Article ID: 1007-4627(2004)02-0077-04

A Study of Pentaquark @ State in Chiral Quark Model

ZHANG Zong-ye, HUANG Fei, YU You-wen, ZOU Bing-song (Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China)

Abstract: The structure of the pentaquark state undd-s is studied in the chiral quark model. Four configurations of $J^{\pi} = (1/2)^{-}$ and four of $J^{\pi} = (1/2)^{+}$ are considered. The results show that the isospin T=0 state is always the lowest one for both $J^{\pi} = (1/2)^{-}$ and $J^{\pi} = (1/2)^{+}$ cases in various models. But the theoretical value of the lowest one is still about 250 - 300 MeV higher than the experimental mass of Θ .

Key words: pentaquark state; quark model; chiral symmetry

CLC number: O572.33 Document code: A

1 Introduction

Recently, LEPS Collaboration at SPring 8[1], DIANA Collaboration at ITEP[2], CLAS Collaboration at Jefferson Lab^[3] and SAPHIR Collaboration at ELSA^[4] report that they observed a new resonance O, with strangeness quantum number S =+1. The mass of this Θ particle is around $M_{\rm e} = 1.540 \text{ MeV}$ and the upper limit of the width is $\Gamma_{\rm e}$ < 25 MeV. Since it has strangeness quantum number S=+1, it must be a 5-quark system. If it is really a pentaquark state, it will be the first multi-quark state people found. There are already many theoretical works to try to explain its properties with various quark models[5-7], but there is no concrete calculation from quark model available yet. Since the mass of Θ , M_{Θ} , is larger than the sum of nucleon mass and kaon mass, $M_{
m N}+\,M_{
m K}$, it is not easy to understand why its width is so narrow, unless it has very special quantum numbers. Therefore, a theoretically detailed analysis of the O particle's structure on quark level is very significant.

In this work, we calculate the energies of the

pentaquark states in the chiral quark model. Four configurations of $J^{\pi} = \frac{1}{2}^{-}$ and four of $J^{\pi} = \frac{1}{2}^{+}$ are considered. Some qualitative information is obtained,

2 Theoretical Framework

For a 4q- \overline{q} color singlet system, the 4q wave function includes three parts: orbital, flavor-spin $SU(3)\times SU(2)$ and color SU(3) part. In Θ particle case, its strangeness is +1, 4q part only includes u and d quarks, and the anti-quark is \overline{s} . Four configurations for $J''=\frac{1}{2}$ are considered, they are:

$$\begin{aligned} & ([4]_{\text{orb}}[31]_{\alpha=01}^{\text{of}}\bar{s}, \ LST=0 \ \frac{1}{2} \ 0, \ J^{\star}=\frac{1}{2}^{-}), \\ & ([4]_{\text{orb}}[31]_{\alpha=10}^{\text{of}}\bar{s}, \ LST=0 \ \frac{1}{2} \ 1, \ J^{\star}=\frac{1}{2}^{-}), \\ & ([4]_{\text{orb}}[31]_{\alpha=11}^{\text{of}}\bar{s}, \ LST=0 \ \frac{1}{2} \ 1, \ J^{\star}=\frac{1}{2}^{-}) \ \text{and} \\ & ([4]_{\text{orb}}[31]_{\alpha=21}^{\text{of}}\bar{s}, \ LST=0 \ \frac{1}{2} \ 2, \ J^{\star}=\frac{1}{2}^{-}). \end{aligned}$$

We also considered 4 configurations for $J^* = \frac{1}{2}^+$:

$$([31]_{\text{orb}}[4]_{u=00}^{\text{of}}\bar{s}, LST=1\frac{1}{2}0, J^{*}=\frac{1}{2}^{+}),$$

$$([31]_{\text{orb}}[4]_{u=11}^{\text{of}}\bar{s}, LST=1\frac{1}{2}1, J^{*}=\frac{1}{2}^{+}),$$

$$([31]_{\text{orb}}[4]_{u=11}^{\text{of}}\bar{s}, LST=1\frac{3}{2}1, J^{*}=\frac{1}{2}^{+}) \text{ and }$$

$$([31]_{\text{orb}}[4]_{u=22}^{\text{of}}\bar{s}, LST=1\frac{3}{2}2, J^{*}=\frac{1}{2}^{+}).$$

Their color part is $[211]^c$, i. e. $(\lambda\mu)_c = (10)$, combining (01) of \bar{s} , the total quantum number in color space is singlet. For $J^{\pi} = \frac{1}{2}^{-}$ states, color $[211]^c$ with spin-flavor $[31]^{\sigma f}$ constructs the total anti-symmetric structure of the 4q part; and for $J^{\pi} = \frac{1}{2}^{+}$ states, $[31]_{\sigma fb}$ replaces $[31]^{\sigma f}$ to make the anti-symmetrization.

In the chiral quark model the Hamiltonian of the system can be written as

$$H = \sum_{i} T_{i} - T_{G} + \sum_{i < j=1-4} V_{ij} + \sum_{i=1-4} V_{i5}, \quad (1)$$

where $\sum_{i} T_{i} - T_{G}$ is the kinetic energy of the system, V_{ij} , i,j=1-4 and V_{ib} , i=1-4 represent the interactions between quark-quark (q-q) and quark-anti-quark (q- \bar{q}), respectively.

$$V_{ii} = V_{ii}^{\text{conf}} + V_{ij}^{\text{OGE}} + V_{ij}^{\text{ch}}, \qquad (2)$$

 $V_{ij}^{\rm conf}$ is the confinement potential taken as the quadratic form, $V_{ij}^{\rm OGE}$ is the one gluon exchange (OGE) interaction and $V_{ij}^{\rm ch}$ represents the interactions from chiral field couplings. In the chiral SU(3) quark model^[8], $V_{ij}^{\rm ch}$ includes scalar meson exchange $V_{ij}^{\rm s}$, pseudo-scalar meson exchange $V_{ij}^{\rm s}$, and in the extended chiral SU(3) quark model, vector meson exchange $V_{ij}^{\rm s}$ potentials are also included,

$$V_{ij}^{ch} = \sum_{a=0}^{8} V_{s_a}(\mathbf{r}_{ij}) + \sum_{a=0}^{8} V_{ps_a}(\mathbf{r}_{ij}) + \sum_{a=0}^{8} V_{v_a}(\mathbf{r}_{ij}) .$$
(3)

Their expressions can be found in Refs. [8, 9]. The interaction between q and \bar{q} includes two parts; direct interaction and annihilation part,

$$V_{i5} = V_{oq}^{dir} + V_{oq}^{ann}$$
,

$$V_{\text{qq}}^{\text{dir}} = V_{\text{qq}}^{\text{conf}} + V_{\text{qq}}^{\text{QGE}} + V_{\text{qq}}^{\text{cb}}, \tag{5}$$

with

$$V_{qq}^{cb}(r) = \sum_{i} (-1)^{G_i} V_{qq}^{ch,i}(r)$$
, (6)

Here $(-1)^{G_i}$ describes the G parity of the ith meson. For the Θ particle case, $q\bar{q}$ can only annihilate into K and K* mesons, thus V_{E}^{ann} can be expressed as:

$$V_{i5}^{\text{ann}} = V_{\text{ann}}^{\text{K}} + V_{\text{ann}}^{\text{K*}},$$
 (7)

with

$$V_{\text{ann}}^{\text{K}} = \widetilde{g}_{\text{ch}}^{2} \frac{1}{(\widetilde{m} + \widetilde{m}_{s})^{2} - m_{\text{K}}^{2}} \cdot \left(\frac{1 - \sigma_{q} \cdot \sigma_{\bar{q}}}{2}\right)_{\text{spin}} \left(\frac{2 + 3\lambda_{q} \cdot \lambda_{\bar{q}}^{*}}{6}\right)_{\text{color}} \cdot \left(\frac{19}{9} + \frac{1}{6} \lambda_{q} \cdot \lambda_{\bar{q}}^{*}\right)_{\text{flavor}} \delta(r_{q} - r_{\bar{q}}) , \qquad (8)$$

and

$$V_{\text{ann}}^{\text{K}^{\bullet}} = \widetilde{g}_{\text{chv}}^{2} \frac{1}{(\widetilde{m} + \widetilde{m}_{\text{s}})^{2} - m_{\text{K}}^{2}} \cdot \left(\frac{3 + \sigma_{\text{q}} \cdot \sigma_{\tilde{\text{q}}}}{2}\right)_{\text{spin}} \left(\frac{2 + 3\lambda_{\text{q}} \cdot \lambda_{\text{q}}^{*}}{6}\right)_{\text{color}} \cdot \left(\frac{19}{9} + \frac{1}{6}\lambda_{\text{q}} \cdot \lambda_{\text{q}}^{*}\right)_{\text{flavor}} \delta(r_{\text{q}} - r_{\tilde{\text{q}}}) ,$$
 (9)

where \widetilde{g}_{ch} and \widetilde{g}_{chv} are the coupling constants of pseudo-scalar-scalar chiral field and vector chiral field in the annihilation case respectively. \widetilde{m} represents the effective quark mass. Actually, \widetilde{m} is quark momentum dependent, here we treat it as an effective mass.

Using these two models, we did an adiabatic approximation calculation to study the energies of the (uudd-s) system.

3 Results and Discussions

We carry on the calculation by taking the parameters which can reasonably reproduce the experimental data of N-N and Y-N scattering^[9, 10]. About the annihilation interaction between u(d)- \hat{s} , it is a complicated problem, in Eqs. (8) and (9), the quark effective masses \tilde{m} and \tilde{m}_s , as well as the annihilation coupling constants \tilde{g}_{ch} and \tilde{g}_{chv} are subject to significant uncertainties. In our calculation, we treat $(\tilde{m}+\tilde{m}_s)$, \tilde{g}_{ch} and \tilde{g}_{chv} as parameters, and

adjust them to fit the masses of K and K* mesons. All results of 4 configurations of $J^* = \frac{1}{2}^-$ and 4 of $J^* = \frac{1}{2}^+$ in the chiral SU(3) quark model and the extended chiral SU(3) quark model are listed in Table 1.

Table 1 Energies of pentaquark states in different chiral quark model MeV

different chiral quark model		1116 4
	Chiral SU(3)	Ex. Chiral SU(3)
Configuration	Quark Model	Quark Model
	$b_{\rm u} = 0.50 {\rm fm}$	$b_{\rm u} = 0.45 {\rm fm}$
$J^{\star} = \frac{1}{2}$		
[4] _{orb} [31] <u>#</u> 4 ₀₁ s	1 801	1 843
[4] _{orb} [31] _n = 10 s	2 049	2 089
[4] _{orb} [31] _" L ₁₁ s	2 117	2 115
[4] _{orb} [31] ₆ 62 ₂₁ s	2 323	2 314
$J^{z} = \frac{1}{2}^{+}$		
[31] _{orb} [4] _n ^e L ₀₀ s	2 271	2 270
[31] _{orb} [4] ₆ 2 ₁₁ s	2 308	2 296
$(S=\frac{1}{2})$		
[31] _{orb} [4] ₄ 2 ₁₁ s	2 362	2 367
$(S=\frac{3}{2})$		
[31] _{orb} [4] ₅ 422s	2 426	2 412

From Table 1, one can see that: (1) The isoscalar state (T=0) is always the lowest state both in $J^* = \frac{1}{2}^-$ and in $J^* = \frac{1}{2}^+$ cases, and ([4]_{orb} [31] $_{s=01}^{r}$ \bar{s} , LST = 0 $\frac{1}{2}$ 0, $J^* = \frac{1}{2}^-$) is always the lowest one in different models; (2) The results of the chiral SU(3) quark model and the extended chiral SU(3) quark model are quite similar, although the short range interactions of these two models are different; (3) The energy of the lowest state, ([4] $_{orb}$ [31] $_{s=01}^{r}$ \bar{s} , LST = 0 $\frac{1}{2}$ 0, $J^* = \frac{1}{2}^-$), is about 250—300 MeV higher than the experimental value of the Θ mass.

In our results, the states of $J^* = \frac{1}{2}^-$ are always lower than those of $J^* = \frac{1}{2}^+$, even in the ex-

tended chiral SU(3) quark model, in which the OGE interaction is almost totally replaced by vector meson exchanges. According to Stancu and Riska's argument^[6], the state of T=0, $J''=\frac{1}{2}$ can be lower than the state of T=0, $J^*=\frac{1}{2}^-$, because the spin-flavor dependent interactions from Goldstone-Boson exchange potential offer more attractions to the state of T=0, $J^*=\frac{1}{2}^+$. In our calculation, it is true that π and ρ meson exchanges do contribute very strong attractions to the state of T=0, $J^*=\frac{1}{2}^+$, but when the interactions between u(d) and s are included, especially the annihilation terms are considered, the state of T=0, $J^* = \frac{1}{2}^-$ gets more attractions. This is because that among 4 pairs u(d)-s interactions, the state of T=0, $J^*=\frac{1}{2}$ has 1 pair u-s of $(0s)^2$ with spin s=0 and color singlet (00), (i. e. K meson's quantum numbers) and $\frac{1}{3}$ pair of $(0s)^2 s = 1$ $(00)_c$, the other part is color octet, but the state of T=0, $J^*=\frac{1}{2}^+$ only has $\frac{1}{12}$ pair of $(0s)^2 s = 0 (00)_c$, $\frac{1}{4}$ pair of $(0s0p)s = 0(00)_c$, $\frac{1}{4}$ pair of $(0s)^2 s = 1(00)_c$, $\frac{3}{4}$ pair of (0s0p)s=1(00), and the other part is color octet. If we take the annihilation interaction to fit the masses of K and K*, the state of T=0, $J^*=$ $\frac{1}{2}$ must be the lowest.

4 Conclusions

The structures of pentaquark states are studied by an adiabatic approximation calculation in the chiral quark model. Our results show that the state T=0, $J^{*}=\frac{1}{2}^{-}$ is the lowest one, and its energy is about 250—300 MeV higher than the Θ 's mass. It seems that it is impossible to reproduce the ob-

served low mass and narrow width of Θ by quark models with reasonable model parameters in the

adiabatic approximation, and a dynamical calculation may be necessary for the further study.

参考文献:

- [1] Nakano T, Ahn D S, et al. Phys Rev Lett, 2003,91; 012002.
- [2] Barmin V V, et al. hep-ex/0304040.
- [3] Stepanyan S, Hicks K, et al. hep-ex/0307018, 3: 16 Jul. 2003.
- [4] Barth J, Braun W, et al. hep-ex/0307083, 3: 6 Aug. 2003.
- [5] Simon Capstick, Philip R. Page, hep-ph/0307019, 2: 7 Aug. 2003.
- [6] Stancu F I, Riska D O. hep-ph/0307010, 1: 1, Jul. 2003; Ya

Glozman L. hep-ph/0308232.

- [7] Jennings B K. Maltman K. hep-ph/0308286.
- [8] 张宗烨, 众友文, 袁秀青. 原子核物理评论, 2000, 17(1): 6.
- [9] Zhang Z Y, Yu Y W, Shen P N, et al. Nucl Phys, 1997, A625: 59.
- [10] Dai L R, Zhang Z Y, Yu Y W, et al. Nucl Phys, 2003, A727; 321.

五夸克态 ⊙ 的手征夸克模型研究

张宗烨,黄 飞,余友文,邹冰松 (中国科学院高能物理研究所,北京100039)