[Note]

www.whxb.pku.edu.cn

BH_4 中性分子和离子结构的量子拓扑研究

默丽欣 曾艳丽 张雪英 郑世钧 孟令鹏* (河北师范大学化学与材料科学学院计算量子化学研究所,石家庄 050016)

摘要: 采用密度泛函方法 B3LYP 和耦合簇方法 CCSD 分别在 6-311+G(*d*,*p*)水平上对 BH⁺、BH₄ 和 BH⁻的构型 进行全优化,并从量子拓扑学的角度对各稳定构型进行电子密度拓扑分析.研究表明, BH⁺、BH₄ 和 BH⁻分别具有 *C*₂₀、*C*₂₀ 和 *T*_d 对称性. BH⁺和 BH₄ 中都存在 B—H 键、H—H 键和原子-分子键;而 BH⁻中存在着四个相同的 B—H 键;BH₄ 中含有未成对电子,其主要围绕 B 原子运动.

关键词: 硼氢化物; 几何构型; 对称性; 化学键; 电子密度拓扑分析 中图分类号: O641

Topological Studies on the Structures of the Neutral and Charged BH₄

MO Li-Xin ZENG Yan-Li ZHANG Xue-Ying ZHENG Shi-Jun MENG Ling-Peng* (Institute of Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. China)

Abstract: The structures of BH_4^+ , BH_4 , and BH_4^- were optimized at the level of B3LYP/6-311+G(d,p) and CCSD/6-311+G(d,p). The topological analyses of electronic density for chemical bonds of the neutral and charged BH_4 were performed. The calculated results show that the symmetries of BH_4^+ , BH_4 , and BH_4^- are $C_{2\nu}$, $C_{2\nu}$, and T_d respectively. There are B—H bond, H—H bond and atom-molecular bond in BH_4^+ and BH_4 . There are four equivalent B—H bonds in BH_4^- . In the case of BH_4 there is an unpaired electron that occurs near the boron atom.

Key Words: Boron hydride; Geometry; Symmetry; Chemical bond; Topological analyses of electronic density

进行了全优化,得到各分子、离子的稳定构型,并分

别进行了能量计算.其结果表明,采用这两种方法计 算得出的数据相差不大.所以在本文中除特殊指明

外均是采用耦合簇方法计算的结果. 根据 Bader 提

出的"分子中的原子(AIM)"理论⁶⁰对各稳定构型进

行了电子密度拓扑分析. 全部计算采用 Gussian 98

程序^[7]、AIM-2000程序^[8]以及我们自行设计的电子

采用 CCSD/6-311+G(d,p)优化得到了 BH[‡]、BH₄

和 BH₄的构型, 如图 1 所示. 对上述物种优化得到的

构型进行振动频率分析,结果表明,上述构型均为势

密度拓扑分析程序 GTA-2000¹⁹完成.

2 结果和讨论 2.1 几何构型

自 1912 年 Stock 等^[1]通过元素分析和蒸气密度 测定方法发现硼烷以后, 打开了硼化合物的广阔研 究领域. 缺电子硼化合物独特的化学行为和潜在的 应用价值引起化学家们的广泛兴趣^[2,3]. 深入研究这 些分子、离子和自由基的空间几何构型和成键方式, 不仅有助于了解这些含硼物种的反应行为, 而且对 于合成新型硼烷及其衍生物, 设计新型的半导体材 料都非常有益^[4]. 本文主要研究 BH₄、BH₄和 BH₄的 空间几何构型、成键特征以及相应的电离能和电子 亲合势.

1 计算方法

采用密度泛函 B3LYP 和耦合簇 CCSD 方法^[5] 在 6-311+G(*d*,*p*)水平上,对 BH[‡]、BH₄和 BH[‡]的构型

Received: June 28, 2006; Revised: August 18, 2006.

*Corresponding author. Email: menglp@mail.hebtu.edu.cn; Tel: +86311-86269217.

国家自然科学基金(20573032)和河北省自然科学基金(B2006000137)资助项目

C Editorial office of Acta Physico-Chimica Sinica

能面上的极小点,即为基态稳定构型.其中 BH₄构型中的 B₁—H₂、B₁—H₄和 H₄—H₅键长分别为 0.1186、0.1293和 0.1037 nm,与 Andrews 等¹⁰⁹在 MP2/ 6-311++G(*d*,*p*)水平上计算的结果 0.1182、0.1289和 0.1022 nm 相近(见表 1).

BH₄、BH₄和 BH₄的对称性分别为 C_{2v}、C_{2v}和 T_d. 如图 1 所示, BH₄正离子可以看作 BH₅正离子和 H₂ 分子通过 B 原子与 H₂分子之间的"原子-分子键" (B—H₂)形成的复合物, 而 BH₄分子则可以认为由BH₂ 分子和 H₂ 分子通过原子-分子键形成的复合物. 对 于 BH₄负离子, 共有 8 个价电子, 中心原子 B 采用 sp³杂化形成正四面体构型, 优化得到的基态稳定构 型确实是正四面体构型. 它们的构型参数(表 1)表 明, 在 BH₄、BH₄和 BH₄中, B—H 键的键长依次增大. 在 BH₅和 BH₄ 中都存在原子-分子键(B—H₂)和 H—H 键, 其 B—H₂ 的键长逐渐减小, 而 H—H 键长逐渐 增大. 优化得到的 BH₅为平面结构, BH₄ 为非平面结 构.

2.2 体系能量以及 BH₄ 的电离势和电子亲合势

从表 2 中可以看出,随着 BH; \BH4 和 BH4体系中的电子依次增多,它们的能量逐渐降低.其中用 (CSD/6-311+G(*d*,*p*)法计算的 BH4的能量比 BH5的低

	表 1 优化得到的几何构型参数
Table 1	The geometry parameters of the optimized

structures						
Species	<i>R</i> / nm	A / (°)	D / (°)			
BH_{4}^{+}	$R_{21}=0.1178$	$A_{312}=142.32$	$D_{4123}=180.00$			
	$R_{41}=0.1461$	$A_{412}=92.77$	D_{5412} =180.00			
	$R_{54}=0.0809$	$A_{514}=32.15$				
\mathbf{BH}_4	$R_{21}=0.1186$	$A_{312}=129.66$	$D_{4123}=154.18$			
	$R_{41}=0.1293$	A_{412} =112.93	D_{5412} =100.67			
	$R_{54}=0.1037$	$A_{514}=47.29$				
$\mathbf{BH}_{4}^{\mathrm{a}}$	$R_{21}=0.1182$	$A_{312}=130.0$				
	$R_{41}=0.1289$	$A_{514}=46.7$				
	$R_{54}=0.1022$					
\mathbf{BH}_{4}^{-}	$R_{21}=0.1241$	$A_{312}=109.47$	D_{4123} =120.0			

^aat the MP2 level, Ref.[10]; *R*: bond length; *A*: bond angle; *D*: dihedral angle

1069.63 kJ·mol⁻¹. 一般来说, 电离势越高, 分子越难 失去电子; 电子亲合势越高, 分子越容易获得电子. 本文采用耦合簇方法 CCSD 在 6-311+G(*d*,*p*)水平上 计算了 BH₄ 的电离势 (8.10 eV) 和电子亲合势(2.98 eV), 与 Jursic¹¹¹在 B3LYP/6-311G(2*d*,2*p*)基础上的计 算结果(8.3 eV 和 3.1 eV)相差不大. 表明了中性分子 BH₄ 较易得到电子生成BH₄, 相对而言较难失去电 子成为 BH₄.

2.3 电荷分布

取 B3LYP 优化得到的构型,用 AIM-2000^[8]方 法进行原子积分,得到了各原子上的净电荷.所谓净 电荷就是原子核带的正电荷与聚集在该原子上的电 子带的负电荷之和.从表 3 数据中可以看出,BH4中 性分子中,B₁原子上的净电荷是正值,而 H₂、H₃、H₄、 H₅原子上的净电荷为负值,表明了 B₁原子上的部 分电子向 H₂、H₃以及 H₄、H₅原子偏移,且偏移到 H₂、H₃原子上的电子要比偏移到 H₄、H₅原子上的电 子多.当 BH4中性分子失去一个电子生成 BH⁴时, B₁、H₂、H₃、H₄、H₅都分别失去部分电子,但失电子程 度不同.B₁原子失去 0.1292 *e*,其净电荷仍为较大的 正值,H₂、H₃各失去 0.1712 *e*,其净电荷仍为负值,绝 对值相对减小,而 H₄、H₅分别失去 0.2639 *e*,失去电 子相对较多,且原子上的净电荷由负值变为正值.当 BH4中性分子得到一个电子生成 BH4时,B₁、H₂、H₃

表 2 BH;, BH4和 BH;的能量以及 BH4的电离势和电子亲合势

		otal ellergies of I	$\mathbf{DH}_4, \mathbf{DH}_4, \mathbf{and}$	DII ⁴ and the lo	bilization poter	litiai (e v) aliu e		$\mathbf{U}(\mathbf{e}\mathbf{v})$ of \mathbf{DH}_4
Species	Crimena ater	B3LYP/6-311+G(<i>d</i> , <i>p</i>) ^a		CCSD/6-311+G(<i>d</i> , <i>p</i>)		$\mathbf{ID}^{b}(\mathbf{a}\mathbf{V})$	EAS (aV)	
	Symmetry	$E_{\rm T}({\rm hartree})$	$E_{R}(kJ \cdot mol^{-1})$	$E_{\rm T}({\rm hartree})$	$E_{\mathbb{R}}(k\mathbf{J} \cdot mol^{-1})$	$IP^{\mu}(eV)$	LA (ev)	
	\mathbf{BH}_{4}^{+}	C_{2v}	-26.8148	0.00	-26.7124	0.00		
	\mathbf{BH}_4	$C_{2^{v}}$	-27.1259	-816.79	-27.0103	-782.14	8.10	2.98
	BH_{4}^{-}	T_d	-27.2418	-1121.09	-27.1198	-1069.63		

^aincluding ZPE at the B3LYP level of theory for all species; ^bIP: ionization potential; ^cEA: electron affinity

表 3 BH[‡], BH₄和 BH[‡] 中各原子上的净电荷 Table 3 The net charges on each atoms of BH[‡],

\mathbf{BH}_4 , and \mathbf{BH}_4^-							
Species –	Net charge (e)						
	\mathbf{B}_1	H_2	H_3	H_4	H_5		
BH_{4}^{+}	1.7698	-0.4315	-0.4315	0.0461	0.0461		
BH_4	1.6406	-0.6027	-0.6027	-0.2178	-0.2178		
BH_4^-	1.6609	-0.6650	-0.6650	-0.6650	-0.6650		

原子上的电子变化不大,增加的一个电子主要增加 到了 H₄、H₅上.由于 BH₄的空间几何构型与其中性 分子和阳离子完全不同,属于 T₄点群,使得各个 H 原子上所带负电荷趋于一致.

2.4 化学键的拓扑性质

采用电子密度拓扑分析程序 GTA-2000^[9], 计算 得到了这三种化合物中各个化学键的键鞍点处的电 子密度拓扑性质, 结果列于表 4. 根据 Bader^[6]提出 的 AIM 理论, 一个分子的电子密度分布的拓扑性质 取决于电荷密度的梯度矢量场 $\nabla \rho(r)$ 和 Laplacian 量 $\nabla^2 \rho(r)$. 电荷密度 $\rho(r)$ 在三维空间的三个方向上的二 阶导数构成了电子密度的 Hessian 矩阵, 该矩阵的 本征值的个数为 3, 并且有 $\nabla^2 \rho = \lambda_1 + \lambda_2 + \lambda_3$, 此处 λ_i 为 Hessian 矩阵的本征值. 如果 Hessian 矩阵的三个本 征值为一正两负, 记作(3, -1)关键点, 称为键鞍点 (BCP), 表明两原子间成键. 由图 2 可以看出, 在 BH[‡] 和 BH₄ 中, H₄ 和 H₅ 之间存在键鞍点, 表明 H₄ 和 H₅ 之间存在化学键, 同时存在一条连接 B₁ 原子核和 H₄—H₅ 键鞍点的梯度径, 这样的化学键称之为"原 子-分子键".

BH[‡]中的 B₁—H₂, H₄—H₅ 键鞍点处的电子密度 ρ 比相应的 BH₄ 中的大, 表明 BH[‡]中的 B₁—H₂, H₄— H₅ 键比BH₄ 中的要强, 对于原子-分子键, BH[‡]中键 鞍点处的电子密度 ρ 值比 BH₄ 中其键鞍点处的电

Fig.2 Gradient paths of the electronic density of BH_4^+ (a) and BH_4 (b)

子密度 ρ 值小一些,这与它们键长变化相对应,即 BH[‡]中的 B₁—H₂和 H₄—H₅键的键长比相应的 BH₄ 中的 B₁—H₂, H₄—H₅键的键长要短,而 BH[‡]中的原 子-分子键比 BH₄中的原子-分子键略长.在 BH[‡]中, B—H 键的键鞍点处的电子密度 ρ 是最小的,说明 BH[‡]中的 B—H 键也是最弱的,其相应的键长也是 最大的.

若键鞍点处电子密度的 Laplacian 量 $\nabla^2 p < 0$, 说明化学键的共价性较强;若 $\nabla^2 p > 0$,则以离子性为主.对于 BH₄、BH₄和 BH₅,只有 BH₄中的原子-分子键键

Table	4 Topologic	Topological properties at the critical points of chemical bonds in $\mathbf{BH}_4^+, \mathbf{BH}_4$, and \mathbf{BH}_4^-					
Secolos	Dond	a / (and ⁻³)	Eigen. of the Hessian Matrix			$\nabla 2$	
Species	Donu	$\rho / (e \cdot a_0) =$	λ_1	λ_2	λ_{3}	$\neg \rho$	ε
BH_{4}^{+}	$B_1 - H_2$	0.2060	-0.4494	-0.4032	0.1287	-0.7239	0.1146
\mathbf{BH}_{4}		0.1800	-0.3575	-0.3425	0.3734	-0.3266	0.0438
BH_{4}^{-}		0.0837	-0.1470	-0.1392	0.1500	-0.1362	0.0560
\mathbf{BH}_{4}^{+}	$B_1 - H_3$	0.2060	-0.4494	-0.4032	0.1287	-0.7239	0.1146
\mathbf{BH}_{4}		0.1800	-0.3575	-0.3425	0.3734	-0.3266	0.0438
BH_{4}^{-}		0.0837	-0.1470	-0.1392	0.1500	-0.1362	0.0560
\mathbf{BH}_{4}^{+}	$B_1 - H_4 H_5$	0.1075	-0.2578	-0.0346	0.3354	0.0430	6.4509
\mathbf{BH}_4		0.1348	-0.2035	-0.0143	0.0674	-0.1504	13.2308
\mathbf{BH}_{4}^{+}	H_4 — H_5	0.2059	-0.6854	-0.5566	0.6616	-0.5804	0.2314
BH_{4}		0.1349	-0.2128	-0.0404	0.0248	-0.2284	4.2673

表 4 BH⁺、BH₄和 BH⁻ 中各化学键键鞍点处的拓扑性质

 ρ : the electronic density; $\nabla^2 \rho$: the Laplacian of ρ ; ε : ellipticity

-	00
	773
	40

表 5 BH₄分子中各个原子上的自旋密度						
Table 5	5 The	spin densi	ties on e	ach atom	of BH ₄	
Species		Spin	density (e	$\cdot a_0^{-3}$)		
	B_1	H_2	H_3	H_4	H_5	

 BH4
 0.6232
 -0.0357
 -0.0357
 0.2242
 0.2242

 鞍点处的 Laplacian 量大于零,其它的化学键键鞍点

 处的 Laplacian 量均小干零,说明了 BH;中的原子-分

子键呈现弱离子性,其余的化学键都呈共价性.

对于开壳层体系,电子总密度 $\rho_t = \rho_{\alpha} + \rho_{\beta}$. 定义 $\Delta \rho = \rho_{\alpha} - \rho_{\beta}$ 为体系的自旋电子密度. 对于闭壳层体系 $\Delta \rho = 0$,即为自旋密度为零. BH₄ 是非平面的几何构 型,含有一个未成对电子. 通过表 5 中各个原子上 的自旋密度积分值可以看出, B 原子上的自旋密度 最大,表明单电子主要围绕 B 原子运动.

综合以上的讨论得出, BH;中的 B₁—H₂, H₄—H₅ 键比 BH₄ 中 B₁—H₂, H₄—H₅键要强, 而 BH;中原子-分子键比 BH₄ 中的原子-分子键要弱, BH;中的 B— H 键是最弱的. BH₄ 中含有未成对电子, 其单电子主 要围绕 B 原子运动.

2.5 BHi和 BH4 中化学键的讨论

对于 BH;正离子,取分子平面为 xy 平面;对于 BH₄ 取 B₁—H₄—H₅ 所在的平面为 xy 平面. 以原子-分子键的键轴方向为 x 轴方向分别绘出了 BH;和

图 3 BH; 和 BH₄ 的电子密度 Laplacian 量等值线图

Fig.3 Laplacian of electronic density of BH_4^+ and BH_4

BH₄ 的电子密度梯度径图和 Laplacian 量等值线图, 见图2 和图 3. 从图中可以看出,在 BH[‡]和 BH₄中, H₄和H₅之间存在键鞍点,表明 H₄和 H₅之间存在化 学键,即形成了 H₂分子,而 B₁原子与 H₄、H₅形成的 氢分子之间存在键鞍点,说明 B₁原子和氢分子之间 都存在化学键,即原子-分子键.

从 BH[‡]和 BH₄ 的电子密度 Laplacian 量等值线 图可以清楚地看到,在 BH[‡]和 BH₄ 中都存在 B—H 键、H—H 键和原子-分子键(B—H₂).即在 BH[‡]中, BH[±] 和 H₂ 通过原子-分子键形成 BH[‡]正离子,在 BH₄ 中 BH₂ 和 H₂ 通过原子-分子键形成 BH[‡]正离子.

3 结 论

(1) 用量子化学计算方法优化了 BH₄ 的中性分子和离子的几何构型. 计算表明, BH₄和 BH₄ 的对称性均为 C₂₀, BH²为平面结构, BH₄ 为非平面结构. BH₄ 的对称性较高, 属于 T_d 群.

(2) 除了 B—H 键和 H—H 键外, BH;和 BH, 中 均存在原子-分子键. BH;中的原子-分子键比 BH, 中的原子-分子键要弱, 而 BH;中 H—H 键要比 BH, 中 H—H 键要强.

(3) BH₄ 中含有未成对电子, 其主要围绕 B 原子 运动.

References

- 1 Stock, A.; Massenez, C. Breslau. Ber., 1913, 45: 3539
- 2 Dunbar, R. C. J. Am. Chem. Soc., 1963, 90: 5676
- 3 Plešek, J. Chem. Rev., 1992, 92: 269
- 4 Jemmis, E. D. Inorg. Chem., 1994, 33: 2317
- 5 Pople, J. A.; Head-Gordon, M.; Raghavacharik, J. J. Chem. Phys., 1987, 87: 5968
- 6 Bader, R. F. W. Chem. Rev., 1991, 91: 893
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et. al.* Gaussian 98.
 Revision A3. Pittsburgh, PA: Gaussian Inc., 1998
- Biegler-König, F. J.; Derdau, R.; Bayles, D.; Bader, R. F. W. AIM 2000. Version1. Bielefeld, Germany: University of Applied Science, 2000
- 9 Zheng, S. J.; Cai, X. H.; Meng, L. P. Quantum Chemistry Program Exchange Bulletin, 1995, 15(2): 25
- 10 Andrews, L.; Wang, X. F. J. Am. Chem. Soc., 2002, 124: 7280
- 11 Jursic, B. S. J. Mol. Struct. (Theochem), 2000, 505: 67