
 

 

 
Abstract—This paper presents a new technique for the optimum 

placement of processors to minimize the total effective 
communication load under multi-processor communication 
dominated environment. This is achieved by placing heavily loaded 
processors near each other and lightly loaded ones far away from 
one another in the physical grid locations.  The results are 
mathematically proved for the Algorithms are described. 
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I. INTRODUCTION 
PTIMUM placement of VLSI blocks has been 
extensively studied and various solutions are provided 

[1], [2] for different requirements. In this paper we consider 
the efficiency of communication as the main criterion while 
placing the VLSI blocks (say Processors). 

When several processors are to be placed in a grid layout, 
their location can be chosen to minimize the overall effective 
Communication Load among them. This maximizes the total 
traffic transportation in a given time. 

II. SINGLE LINE PLACEMENT 
The Processors are to be uniformly located on a single line 

grid as shown in fig.1 at L1, L2, L3, …LN. The physical 
distance between adjacent grids is taken as 1 unit. 

 
 
 
 
 

Fig. 1 Location of Processors 
 

Thus, the different distances are, 
D12 = 1, D13 = 2, D1N = N-1 and so on. The distance 

between the j th and k th location is given by, 
 

            Djk = | k-j |             (1) 
 
               with Dkk = 0          
 

Let P1, P2, …, PN be the given processors. The 
communication among the processors is assumed to be of 
Broad-Cast type and the traffic from one processor to other 
processors is assumed to be known as follows: 

Tjk = is the broad cast traffic load to be transported from j to 
k. Tjj is obviously zero. The unit of traffic load can be bytes or 
packets or frames. The traffic load represents the amount of 
data to be transported say from the output buffer of a 
processor. 

Important assumption:  We assume that the traffic load 
from a specific source processor to all other processors is of 
the same magnitude. This value is denoted by Tj for  Processor 
Pj  for  j = 1 to N and  is written as, 
T1 = T12 = T13 = …= T1N  
T2=T21 = T 23 =…= T1N 
……………………. 

Tj=Tj1=Tj2=...=TjN (with Tjj = 0)     (2) 
 

But, T1, T2, T3 etc are generally different from one another. 
Here, Tj is the traffic load of Processor Pj. 

III. EFFECTIVE COMMUNICATION LOAD 
We define the Effective Communication Load of each 

processor as follows.  
For Processor P1 , 
 E1=T12.D12+T13.D13+ … +T1N.D1N 
For Processor P2 , 
 E2=T21.D21+T23.D23+ … +T2N.D2N   
For Processor Pk , 
 Ek=Tk1.Dk1+Tk2.Dk2+ … +TkN.DkN  that is 

 
N

k kj kj
j 1

E T .D
=

= ∑               (3) 

  
Here, each product term represents the traffic load from the 

source to the destination multiplied by the corresponding 
distance. This is a metric that represents the transportation 
burden of that path. The sum of the products gives the total 
effective load for that Processor. 

Thus Ek gives the Effective Communication Load for 
Processor Pk. The Effective Communication Load (ECL) also 
represents the energy consumed in transporting the traffic 
loads through corresponding distances, because, the power 
required is proportional to the traffic load and the time 
required is proportional to the distance of travel. Thus the 
‘traffic-load distance’ product represents Energy.  

IV. OBJECTIVE OF THE PAPER 
The sum of ECL’s of each processor is given by Eq.(3) and 

the overall total is given by, 
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Our objective is to find the optimum placement of given 
Processors at proper locations to minimize E (the total 
Effective communication Load for the entire system) as given 
by Eq.(4).  

V. BASIC PRINCIPLE 
The basic principle is to place the heavily loaded Processors 

nearer to each other and lightly loaded ones far away from one 
another. In other words, higher the traffic load value, lower 
should be the distance covered by that load and vice-versa. 
Now the Effective Communication Load of Processor P1, 
using Eqs.(3) and (2) is, 
E1=T12.D12+T13.D13+... +T1N.D1N 
   =T1.D12+T1.D13+... +T1.D1N 
  =T1.(D12+D13+ ... +D1N) 

Similarly, for Pj, 

Ej=Tj.(Dj1+Dj2+ ... +DjN) 

This is rewritten as, 
Ej=Tj.Dj                (5) 

where  
Dj = Dj1+Dj2+ ... +DjN         (6) 

Now the overall total Effective Communication Load can 
be expressed using Eqs. (4) and (5) as, 
E=T1.D1+ T2.D2+...+Tj.Dj+... +TN.DN   

That is, 

∑
=

=
N

1j
jj D.TE                                    (7) 

Thus E is the scalar product of two vectors T and D given 
by, 

]T..TT[T N21=                          (8) 

]D..DD[D N21=                         (9) 
Please note that Tj gives the traffic load of Processor Pj and 

Dj gives the distance to be covered from location Lj. 
Our objective is to minimize E by properly placing the 

Processors such that when Tk is maximum, Dk is minimum 
and vice versa. If T is in the descending order, D has to be in 
the ascending order. This means, the sort order of T should be 
opposite to that of D.  

VI. VALUES OF VECTOR D 
Consider the case when N= 4 as shown in Fig. 2. 
Here D12 = 1, D13= 2 and D14 =3. Therefore, 

D1=1+2+3= 6 
Similarly, 
D2=D21+D23+D24= 1+1+2 = 4   
D3=D31+D32+D34= 2+1+1 = 4 
D4=D41+D42+D43= 3+2+1 = 6 

Therefore when N= 4, 

]6446[D =                               (10) 

Similarly when N =5 , 
]1076710[D =                          (11) 

In general, for a given N, the k th element of D, designated as 
Dk is given by, 

)]1k(k)1kN)(kN[(
2
1Dk −++−−=            (12) 

For k = 1,2,…N. 

 
The minimum of D occurs at position (N+1)/2 in vector D, 

when N is odd. When N is even there are 2 equal minimums at 
positions N/2 and (N/2)+1.  

VII. ASCENDING SORT INDEX OF VECTOR D 
The Ascending Sort Index Vector (ASIV) of a given vector 

gives the positions of the smallest element, then the next 
smallest element and so on in the ascending order. A given 
vector and its ASIV have the same size. Let  
G = [ G(1)  G(2)  . . . G(N) ]     
be the ASIV of D, then the elements of G are determined as 
follows. 
G(1) = Position of the smallest element of D in D. 
G(2) = Position of the second smallest element of D in D. 
……………………………………………………….. 
G(k) = Position of the k th smallest element of D in D. 
……………………………………………………….. 
G(N) = Position of the largest element of D in D. 
When two elements of D are equal say at positions i and j with 
j>i and if Di is the k th smallest element of D, then Dj is taken 
as  the next smallest element of D for the purpose of ordering. 
Therefore G(k) = Di and G(k+1) = Dj.    
Since position j in vector D represents the j th Location, 
LG(k) is the Location having the k th smallest distance to other 
locations.  That is, 
LG(1) =Location having the smallest distance to others. 
LG(2) =Location having the next smallest distance to others. 
………………………………………………………… 
LG(N) = Location having the largest distance to others. 
 

D12 
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D14 

Fig. 2 Distances among Processors 
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G is basically a Permutation Vector. When D is permuted 
according to G, D gets sorted in the ascending order. The 
permutation operation is carried as follows.  
For j = 1,2, …N  Let  
F( j) D(G( j))=                                                          (13) 
Then, from the definition of G, we know that  
      F( 1 ) = smallest element of D. 
      F( 2 ) = next smallest element of D. 
      ……………………………………. 
      F( N ) = largest  element of D. 
Therefore F is the ascending sorted version of D. 
Thus ASIV of a given vector represents the ascending sort 
order of that vector. From Eq.(10), the ASIV of D for N=4, 
written as, ASVI(D) is given by, 
G=ASIV(D)  =ASIV( [ 6  4  4  6 ] ) = [ 2  3  1  4 ]      
For N=5, 
G=ASIV(D) =ASIV( [10  7  6  7  10] ) 
               = [ 3  2  4  1  5]                                          (14) 
Because of the symmetric nature of vector D, (see Eqs (10) 
and (11) )  the elements of G which is the AVIS of D can be 
determined and it can be shown that G[k] = k th element of G 
is given by, 
G[k]= (N+k)/2 when N and k are both odd or both even , and 
G[k]= (N+1-k)/2 when N odd and k even or vice-versa. 
  

VIII. DESCENDING SORT INDEX OF VECTOR T 
The Descending Sort Index Vector (DSIV) of a given 

vector gives the positions of the largest element, then the next 
largest element and so on in that order. A given vector and its 
DSIV have the same size. Let  
S = [ S(1)  S(2)  . . . S(N) ]     
be the DSIV of the given vector T . Then, 
S(1) = Position of the largest element of T in T. 
S(2) = Position of the second largest element of T in T. 
……………………………………………………….. 
S(k) = Position of the k th largest element of T in T. 
……………………………………………………….. 
S(N) = Position of the smallest element of T in T. 
Since position j in vector T represents the j th processor, 
PS(k) is the processor having the k th largest traffic load. That 
is, 
PS(1) = Processor having the largest traffic load. 
PS(2) = Processor having the second largest traffic loads. 
………………………………………………………… 
PS(N) = Processor having the smallest traffic load. 
 
Example 1: 
Let N=5 and  
T = [ 50  60  70  80  90 ]  
Elements of T give the traffic loads of Processors 
P1, P2,…PN in that order. Now by inspection, 
S=DSIV(T) = [ 5 4 3 2 1 ] 
This means P5 has the largest traffic load, P4 has the next 
highest traffic and so on. The ASIV of D when N = 5 as given 
by Eq.(14) is reproduced here, 
G=ASIV(D) = [ 3  2  4  1  5]    

From the basic principal of minimization of dot product, we 
know that DSIV(T) should match with ASIV(D). Writing one 
vector below the other we get, 
S=DSIV(T) = [ 5  4  3  2  1 ] = order of Processors. 
G=ASIV(D) = [ 3  2  4  1  5 ] = order of Locations.  
From this, we see that 
P5 should be placed at location 3. 
P4 should be placed at location 2. 
…………………………………. 
P1 should be placed at location 5. 
Therefore the general rule is, 
place Processor PS(k) at Location LG(k) for k=1,2,..N   

IX. OPTIMUM PLACEMENT ALGORITHM 
To place N processors for minimum ECL: 

   1. Get the T vector from the given traffic load data.  
   2. Calculate the D vector from Eq.(12). 
   3. Find  the DSIV of T by a suitable sorting algorithm (say 
Bubble sort) and call it S. That is, get  S=DSIV(T). 
    4. Similarly, get G=ASIV(D) 
    5. place Processor PS(k) at Location LG(k) for k=1,2,..N   

X. OPTIMUM PLACEMENT ON A 2-DIMENSIONAL GRID 
Consider a 2-D grid of M rows and N columns as shown in 

Fig. 3. The Locations of the grid points are marked as 11, 
12,… and so on.  The total manhattan distance to be covered 
by a given node to reach all other nodes depends on the 
position of the node. Let the node under consideration be at 
location (r,c) where r = row value and c = column value of the 
node position. Then the total distance from this node to all 
other nodes is given by, 

( )∑∑
= =

−+−=
M

1i

N

1j
irjc)c,r(D                    (15) 

for r = 1,2,…M and c = 1,2,…N 
After the summation, this equation can be expressed as 

 
( ){ }
( ){ }

1D(r,c) M. c c 1 (N c)(N c 1)
2
1 N. r r 1 (M r)(M r 1)
2

⎡ ⎤= − + − − +⎣ ⎦

⎡ ⎤+ − + − − +⎣ ⎦

        (16) 

For optimum placement, we need to know the position of 
smallest D(r,c), next smallest D(r,c) and so on. To determine 
this, we mark the smallest value by metric 1, next smallest by 
2 and so on. Consider the Example of a 3x7 grid. The smallest 
distance occurs at the center of the  
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Fig. 3 Location of Processors in a 2-D grid 

 
grid and the next smallest at the immediate neighborhood and 
so on as shown in Fig. 4. We call these distances as effective 
distances.   
 

 
Fig. 4 Distribution of Distances when rows =odd and columns=odd 

 
Thus the table of Fig. 4 gives the effective distance matrix 

ED. For this ED, the ASIV is given by, 
G=ASVI(ED)=[ (2,4)  (2,3)  (1,4)  (2,5)   (3,4) … (3,7)]  
The size of G is 15 ( which is equal to MxN ). 
G[1] gives the position of the smallest element of D. 
G[2] gives the position of the next smallest element of D. 
…………………………………………………………… 
G[15] gives the position of the largest element of D. 

The nature of ED matrix 
When the no of rows of the grid M is odd and the no of 

columns N is odd, the center of the grid area is at row 
(M+1)/2 and column (N+1)/2 as in Fig 4. In this case the ij th 
element of ED is given by, 

1 1ED(i, j) 1 i (M 1) j (N 1)
2 2

= + − + + − + .         (17) 

When M and N are both even, the center of the grid is 
represented by 4 grids as shown in Fig. 5. 
 
 
 
 
 
 
 
 

Fig. 5 Distribution of Distances when rows =even and columns=even 

In this case, the ij th element of ED matrix is given by, 
 

1 1ED(i, j) i (M 1) j (N 1)
2 2

= − + + − +              (18) 

 
When M = odd and N = even, the ED matrix appears as 

shown in Fig. 6. 

 
Fig. 6 Distribution of Distances when Rows =odd and columns=even 
 
In this case, the ij th element of ED matrix is given by, 
 

1 1 1ED(i, j) i (M 1) j (N 1)
2 2 2

= − + + − + +         (19) 

 
When M = even and N = odd, the ED matrix appears as 
shown in Fig. 7. 

 
Fig. 7 Distribution of Distances when rows =even and columns=odd 

 
In this case, the ij th element of ED matrix is given by 
Eq.(19).  

XI. OPTIMUM PLACEMENT ALGORITHM 
To place MxN processors for minimum ECL in a 2-D 

grid 
   1. Get the T vector from the given traffic load data. Size of 
T vector is MxN.  
   2. Calculate the ED (Effective Distance) matrix from 
Eqs.(17), (18) or (19) which is applicable. 
   3. Find  the DSIV of T by a suitable sorting algorithm (say 
Bubble sort) and call it S. That is, get  S=DSIV(T). Then, PS(k) 
is the processor having the k th largest traffic load.    
    4. Get G=ASIV(ED).  
G[1] = gives the row-column position of the smallest  
             element of ED.  
G[2] = gives the row-column position of the 2 nd smallest  
             element of ED.  
……………………………………………………………. 
G[MxN] = gives the row-column position of the largest  
                 element of ED.  
In general, 
G[k] = gives the row-column position of the k th smallest  
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4 3 2 1 2 3 4 
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             element of ED, for k=1,2,…, MxN. 
 5. Place Processor  PS(k) at location given by G(k) for   
     k=1,2,…, MxN.   
     This minimizes the total ECL.  

XII. EXAMPLE 
Let the grid size be 3x7. The ED matrix is given as shown 

in Fig. 4. Let the Traffic Load be given by ( values assumed 
arbitrarily) the T vector of size 21 as, 
T =[ 20  25  2  10 15  5  7    9  12  13  24  3  8   21 
        11  14  6  23  16  1  19] 

Then DSIV of T is, 
S = [ 2  11  18  14  1  21  19    5   16  10  9  15 4  8  
        13  7 17 6   12  3    20 ]      

From the matrix of Fig. 4, G is given by 
G = [ (2,4)   (1,4)  (2,3)  (2,5)   (3,4)   (1,3)  (1,5) 
          (2,2)  (2,6)  (3,3)  (3,5)   (1,2)   (1,6)  (2,1) 
          (2,7)   (3,2)  (3,6)  (1,1)  (1,7)  (3,1)  (3,7) ] 
 

Now, from vectors S and G, 
For k =1,  Processor 2 is placed at location (2,4). 
For k =2,  Processor 11 is placed at location (1,4). 
For k =3,  Processor  18 is placed at location (2,3). 
…………………………………………………… 
In general, Processor PS(k) is placed at location G(k). 
For k =21,  Processor 20 is placed at location (3,7).  

XIII. PRIORITY CONSIDERATIONS 
When different Processors have different Priority levels 

based on the functionality and system logic, the placement 
location of the Processors can be modified to take care of the 
Priorities. Let the Priority of Processor Pk  be quantified by a 
number Rk for k = 1, 2, 3,… MxN, such that higher the 
numerical value of Rk greater is the priority represented by it. 
For higher overall efficiency, higher priority processors 
should be placed closer to one another. Therefore from the 
consideration of priority, a high priority processor should be 
placed to have a low Effective Distance. The Traffic Load 
consideration also demands a similar requirement. Hence, the 
Priority  number Rk and Traffic load Tk of Processor Pk are 
multiplied to get the Effective Traffic Load of that Processor, 
denoted by ETk and given by, 

kkk T.RET =                                    (20) 

for k =1,2,…MxN. 
Thus ETk of Processor k represents both its Priority and 

Traffic Load combined together. The ET vector for the system 
is given by, 

[ ]JJ2211 T.R...T.RT.RET =            (21) 

Where J=MxN is the total number of Processors. 
Now we use the ET vector instead of T vector in the 

Optimum placement Algorithm of section 11. This takes care 
of both Traffic Load and Priority requirements.   

XIV. CONCLUSION 
In this paper, we have presented a new technique to 

determine the placement of Processing Blocks to achieve 
maximum communication efficiency in both single line and 2-
D grids. 
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