行角 动量投影,得到了它们的基态带及一些激发 带的能谱.

2 基本理论

关于计算形变 HF 态和近似角动量投影 的方法细节在文献「1~3]中已有详细说明, 这里只给出计算中最必要的公式 偶偶 Pd 核在亚壳层核⁸⁸Zru外面的 A 个外围核子的 二次量子化哈密顿算符为

1998-02-26 收稿。

$$H = \sum_{a\beta} \langle \alpha | H_{\eta} | \beta \rangle a_{\alpha}^{+} a_{\beta} + \frac{1}{2} \sum_{a\beta p \neq} \langle a\beta | V | \gamma \lambda \rangle a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma}, \qquad (1)$$

式中, H。为单体部分, 取成球形壳模型单粒 子哈密顿算符, ν 为两体相互作用, α⁺、α 分 别为产生算符和湮灭算符,单粒子态系{λ}满 足的 HF 方程是

$$\langle a | h | \beta \rangle = \langle a | H_0 | \beta \rangle + \sum_{\lambda=1}^{A} \langle a \lambda | V | \overline{\beta \lambda} \rangle = s_a \delta_{a\beta}, \qquad (2)$$

式中, a 为单粒子态 $|\alpha\rangle$ 的单粒子能, $|\overline{\beta\lambda}\rangle =$ |BA>-|AB>. 态|A>用球形壳模型单粒子态 |nljmr_)(H。的本征态)来展开,即

$$|\lambda_{i}k = m_{\lambda}\rangle = \sum_{j} C_{\pi_{\lambda}}^{j} |jm_{\lambda}\rangle . \qquad (3)$$

对 j 的求和限于 gds 壳层的五个态 180/2、 1g7/2、2d5/2、2d3/2和 3s1/2·利用 C-G 系数进行 耦合变换,则可得到 h 在 | nljm r_)表象中的 矩阵元表达式为

 [•] 国家自然科学基金(项目号19475030)资助。

原子核物理评论

$$(jm |\lambda| j'm) = e_j \delta_{jf} + \sum_{k=1}^{A} \sum_{j_2 j_3} C_{m_k}^{j_2} C_{j_k}^{j_2} \times \frac{1}{2} \sum_{J} (jm j_2 m_k | JM) (j'm j_3 m_k | JM) \times [\langle j j_2 J 1 | V | j' j_3 J 1 \rangle_a + \langle j j_2 J | T_{s_k} | | V | j' j_3 J | T_{s_k} | \rangle_a],$$

$$(4)$$

式中, e_j 为 H_0 的本征值,即球形壳模型单粒 子能, $\langle jj_2 JT | V | j' j_3 JT \rangle$.为反对称化的两体 矩阵元.这里,使用的是修正的表面 δ 相互 作用(MSDI)矩阵元, J = T分别为两粒子 态的总角动量和总同位旋.将(4)式组成的矩 阵对角化,同时利用自恰迭代的方法,便可 得到全部单粒子态{ λ }和其对应的单粒子能

830

归一化的投影态及其能量分别为

$$\begin{aligned} |\Phi_{MR}^{i}\rangle &= \hat{P}_{MR}^{i} |\Phi_{eR}\rangle / \sqrt{p_{KR}^{i}}, \\ p_{KK}^{i} &\equiv \langle \Phi_{eR} | \hat{P}_{KK}^{i} | \Phi_{eK}\rangle, \end{aligned}$$
(5)

$$B_{IK} = h_{IK}^{I} / p_{IK}^{I},$$

$$h_{KK}^{I} \equiv \langle \Phi_{eK} | H \hat{P}_{KK}^{I} | \Phi_{eK} \rangle.$$
(6)

这里, p_{MX}^{i} 为角动量投影算符; $| \Phi_{eX} \rangle$ 是轴对称 HF 内禀态, K 为角动量在对称轴上的投影量子数,下标 σ 代表组态(下文略去).利用投影算符的定义、D 函数的性质以及转动算符的表达式 $\hat{R}(\Omega) = e^{-i\omega_{x}}e^{-i\omega_{x}}re^{-i\omega_{x}}$ 不难得到下列两式

$$h'_{IK} = (I + \frac{1}{2}) E_{HF} \int_{0}^{\pi/2} [d'_{IK}(\theta) + (-1)^{I-K} d'_{I,-K}(\theta)] e^{-\theta^{2}/T_{h}} \sin\theta d\theta, \quad (7a)$$

$$P_{XR}^{I} = (I + \frac{1}{2}) \int_{0}^{\pi/2} \left[d_{XX}^{I}(\theta) + (-1)^{I-R} d_{X,-K}^{I}(\theta) \right] e^{-\theta^{2}/\Gamma_{p}} \sin\theta d\theta, \quad (7b)$$

 $I = K, K + 1, K + 2, \dots, K \neq 0;$ $I = 0, 2, 4, \dots, K = 0.$

$$\Gamma_p = 2/\langle \Phi_K | I_F^2 | \Phi_K \rangle , \qquad (8a)$$

$$\Gamma_{\rm h} = 2E_{\rm HF} / \langle \Phi_{\rm K} | H I_{\rm F}^2 | \Phi_{\rm K} \rangle . \qquad (8b)$$

用(8a)式严格计算 *Г*,,把 *Г*,作为可调参量 (*B*₁₀已由 HF 计算得到),由(7)式便可算出 投影能量,从而得到原子核的基态及激发态 能谱,

3 计算结果与讨论

首先,我们在 $1g_{9/2}$ 、 $1g_{7/2}$ 、 $2d_{5/2}$ 、 $2d_{3/2}$ 、 和 $3s_{1/2}$ 空间以 $^{80}_{62}$ Zr₄₀为核心,计算了 106 Pd、 109 Pd、 112 Pd、 114 Pd 和 116 Pd 核的一些形 变 HF 内惠态.在 HF 计算中,核子间的相互 作用采用 MSDI^[4],强度参量为 $A_1=0.600$, $A_0=0.150$ 、B=0.085和 C=0.054,球形壳 模型单粒子能取为 $^{[5,0]}e_{9/2}=-11.60$ 和 $e_{7/2}=$ -6.64、 $e_{5/2}=-5.53$ 、 $e_{3/2}=-2.63$ 、 $e_{1/2}=-2.27$ (单位为 MeV),迭代过程中不 区分质子和中子,Pd 的库仑能^[7]取为 73.44 MeV、迭代精度 $\eta=10^{-3}\sim10^{-4}$.

表 1 给出了 Pd 同位素核基态的形状、结 合能实验值、HF 能以及两者之差 ΔB 、结果 表明,在该过渡区域内,核基态形状除¹¹²Pd 外都是扁椭球形.¹¹²Pd 与它两边的核有不同 形状可能是因为¹¹²Pd 核的最后两个中子填充 来自 $3s_{1/2}$ 的轨道.质量数更小的核,这个轨 道是空的;质量数更大的核,这个轨道虽有 核子,但它上部的来自 $2d_{3/2}$ 的轨道也填有核 子、这说明¹¹²Pd 处的形状"异常"可能与 $3s_{1/2}$ 轨道的开始填充有关.基态结合能实验值 B_{mp} 与内禀基态的 HF 总能量 B_{mp} 在¹¹⁰Pd 即 中子数 N = 64之后吻合较好、总体来看,能 差 ΔB 在形状过渡过程中是先增大后减小的. ×.

1

6

表 1 偶偶 Pdt 种同位素核的、相对于核心(IZran的结合能(MeV)				
核素	形状	B _{HP}	Bass	ΔB
pd _{so1}	<u>扁椭</u> 球		-239.73	-8. 20
¹⁰⁸ Pd	扁椭球		265. 49	6. 00
110Pd	扈椭球	-268. 18	-270.46	-2.27
¹¹² Pd	长糖球	-285. 17		0. 59
11'Pd	扁柄球			0. 41
116Pd	扁椭球	309. 63		-0.86

注: Bap为内禀基态的 HF 总能量, Bap为结合能实验值^[10], ΔB 为 Bap与 Bhp之差.

图 1 偶偶 Pd 同位素核的基态单粒子能谱(能级旁数字为 2K 值)

.

图1给出了偶偶 Pd 同位素原子核的基 态单粒子能级图(⁸⁰Zr核心以外部分),单粒 子能谱中画有黑点(代表2个质子)和圆圈 (代表 2 个中子)的能级是被填充能级。可以 看出,整个单粒子能谱随着核子数的增加而 下降,同时,随着核子数变化,单粒子能级 的顺序和分布状况出现了不同的变化 在 1g9/2轨道上面有一较大能隙存在,这是在预 料之中的,因为此处恰是 Z、N ≈ 50 主壳层. 另外,由上文给出的 e; 值, 单粒子能级序为 (从低到高)1g_{9/2}、Ig_{7/2}、2d_{5/2}、2d_{3/2}和 3s_{1/2}. 但图 1 表明, 按每组形变单粒子态的重心来 看,能级顺序变成了 1g9/2、2d5/2、1g7/2、3s1/2 和 $2d_{3/2}$, 这似乎说明 j=l+1/2 或j=l-1/2各态,即 $1g_{9/2}$ 、 $2d_{5/2}$ 、 $3s_{1/2}$ 或($1g_{7/2}$ 、 $2d_{3/2}$)之 间相互"吸引", 而 j=l+1/2 与 j=l-1/2 各 态则相互排斥.

以偶偶¹¹⁰Pd 核为例,计算出了它的基态 及激发态能谱,且与实验谱作了比较(见图

2). 计算结果表明, 对于基态带的理论谱在 8+以下基本符合,而各能级与实验值的差别 在我们的预料之中,其原因是没有考虑多带 混合等因素。在110Pd 激发带上,表现出了低 能 y 振动带(K = 2)能谱中普遍存在的能量 Staggering 现象(简称 Staggering). 所谓 Staggering 是指相邻能级间隔的不均匀性^[8]. 在图 2 中, 3⁺、4⁺的理论值间隔虽与实验值 有所差别,但从3+、4+与5+、6+间的总体来 看,体现出了 y 软性核的 Staggering 的明显 特征.由此可见,¹¹⁰Pd 核是 y 软性核. 文献 [11]在 lg_{7/2}、2d_{5/2}、2d_{3/2}和 3s_{1/2}空间研究了 Xe和 Ba的一些同位素的核谱,本文进一步 将空间扩大到包含 1g9/2轨道,研究同位素核 ^{106~116}Pd 都能得到与实验符合甚好的结果. 这就说明, PDHF 方法在研究中等质量区的 核能谱方面是行之有效的,并且能很好地显 现出该质量区的能谱特征.

投影诺参量: (a) $B_{HF} \approx -267.55 \text{ keV}$, $\Gamma_{p} = 0.0400$, $\Gamma_{h} = 0.0405$; (b) $B_{HF} \approx -267.20 \text{ keV}$, $\Gamma_{p} = 0.0480$, $\Gamma_{h} = 0.0485$; (c) $B_{HF} \approx -260.50 \text{ keV}$, $\Gamma_{p} \approx 0.0124$, $\Gamma_{h} = 0.0129$; (d) $B_{HF} \approx -260.30 \text{ keV}$, $\Gamma_{p} \approx 0.0170$, $\Gamma_{h} \approx 0.0176$.

4 结论

研究结果表明: (1)形变 HF 方法及单参 量近似角动量投影对中等质量区,即 gds 壳 层区的原子核是适用的. (2)¹⁶ Pd、¹⁰⁸ Pd、 ¹¹⁰ Pd、¹¹² Pd、¹¹⁴ Pd 和¹¹⁸ Pd 六个偶偶核所在的 过渡区中存在着形状过渡现象. (3)K = 2 激 发内禀态的投影能谱显现出了明显的且与实 验能谱基本一致的 Staggering 现象,而且有 γ 软性核谱特征.

参考文献

- 廖雄志· 偶钛和铬核的形变 HF 态. 原子核物理, 1985, 7: 338~343, 形变 HF 波函数的近似角动量投影. 原子 核物理, 1987, 9: 220~229
- 2 廖雄志. K=1 形变 HF 态的近似角动量投影. 高能物 理与核物理, 1987, 11, 682~688, 角动量投影 HF 方 法中的电磁跃迁. 高能物理与核物理,1989, 13, 837~ 841
- 3 郑仁蓉,廖维志. 原子核对称性投影自治场方法. 成 每:四川大学出版社,1993,61~93

- 4 廖雄志. 修正表面 δ 相互作用在 PDHF 方法中的应用. 高能物理与核物理, 1989, 13(4): 357~361
- 5 Mang H J, Samadi B, Ring P. On the Solution of Constrained Hartree-Fock-Bogolyubov Equation. Z Physik, 1976, A279: 325~331
- 6 Rath A K, Praharaj C R, Khadkikar S D. Signature Effects in Some N = 90 odd-Z Rare-earth Nuclei. Phys Rev, 1993, C47: 1990~2000
- 7 Aage Behr, Ben Mottelson R. Nuclear Structure. 1969, V(1): 145~147
- 8 Liao J Z. Staggering in Low-spin Nuclear Spectra of γsoft or Trianial Nuclei. Phys Rev, 1995, C51: 141~ 146
- 9 Hertenberger R, Hofer d, Kader H. Study of Low-lying excitations in ¹¹⁹Pd. Nucl Phys, 1993, A562: 157 ~179
- 10 Audi G, Wapstra A H. The 1993 Atomic Mass Evaluation (I). Nucl Phys, A565(1), 33 ~41
- 刘英太, 廖维志. 偶偶 Xe 与 Ba 简位素枝的 HF 态及能 诸研究.四川大学学报(自然科学版), 1997, 34(2), 771~774, Liu Yingtai, Liao Jizhi. Study for the Energy Spectra of Even-even Xe Isotopes. Chinese J. Nucl Phys, 1997, 19(4), 239~243

Study on HF States and Spectra of Even Even Pd Nuclei

Xu Yanbing Liu Yingtai Liao Jizhi

(Department of Physics, Sichuan University, Chengdu 610064)

Abstract By using modified surface delta interaction, the deformed Hartree-Fock calculations are performed for the six nuclei: 106 Pd, 108 Pd, 110 Pd, 112 Pd, 114 Pd and 118 Pd. The prolate, oblate and some particle-hole excited configurations are obtained. The calculated results show that there is a form transition from mass number 106 to 116, and that single-particle energy spectra are different not only for the nuclei with different mass number but also for different configuration. The approximate angular momentum projected Hartree-Fock (PDHF) method is applied to nuclei ¹¹⁰Pd. The results of calculated energy spectra are in agreement well with experimental spectra. It is found that the PDHF spectra have the properties of the γ -soft nuclear spectra.

Key words deformed HF states single-particle energy spectra γ -soft nucleus energy staggering