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A Robust Control Approach to Stabilization of

Networked Control Systems with Short

Time-varying Delays
ZHANG Wen-An1 YU Li1

Abstract A robust control approach is proposed in this paper to solve the stabilization problem for networked control systems
(NCSs) with short time-varying delays. By considering state feedback controllers, the closed-loop NCS is described as a discrete-time
linear uncertain system model, and the uncertain part reflects the effect of the variation nature of the network-induced delays on
the system dynamics. Then, the asymptotic stability condition for the obtained closed-loop NCS is derived, which establishes the
quantitative relation between the stability of the closed-loop NCS and two delay parameters, namely, the allowable delay upper
bound (ADB) and the allowable delay variation range (ADVR). Furthermore, design procedures for the stabilizing controllers are
also presented. An illustrative example is finally given to demonstrate the effectiveness of the proposed method.
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Network-induced delay is one of the main problems in
networked control systems (NCSs), and it is usually re-
garded as the major cause of deterioration of system per-
formance and potential system instability. Due to varying
network load and the scheduling policies in the networks
and the nodes, the network-induced delay is typically vary-
ing. Compared with the constant delay, the time-varying
or random delay is more difficult to deal with. For the past
decade, various approaches have been presented in the ex-
isting literature to deal with the modeling, analysis, and
synthesis problems for the NCSs with delays, such as the so-
called queue mechanism approach[1], the stochastic system
approach[2−3], the model predictive control approach[4−5],
the time-delay system approach[6−8], the sampled-data sys-
tem approach[9−10], the switched system approach[11], and
the recently presented time-varying system approach[12].

The delay upper bound and the delay variation range
are two important parameters that characterize the proper-
ties of the time-varying network-induced delays. Both may
affect the stability and system performance of the NCSs.
Therefore, it is necessary and of great significance to es-
tablish the relation between the stability of the NCSs and
these two parameters. However, for the NCS with short
(smaller than one sampling period) time-varying delays,
only the sampled-data system approach, such as those in
[9− 10], and the time-varying system method in [12] are
able to establish the relation between the stability of the
NCSs and the delay upper bound. Besides, all the afore-
mentioned approaches are unable to establish the relation
between the stability of the NCS and the delay variation
range. Therefore, new methods need to be explored to
model and analyze the NCSs with short time-varying de-
lays and to simultaneously establish the relation between
the stability of the NCS and the delay upper bound and
variation range. This motivates the present research.

In this paper, a robust control approach is developed to
study the stabilizing controller design problem for the NCSs
with short time-varying delays. A new uncertain system
model is proposed to describe the considered NCSs, and the
uncertainty of the delays is expressed as the uncertainty of
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the system matrices. Similar modeling methods have been
presented in [13−14]. However, the uncertain matrix given
in [13−14] is required to be unit norm-bounded, and some
free parameters or numerical algorithms should be involved
to satisfy the requirements. Besides, the uncertain system
models presented in [13−14] are not suitable to establish
the relation between the stability of the NCS and the delay
upper bound for the NCSs with short delays. The uncer-
tain system model presented in this paper is more gen-
eral than those in [13−14]. Based on the presented system
model, sufficient conditions are derived for the closed-loop
NCS to be asymptotically stable. Moreover, the stability
conditions also establish the relation between the asymp-
totic stability of the NCS and the delay upper bound and
variation range. Design procedures for the state feedback
stabilizing controllers are also presented. An illustrative
example is finally provided to show the effectiveness of the
proposed method.

1 Preliminaries

The structure of the considered NCS is shown in Fig. 1,
where the continuous-time plant is described by the follow-
ing linear time-invariant system model:

ẋ (t) = Apx (t) + Bpu(t) (1)

where x (t) ∈ Rn and u(t) ∈ Rm are the system state and
the control input, respectively, and Ap and Bp are two con-
stant matrices. The discrete-time state feedback controller
is of the form u(k) = Kx (k). Throughout the paper, the
following assumptions are needed for the considered NCS.

Assumption 1. The sensor is time-driven and the sam-
pling period is denoted by h. Both the controller and the
actuator are event-driven.

Assumption 2. The unknown time-varying network-
induced delay at time step k is denoted by τk and τk =
τsc(k) + τca(k) is smaller than one sampling period and
is upper bounded by τk ≤ τ̄ = eh ≤ h, where 0 ≤ e ≤ 1,
and τsc(k) and τca(k) are the sensor-to-controller delay and
the controller-to-actuator delay, respectively. There is no
packet dropout in the networks.

The unknown time-varying network-induced delay τk can
be represented as

τk = τ0 + ∆τk (2)

where τ0 is called the nominal part of τk and ∆τk the un-
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certain part of τk. Let τ0 = α0τ̄ , α1τ̄ ≤ ∆τk ≤ α2τ̄ , where
α0, α1, and α2 are known constants, and satisfy

0 ≤ α0 ≤ 1, α1 ≤ 0, α0 + α1 ≥ 0, α0 + α2 = 1 (3)

Then, by (2) we have that τk varies over the interval [(α0 +
α1)τ̄ , (α0 + α2)τ̄ ] and the interval length Lτk = (α0 +
α2)τ̄ − (α0 + α1)τ̄ = (α2 − α1)τ̄ .

Fig. 1 The structure of NCS with short time-varying delays

Remark 1. The uncertain part ∆τk that varies over
the interval [α1τ̄ , α2τ̄ ] captures the variation nature of the
network-induced delay τk. Note that −α1 6= α2, and the
delay range is not symmetric around the nominal value. If
L = α2 − α1, then L can be used to describe the variation
range of the uncertain delay τk, and we have by (3) that
0 ≤ L ≤ 1. Moreover, the larger the L, the larger the
delay variation range. For example, when L = 0, we have
α1 = α2, which indicates that τk is a constant delay. When
L = 1, the uncertain delay interval length Lτk = τ̄ , which
indicates that the delay τk varies in full range.

In (2), the time-varying network-induced delay is sep-
arated into two parts, namely, the nominal part and the
uncertain part, which is characterized by e (determining
the delay upper bound for a fixed sampling period) and
the delay variation range L. In the next section, a new lin-
ear uncertain system model will be developed to describe
the considered NCS with short time-varying delays. Such
a system model will enable us to establish the relation be-
tween the stability of the NCS and the two parameters e
and L.

2 Modeling of the NCS

Sampling the system given by (1) with period h and tak-
ing the network-induced delay τk into account, we obtain

x (k + 1) = A0x (k) + B0(τk)u(k) + B1(τk)u(k − 1) (4)

where A0 = eAph and

B0(τk) =

∫ h−τk

0

eApsdsBp, B1(τk) =

∫ h

h−τk

eApsdsBp

Denote A1 = eAp(h−τ0) and B1 =
∫ h−τ0
0

eApsdsBp. Then,
by (2), we have that

B0(τk) =

∫ h−τk

0

eApsdsBp =

∫ h−τ0−∆τk

0

eApsdsBp =

∫ h−τ0

0

eApsdsBp +

∫ h−τ0−∆τk

h−τ0

eApsdsBp =

B1 + A1

∫ −∆τk

0

eApsdsBp =

B1 + A1Θ0(∆τk)Bp

where Θ0(∆τk) =
∫ −∆τk

0
eApsds. Let B0 =

∫ h

0
eApsdsBp.

Since B0(τk) + B1(τk) = B0, we have B1(τk)=B0 −
B0(τk) = B0 −B1 −A1Θ0(∆τk)Bp.

By the expressions of B0(τk) and B1(τk) and by applying
the state feedback control law to system (4), we obtain the
following closed-loop NCS

x (k + 1) = Acx (k) + Bcx (k − 1) (5)

where

Ac = A0 + B1K + A1Θ0(∆τk)BpK

Bc = (B0 −B1)K −A1Θ0(∆τk)BpK

Denote σmax(∆τk) as the maximum singular value
of the matrix Θ0(∆τk), and define σ(α1, α2, e) =
sup∆τk∈[α1τ̄ , α2τ̄ ] σmax(∆τk). Then, it can be seen that

‖Θ0(∆τk)‖2 < σ2(α1, α2, e), where σ(α1, α2, e) is a finite
scalar since the delay is upper-bounded. Therefore, NCS
(5) is essentially a discrete-time linear system with norm-
bounded uncertainty. Based on the system model (5), we
aim in the rest of this paper at solving the following prob-
lem.

Problem 1. Design a state controller of the form
uuu(k) = Kxxx(k) such that the closed-loop NCS (5) is asymp-
totically stable, meanwhile establish the quantitative rela-
tion between the stability of the closed-loop NCS and two
delay parameters, namely, the delay upper bound and the
delay variation range bound.

Remark 2. In the proposed modeling method, the un-
certainty of the network-induced delay is transformed into
the uncertainty of the system matrices. Similar modeling
approaches have been presented in [13−14]. In [13], several
free parameters were required to be tuned to guarantee
that the uncertain matrix is unit norm-bounded, and no
effective algorithm on how to choose these parameters was
given. In [14], the expression of the uncertain matrix was
not explicitly given, and some numerical algorithms were
required to ensure that the uncertain matrix is unit norm-
bounded. Moreover, when the delay is shorter than one
sampling the period, the relation between the stability of
NCS and the allowable delay upper bound (ADB) was not
established in both [13−14] based on the presented uncer-
tain system models. The uncertain system model presented
in this paper is more general than those in [13−14], and it
contains the information of the delay upper bound and the
variation range bound. Such a system model enables us to
establish the quantitative relation between the asymptotic
stability of the NCS and the two delay parameters by ap-
plying the robust control approach, which will be developed
in the next section.
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3 Stability analysis and stabilizing con-
troller design

A sufficient condition for the existence of the state feed-
back stabilizing controllers for the NCS (4) is given in the
following theorem.

Theorem 1. For given scalars e, α0, α1, and α2, if
there exist matrices R > 0, S > 0, V , and scalars ε > 0
and µ > 0 such that the following inequalities




−R + S 0 RAT
0 + V TBT

1 V TBT
p

∗ −S V T(B0 −B1)
T −V TBT

p

∗ ∗ −R + εA1A
T
1 0

∗ ∗ ∗ −µI


 < 0 (6)

σ(α1, α2, e) < δ (7)

hold, then the NCS (4) controlled by u(k) = Kx (k) is

asymptotically stable, where δ = 1/
√

ε−1µ, and the con-

troller gain matrix is given by K = V R−1.
Proof. Choose the Lyapunov function V (k) =

xT(k)Px (k)+xT(k−1)Qx (k−1) for system (5). Then, we
have by simple calculation that ∆V (k) = V (k+1)−V (k) =
ξT(k)Ψξ(k), where

ξ(k) = [xT(k) xT(k − 1)]T

Ψ =

[
AT

c

BT
c

]
P [Ac Bc] +

[ −P + Q 0
0 −Q

]

Ψ < 0 guarantees that ∆V (k) < 0, which implies by the
Lyapunov stability theory that NCS (5) is asymptotically
stable. By Schur complement, Ψ < 0 is equivalent to the
following matrix inequality



−P + Q 0 AT

c

∗ −Q BT
c

∗ ∗ −P−1


 < 0

which can be written as

Ψ0 + D̄Θ0(∆τk)Ē + ĒTΘT
0 (∆τk)D̄T < 0 (8)

where

Ψ0 =



−P + Q 0 (A0 + B1K)T

∗ −Q ((B0 −B1)K)T

∗ ∗ −P−1




D̄ = [0 0 AT
1 ]T, Ē = [BpK −BpK 0]

Inequality (7) guarantees that ΘT
0 (∆τk)Θ0(∆τk) <

σ2(α1, α2, e) < δ2. Therefore, we have by Lemma 5.4.1
in [15] that inequality (8) is true if and only if there exists
a scalar ε > 0 such that the following inequality

Ψ0 + εD̄D̄T + ε−1δ2ĒTĒ < 0 (9)

holds. Note that µ = εδ−2. It then follows from the Schur
complement that (9) is equivalent to the following matrix
inequality

Ξ =




−P + Q 0 AT
0 + KTBT

1 KTBT
p

∗ −Q KT(B0 −B1)
T −KTBT

p

∗ ∗ −P−1 + εA1A
T
1 0

∗ ∗ ∗ −µI


 < 0

(10)

Denote R = P−1, S = RQR, and V = KR. Then, we
obtain inequality (6) by pre- and post-multiplying Ξ by
diag{R, R, I, I}. ¤

Note that we need to estimate σ(α1, α2, e) when ap-
plying the condition (7) to check the asymptotic stabil-
ity of the closed-loop NCS (5). Estimation procedures for
σ(α1, α2, e) are given as follows.

For real matrix Ap, there always exists a non-singular
matrix T such that Ap = TΛpT−1, where Λp is the Jordan
block of Ap, and

Λp = diag{Jd1(λ1), · · · , Jdr (λr)}

Jdi(λi) =




λi 1
. . .

. . .

. . . 1
λi




di×di

,

r∑
i=1

di = n

So, we have

Θ0(∆τk) =

∫ −∆τk

0

eApsds = T

(∫ −∆τk

0

eΛpsds

)
T−1 =

TΛ0(∆τk)T−1 (11)

where

Λ0(∆τk) =

diag

{∫ −∆τk

0

eJd1 (λ1)sds, · · · ,

∫ −∆τk

0

eJdr (λr)sds

}

∫ −∆τk

0

eJdi
(λi)sds =




∫ −∆τk

0

eλisds

∫ −∆τk

0

seλisds

∫ −∆τk

0

s2

2!
eλisds

∫ −∆τk

0

eλisds

∫ −∆τk

0

seλisds

. . .

· · ·
∫ −∆τk

0

sdi−1

(di − 1)!
eλisds

· · ·
...

. . .
...

. . .

∫ −∆τk

0

seλisds
∫ −∆τk

0

eλisds




(12)

∫ −∆τk

0

sdi−1

(di − 1)!
eλisds =
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



( 1
λi

)di

(
(−1)di +

di∑
k=1

(−1)k−1×
(−λi∆τk)di−k

(di − k)!
e−λi∆τk

)
, λi 6= 0

(−∆τk)di

di!
, λi = 0

(13)

When Ap is diagonalizable, Jdi(λi) is then a diagonal
block in the form Jdi(λi) = diag{λi, · · · , λi}di×di . We
have in this case

∫ −∆τk

0

eJdi
(λi)sds =

diag

{∫ −∆τk

0

eλisds, · · · ,

∫ −∆τk

0

eλisds

}

di×di

(14)

where

∫ −∆τk

0

eλisds =

{
1
λi

(e−λi∆τk − 1), λi 6= 0

−∆τk, λi = 0
(15)

Now, by (11) ∼ (15) one can obtain some approximations of
σ(α1, α2, e) = sup∆τk∈[α1τ̄ , α2τ̄ ] σmax(∆τk) by simply im-
plementing one-dimensional search on the variable ∆τk over
the interval [α1τ̄ , α2τ̄ ].

Remark 3. It can be seen that the condition (7) is re-
lated to parameters α1, α2, and e. Moreover, the larger the
e and L (note that L = α2−α1), the larger the σ(α1, α2, e)
will be, which indicates that the asymptotic stability of sys-
tem (5) will not be guaranteed for some e and L which are
large enough. Similar to the meaning of ADB, L is said
to be the allowable delay variation range bound (ADVRB)
that guarantees the asymptotical stability of the closed-
loop NCS. By the above analysis, it can be seen that Theo-
rem 1 has established the quantitative relation between the
asymptotic stability of the closed-loop NCS and the ADB e
and the ADVRB L. Moreover, for a fixed L, we can obtain
the estimation of maximal allowable delay bound (MADB)
em by applying the following algorithm.

Algorithm 1.
Step 1. Set e = 1 and em = e;
Step 2. Solve the following optimization problem

min µ

s.t. (6) (16)

and calculate δ;
Step 3. Calculate σ(α1, α2, e) and check whether the

condition (7) is satisfied or not. If (7) is not satisfied, then
go to Step 2 after decreasing e to some extent; otherwise,
set em = e and exit.

4 Illustrative example

Example. Consider system (1) as in [9] and [16], where

Ap =



−1 0 −0.5
1 −0.5 0
0 0 0.5


 , BBBp =




0
0
1




Choose the sampling period T = 0.5 s. Then, the cor-
responding discretized system model (4) with short time-
varying network-induced delay is given by

x (k + 1) =




0.6065 0 −0.2258
0.3445 0.7788 −0.0536

0 0 1.2840


 x (k) +

∫ 0.5−τk

0

eApsdsBpu(k) +

∫ 1

0.5−τk

eApsdsBpu(k − 1) (17)

Suppose that the upper bound of the network-induced
delays is τ̄ = 0.2T , the nominal value of the delays is τ0 =
0.5τ̄ , and the uncertain parts of the delays vary over the
interval [−0.5τ̄ , 0.5τ̄ ]. Then, it can be seen that the delay
variation range is L = α2−α1 = 0.5−(−0.5) = 1, which in-
dicates that the delays vary in full range. Direct computa-
tion gives σ(−0.5, 0.5, 0.2) = 0.0517. Solving the linear ma-
trix inequality (6), we obtain ε = 10.2405, µ = 1517.5, and
the controller gain matrix KKK = [0.0447 0.0131 − 1.8463].

So, we have δ = 1/
√

ε−1µ = 0.0821, and thus the condi-
tion (7) is satisfied. Choose x (0) = [−5; 0; 5]. Then, the
simulation result is shown in Fig. 2, which depicts the state
trajectories of the resulting closed-loop system of (17) when
applying the designed controller. Furthermore, by applying
Algorithm 1, we obtain that a estimation of MADB which
guarantees a feasible stabilizing controller is em = 0.28.

Now, assume that the nominal value of the delays is τ0 =
0.7τ̄ , and the uncertain parts of the delays vary over the
interval [−0.1τ̄ , 0.3τ̄ ]. Then, the delay variation range is
L = 0.3 − (−0.1) = 0.4. By applying Algorithm 1, we
obtain that an estimation of MADB is em = 0.33, which
guarantees a feasible stabilizing controller. It can be seen
from the calculation results that a larger delay variation
range allows a smaller delay upper bound and vice versa.

Fig. 2 The state trajectories

5 Conclusion

The stabilization problem has been studied in this paper
for the NCSs with short time-varying delays. A new lin-
ear uncertain system model was proposed to describe the
considered NCSs. The obtained asymptotic stability con-
dition for the closed-loop NCSs establishes the quantita-
tive relation between the delay upper bound and variation
range bound. The presented system model is simple yet
useful, and some system performance design, such as the
H∞ control problem, can be investigated based on the pro-
posed uncertain system model. Furthermore, the proposed
method is also applicable to the NCSs with long delays,
which may vary within one sampling period.
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