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Astract: In this paper we built a relation between the thermodynamical theory of the phase transi-
tion and field theory. We emphasized that in the quantum field theory we have to introduce the or-
der parameter fields. Then the discussion of the phase transition is closed to the creation of the
Goldstone bosons. If we only discuss the first order transition, the Goldstone bosons fields are
sufficient. If we want to discuss the second order transition, we have to discuss a set of fields that

constructs a representation of a symmetry group. We also apply this concept to color superconduc-

tivity.
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1 Introduction

Recently the study of Color Superconductivity
phase of high density nuclear matter causes atten-
tion 7%, since it is important to understand the
high density nuclear matter. In this paper we rec-
ommend the necessary basic knowledge of color su-

perconductivity and simply show our results.
2 Phase Transition

A first order phase transition is a point across
which some thermodynamic variables (the density
of a fluid, or the magnetization of a ferromagnet)
changes discontinuously. These discontinuously
changed quantities are called order parameters. In
most circumstances, it is possible to change a sec-
ond dynamical quantity in such a way that the com-
peting states move closer together and two states

become identical. Then the discontinuity in the or-

der parameter disappears. This end point is called
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critical point or second order phase transition
point.

To demonstrate this phenomenon, let us con-
sider the ferromagnetic materials. Let us assume
that the material has a preferred axis of magnetiza-
tion. So that at low temperature the system will
have its spins ordered either parallel or antiparallel
to this axis. The total magnetization along this axis
is an order parameter, and this fact usually is re-
presented as M is order parameter,

In order to relate with the path integral of the

quantum field theory, we use the free energy.
=— PdV — SdT — HdM . 1

If V is fixed, the A can be considered a func-
tion of T, M, For this case it is convenient to con-

sider the density of the free energy. Then we have

df =— sdT — Hdm , ¢y
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where s=A/V, m=M/V.
Let us concentrate our attention on the region
of the critical point T=T., where M0 for H=0.
We can expand f(T, m) as

ST, m) = A(T) + B(TYm® 4- C(TY)m* + ---.
€))

Because the system has a symmetry under M —
—M, f(T, m) only contain even powers of m. It

is easy to find for H=0
2B(TO)m+44C(T)m* =0 . )

If B(T) and C(T) are positive, the only solution is
M=0. However, if C>0 but B is negative below
temperature T., we have a nontrivial solution as
shown in Fig. 1. It is obvious that for T<<T. the
order parameter M changes discontinuously. The
phase diagram in the H-T plane can be shown in
Fig. 2.

femf

T>T,
T<T,

m

Fig. 1 The free energy density has the different function re-
lation with the magnetization density at the different

temperature.

More concretely the B(T) and C(T) is ap-
proximated for T=T_ by B(T)=6(T—T.), C(T)
=C. Then we have

0 for T>T.

M = .
{i [zﬁ(Tc—T)] for T<T,
C

The critical point T=T, is called the point of the
second order phase transition, In the following we
shall discuss the region near the second order phase

transition point,

M>0

T, M=0

M<0

Fig. 2 The phase diagram is shown here.

We shall build the relation between the free
energy and the path integral in the quantum field
theory. At first, we consider the case of T—0.
Here the partition function Tr(exp(—8H)) can be
written as

Trexp(— GH))
8/2

— jD(q>exp(—j L(g, @)do)
a2

= exp(— fA) (6)

and

" FF [ Des, )

where f=1/(KT), q is a microscopic quantity cor-
responding to the statistical macroscopic quantity.

Eq. (7) means that
Z = J'D(q)exp(— S) — exp(—V e+ £), (8)

where V « 7 is volume of 4 dimensions, f is the
density of the free energy and f= f(T=0, m).
In the case of the presence of the external

fields, the path integral becomes
Z[J]] = J'D(q)exp{— [§— Jd‘xq(.r)](.r):]}
= exp{— Jd‘x[f(x) — gz T ()]

= exp(W)} = et¥, €:))

This equation is deduced from the assemble theo-

ry. Then we get

W—— J'd“:cf(:c) + I(q(:c));] (od'z (10)

and
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1t is obvious 8I'/8(q(x)) ;=

tionary point for J(x)=0.

— J(x) and T" has sta-

In the ferromagnet m=1{g(x)) is the order pa-
rameter. For the translational case (q(x))=m is
independent of z. The phase transition happens

when 2 f(m) /3m=0 has nonzero solution.

3 Spontaneously Broken Symmetries

The effective potential V[#]is defined by
r{¢] =—wr[¢1, 12)

where v is the four dimensional volume. The non-
zero solution of the stable point of V[ #] spontane-
ously breaks the symmetry.

We can show that for each generator that is
broken, there is a massless boson called Gold-
stone.

If V(#] has a symmetry group exp (ie’t*),

where #* are the generators, we have

2 %/-t‘,‘,,,. w=0. (13)

Differentiating with respect to $, we get

Zg nl+2ﬂnmm=0- (14?)

1f the vacuum expectation value ($ V=0, for J,=
0 is not zero, we have
vV
E (W), t:,. P, =0, (15)
n 4 =&

2V .
Usmg (W)f=o = Anl (0) y
where A2 (0) is the propagator for $, at the 0 mo-
mentum, we get

DAV E.P, = 0. (16)

nomn

It is well known that A} is the mass matrix.
Then Eq. (16) means that mass matrix has zero ei-
genvalue.

Because of the existence of Goldstone bosons

the order parameter has to be defined as a set of
fields that is an irreducible representation of the
symmetry group. These multiplets construct a lin-
ear representation in one phase and they construct
This

implies that in order to study phase transition and

a nonlinear representation in another phase.

define order parameter, it is necessary to consider
Goldstone bosons and another massive boson (for

example o fields)

4 Superconductivity

The objects studied are many electrons and
electromagnetic fields. Because of the interaction
the cooper’s pairs form in superconductor. In the
field theory!® we have to introduce the cooper’s
pairs field as order parameter field. In the super-
conductor phase, the vacuum expectation of the
field operator of cooper’s pairs has nonzero value.
This breaks U (1) symmetry. Consequently the
electromagnetic gauge invariance is spontaneously
broken. The minimal coupling for the electromag-

netic interaction is
9, > 9, +1eA, . an

The action of the electrons and photons will be in-

variant under gauge transformations with the form

A,—~ A, +3,.4A, as)
W(x) - exp(—ieA () ¥(x) , Qa9

where the phases A and 2m/e+ A are regarded iden-
tical. Because of the condensates of cooper’s pairs
/(1) is broken and only the subgroup Z, left un-
broken. The coset U(1)/Z, corresponds to a Gold-

stone boson. It can be introduced as
¥ = exp(—ie $(2))V(x) » (20)

where ¥ (z) has only symmetry group Z; and $(x)
is identified with $(x) +n/e.

When the region we discuss is far away from
the critical point, the W(x) can be integrated and
its effect can be neglected. Then the Lagrangian

for the Goldstone and electromagnetic fields may


http://www.cqvip.com

<124 - RF &Y HIER

#2218

be written as
Ly == L[@aF, Fr 1 LilA, —2,#]. 2D

The electric current and charge density here are

8L
J(x) A 22)
, SLq SL
Jo(x) SAT (25 S , (23)
A =— A5 3, =t
Since Ls=—V we determine the Vacuum by

the minimum of V. It is obvious that A,=0 and ¢
=0 is the minimum of V,; which implies that trivial
vacuum, But A, = 3,$ is also minimum of V.
This implies that in the superconductor the electro-

magnetic field is a pure gauge,.
A, =23,9. (24)

This is known as the Meissner effect. If a magnetic
field B penetrates the superconductor, the energy
cost in allowing the magnetic field into the super-
conductor is of order of B*L*/A*, where A is some
length depending on the nature of the material. On
the other hand, the energy cost for expelling a
magnetic field B from a volume L* is of order
B?L*. Hence a weak magnetic field will be expelled

from a superconductor, The flux quantization is

jB-ds=3§A.d3X=§v¢-d3x'=ﬁ—:,

(25)
where w is an area in the superconductor and c is a
closed curve that surrounds w. Now we can show
the superconductivity. Note that Eq. (23) can be
interpreted as the statement that — J° is the canon-
ical conjugate to $. The Hamiltonian H is a func-
tional of # and — J°. The canonical motion equa-
tion is
dHg

ST = $ . (26)

Now the “voltage” V (x) at any point is just the

charge in an energy density per charge in the

charge density at that point. Then Eq. (26) gives
Viz) =— $(x) . @

This means that a piece of superconducting wire
that carries a steady current with time independent

fields must have 0 voltage difference.

5 Color Superconductivity

We have known that the superconductivity is
related to formation of the fermion pairs. Accord-
ing to the previous discussion the system of high
quark density can be described by a field theory.

If we only consider the two flavors and omit

the quark mass, the symmetry group is
SU(2)L @ SU(2)x Q SU(3)c. (28
If the condensate takes the form
(gTCrqf) ce,; €F, (29)

where C is charge conjugacy matrix, the indices z
and j denote the flavor, and the indices @, denote
the color. In this case the order parameter field op-
erator can be taken as ¢{"C7°¢f. In the supercon-
ductivity phase this composite field operators have
nonzero vacuum expectation value. Then the sym-

metry group is broken to
SU(2). ® SU(2)x @ SU(2)¢. (30)

Now we consider three flavors there is a natural

extension

(¢TCY* gy ce,;, €7, 3D

where I is a sum index.

This condensate corresponds to the spontane-
ous breaking of SU (3) ¢ @ SU(3), ® SU(3)x
down to subgroup SU(3). The order parameter

composite field operators have to take as
T (D Crigi(y) . (32)

In the effective action we can study local and non-
local condensates. The GCM bilocal field is a very
excellent way to deal with this case. In the Euclid-

ean space, the GCM action”" * is taken as

S, =j d'zd' yLg*t 7 (7% + 7al) -

2 ;a _ -a
&x—yqly) +& Jﬂ(x>D“(zx FHEON

(33)
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In a finite density nuclear matter, we get the action

as
Se =j d*zd*y{g* 7 (94 — u) +
Y3)d(x— y)g(y) +
gz]:(I)D,uv(-r_y)]:(y) (34)
> .
After using fierz transformation, we change

q*aq*q term in S; to q* ¢* qq. If we only consider
the infrared slavery the propagator of gluons can be

written

D, (z—y) = 5,,,,J-41ra(qz) .

iq - (I_y) ¢
exP[ (zn)4gzqz :'d q

348

= %“(2:1)‘165;2 . (35)

Then j4(z2)j2(y) can be written as

%()g () = ¢t (PIMgt () gL (yIMq,(z) +
Gk (D Mr gt () qr () Ml gy () +
Gk (PIMigf (x)q ()M gy (y) —
gk (Mgt (2) g (2)Mlge(y) . (36)

In order to discuss the gg condensate we introduce
the order parameter fields Bl (z, y), B («z, ¥,
Bk (z, y),B¥ (x, y) by using the path integral,
I, = J.DB‘,’,(y, 2)DBY (z, 3) -
exp[—”.Bﬁ*(:c, WBI(y, x)dxdy], (37)
Iy = jDBﬁ(y, ) DB (z, y) .
exp[— ”Bﬁ*(x, 9 Bi(y, 2)dzdy], (38)

I, =J-DB‘1’(y, 2)DB™ (z, y) -
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After tedious algebraic calculation, we can get the
effective action S[ 4, , B, , BysB,,B,].

The condensates of the order parameter field
can be obtained by variation principle. After sol-

ving this consistency equation, we obtain;

30'[P2 . (po +#°)2]}1/2
B = y (41
L(p) =+ { Byt 41
BL(p) =+ B (p), 42)

2,2
Bi(p) =+ {([(P" — )~ P?] %~

9a[P* — (p° + 15202 /B)/
([Pz—(p°+#o)z]g2yz)}”z, (43)

where g4 =347 /(32(21)%), p=1 GeV, P2, pois

arbitrary parameter, and Ho is chemical potential,
2 4 2 5. 2
= A, L = * =AY,
R VEE Ve WL Y
[S2, [Za6, [E0 [Z 2 I as
3"’3"’3’3’31’(

where A is a generator of SU(3);

§={I,d",0%,0}, (46)

where I is unit matrix, ¢ is Paul; matrix.

Mﬂ:ﬁi’i‘@w"@f =M, @D
M=21R00Q® ¢, (48)

where Tr(EMaEMo)=—a; Tr( M) XM S M,
M =8
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