

Abstract—This paper presents a new technique for the optimum

placement of processors to minimize the total effective
communication load under multi-processor communication
dominated environment. This is achieved by placing heavily loaded
processors near each other and lightly loaded ones far away from
one another in the physical grid locations. The results are
mathematically proved for the Algorithms are described.

Keywords—Ascending Sort Index Vector, Effective
Communication Load, Effective Distance Matrix, Optimal
Placement, Sorting Order.

I. INTRODUCTION
PTIMUM placement of VLSI blocks has been
extensively studied and various solutions are provided

[1], [2] for different requirements. In this paper we consider
the efficiency of communication as the main criterion while
placing the VLSI blocks (say Processors).

When several processors are to be placed in a grid layout,
their location can be chosen to minimize the overall effective
Communication Load among them. This maximizes the total
traffic transportation in a given time.

II. SINGLE LINE PLACEMENT
The Processors are to be uniformly located on a single line

grid as shown in fig.1 at L1, L2, L3, …LN. The physical
distance between adjacent grids is taken as 1 unit.

Fig. 1 Location of Processors

Thus, the different distances are,
D12 = 1, D13 = 2, D1N = N-1 and so on. The distance

between the j th and k th location is given by,

 Djk = | k-j | (1)

 with Dkk = 0

Let P1, P2, …, PN be the given processors. The
communication among the processors is assumed to be of
Broad-Cast type and the traffic from one processor to other
processors is assumed to be known as follows:

Tjk = is the broad cast traffic load to be transported from j to
k. Tjj is obviously zero. The unit of traffic load can be bytes or
packets or frames. The traffic load represents the amount of
data to be transported say from the output buffer of a
processor.

Important assumption: We assume that the traffic load
from a specific source processor to all other processors is of
the same magnitude. This value is denoted by Tj for Processor
Pj for j = 1 to N and is written as,
T1 = T12 = T13 = …= T1N
T2=T21 = T 23 =…= T1N
…………………….

Tj=Tj1=Tj2=...=TjN (with Tjj = 0) (2)

But, T1, T2, T3 etc are generally different from one another.
Here, Tj is the traffic load of Processor Pj.

III. EFFECTIVE COMMUNICATION LOAD
We define the Effective Communication Load of each

processor as follows.
For Processor P1 ,
 E1=T12.D12+T13.D13+ … +T1N.D1N
For Processor P2 ,
 E2=T21.D21+T23.D23+ … +T2N.D2N
For Processor Pk ,
 Ek=Tk1.Dk1+Tk2.Dk2+ … +TkN.DkN that is

N

k kj kj
j 1

E T .D
=

= ∑ (3)

Here, each product term represents the traffic load from the

source to the destination multiplied by the corresponding
distance. This is a metric that represents the transportation
burden of that path. The sum of the products gives the total
effective load for that Processor.

Thus Ek gives the Effective Communication Load for
Processor Pk. The Effective Communication Load (ECL) also
represents the energy consumed in transporting the traffic
loads through corresponding distances, because, the power
required is proportional to the traffic load and the time
required is proportional to the distance of travel. Thus the
‘traffic-load distance’ product represents Energy.

IV. OBJECTIVE OF THE PAPER
The sum of ECL’s of each processor is given by Eq.(3) and

the overall total is given by,

Optimal Placement of Processors based on
Effective Communication Load

A. R. Aswatha, T. Basavaraju, and N. Bhaskara Rao

O

LN L1 L3 L2

International Journal of Electronics, Circuits and Systems Volume 2 Number 3

127

N N

1 2 N jk
j 1 k 1

E E E ... E E
= =

= + + + =∑∑ (4)

Our objective is to find the optimum placement of given
Processors at proper locations to minimize E (the total
Effective communication Load for the entire system) as given
by Eq.(4).

V. BASIC PRINCIPLE
The basic principle is to place the heavily loaded Processors

nearer to each other and lightly loaded ones far away from one
another. In other words, higher the traffic load value, lower
should be the distance covered by that load and vice-versa.
Now the Effective Communication Load of Processor P1,
using Eqs.(3) and (2) is,
E1=T12.D12+T13.D13+... +T1N.D1N
 =T1.D12+T1.D13+... +T1.D1N
 =T1.(D12+D13+ ... +D1N)

Similarly, for Pj,

Ej=Tj.(Dj1+Dj2+ ... +DjN)

This is rewritten as,
Ej=Tj.Dj (5)

where
Dj = Dj1+Dj2+ ... +DjN (6)

Now the overall total Effective Communication Load can
be expressed using Eqs. (4) and (5) as,
E=T1.D1+ T2.D2+...+Tj.Dj+... +TN.DN

That is,

∑
=

=
N

1j
jj D.TE (7)

Thus E is the scalar product of two vectors T and D given
by,

]T..TT[T N21= (8)

]D..DD[D N21= (9)
Please note that Tj gives the traffic load of Processor Pj and

Dj gives the distance to be covered from location Lj.
Our objective is to minimize E by properly placing the

Processors such that when Tk is maximum, Dk is minimum
and vice versa. If T is in the descending order, D has to be in
the ascending order. This means, the sort order of T should be
opposite to that of D.

VI. VALUES OF VECTOR D
Consider the case when N= 4 as shown in Fig. 2.
Here D12 = 1, D13= 2 and D14 =3. Therefore,

D1=1+2+3= 6
Similarly,
D2=D21+D23+D24= 1+1+2 = 4
D3=D31+D32+D34= 2+1+1 = 4
D4=D41+D42+D43= 3+2+1 = 6

Therefore when N= 4,

]6446[D = (10)

Similarly when N =5 ,
]1076710[D = (11)

In general, for a given N, the k th element of D, designated as
Dk is given by,

)]1k(k)1kN)(kN[(
2
1Dk −++−−= (12)

For k = 1,2,…N.

The minimum of D occurs at position (N+1)/2 in vector D,

when N is odd. When N is even there are 2 equal minimums at
positions N/2 and (N/2)+1.

VII. ASCENDING SORT INDEX OF VECTOR D
The Ascending Sort Index Vector (ASIV) of a given vector

gives the positions of the smallest element, then the next
smallest element and so on in the ascending order. A given
vector and its ASIV have the same size. Let
G = [G(1) G(2) . . . G(N)]
be the ASIV of D, then the elements of G are determined as
follows.
G(1) = Position of the smallest element of D in D.
G(2) = Position of the second smallest element of D in D.
………………………………………………………..
G(k) = Position of the k th smallest element of D in D.
………………………………………………………..
G(N) = Position of the largest element of D in D.
When two elements of D are equal say at positions i and j with
j>i and if Di is the k th smallest element of D, then Dj is taken
as the next smallest element of D for the purpose of ordering.
Therefore G(k) = Di and G(k+1) = Dj.
Since position j in vector D represents the j th Location,
LG(k) is the Location having the k th smallest distance to other
locations. That is,
LG(1) =Location having the smallest distance to others.
LG(2) =Location having the next smallest distance to others.
…………………………………………………………
LG(N) = Location having the largest distance to others.

D12

L4 L1 L3 L2

D13

D14

Fig. 2 Distances among Processors

International Journal of Electronics, Circuits and Systems Volume 2 Number 3

128

G is basically a Permutation Vector. When D is permuted
according to G, D gets sorted in the ascending order. The
permutation operation is carried as follows.
For j = 1,2, …N Let
F(j) D(G(j))= (13)
Then, from the definition of G, we know that
 F(1) = smallest element of D.
 F(2) = next smallest element of D.
 …………………………………….
 F(N) = largest element of D.
Therefore F is the ascending sorted version of D.
Thus ASIV of a given vector represents the ascending sort
order of that vector. From Eq.(10), the ASIV of D for N=4,
written as, ASVI(D) is given by,
G=ASIV(D) =ASIV([6 4 4 6]) = [2 3 1 4]
For N=5,
G=ASIV(D) =ASIV([10 7 6 7 10])
 = [3 2 4 1 5] (14)
Because of the symmetric nature of vector D, (see Eqs (10)
and (11)) the elements of G which is the AVIS of D can be
determined and it can be shown that G[k] = k th element of G
is given by,
G[k]= (N+k)/2 when N and k are both odd or both even , and
G[k]= (N+1-k)/2 when N odd and k even or vice-versa.

VIII. DESCENDING SORT INDEX OF VECTOR T
The Descending Sort Index Vector (DSIV) of a given

vector gives the positions of the largest element, then the next
largest element and so on in that order. A given vector and its
DSIV have the same size. Let
S = [S(1) S(2) . . . S(N)]
be the DSIV of the given vector T . Then,
S(1) = Position of the largest element of T in T.
S(2) = Position of the second largest element of T in T.
………………………………………………………..
S(k) = Position of the k th largest element of T in T.
………………………………………………………..
S(N) = Position of the smallest element of T in T.
Since position j in vector T represents the j th processor,
PS(k) is the processor having the k th largest traffic load. That
is,
PS(1) = Processor having the largest traffic load.
PS(2) = Processor having the second largest traffic loads.
…………………………………………………………
PS(N) = Processor having the smallest traffic load.

Example 1:
Let N=5 and
T = [50 60 70 80 90]
Elements of T give the traffic loads of Processors
P1, P2,…PN in that order. Now by inspection,
S=DSIV(T) = [5 4 3 2 1]
This means P5 has the largest traffic load, P4 has the next
highest traffic and so on. The ASIV of D when N = 5 as given
by Eq.(14) is reproduced here,
G=ASIV(D) = [3 2 4 1 5]

From the basic principal of minimization of dot product, we
know that DSIV(T) should match with ASIV(D). Writing one
vector below the other we get,
S=DSIV(T) = [5 4 3 2 1] = order of Processors.
G=ASIV(D) = [3 2 4 1 5] = order of Locations.
From this, we see that
P5 should be placed at location 3.
P4 should be placed at location 2.
………………………………….
P1 should be placed at location 5.
Therefore the general rule is,
place Processor PS(k) at Location LG(k) for k=1,2,..N

IX. OPTIMUM PLACEMENT ALGORITHM
To place N processors for minimum ECL:

 1. Get the T vector from the given traffic load data.
 2. Calculate the D vector from Eq.(12).
 3. Find the DSIV of T by a suitable sorting algorithm (say
Bubble sort) and call it S. That is, get S=DSIV(T).
 4. Similarly, get G=ASIV(D)
 5. place Processor PS(k) at Location LG(k) for k=1,2,..N

X. OPTIMUM PLACEMENT ON A 2-DIMENSIONAL GRID
Consider a 2-D grid of M rows and N columns as shown in

Fig. 3. The Locations of the grid points are marked as 11,
12,… and so on. The total manhattan distance to be covered
by a given node to reach all other nodes depends on the
position of the node. Let the node under consideration be at
location (r,c) where r = row value and c = column value of the
node position. Then the total distance from this node to all
other nodes is given by,

()∑∑
= =

−+−=
M

1i

N

1j
irjc)c,r(D (15)

for r = 1,2,…M and c = 1,2,…N
After the summation, this equation can be expressed as

(){ }
(){ }

1D(r,c) M. c c 1 (N c)(N c 1)
2
1 N. r r 1 (M r)(M r 1)
2

⎡ ⎤= − + − − +⎣ ⎦

⎡ ⎤+ − + − − +⎣ ⎦

 (16)

For optimum placement, we need to know the position of
smallest D(r,c), next smallest D(r,c) and so on. To determine
this, we mark the smallest value by metric 1, next smallest by
2 and so on. Consider the Example of a 3x7 grid. The smallest
distance occurs at the center of the

International Journal of Electronics, Circuits and Systems Volume 2 Number 3

129

Fig. 3 Location of Processors in a 2-D grid

grid and the next smallest at the immediate neighborhood and
so on as shown in Fig. 4. We call these distances as effective
distances.

Fig. 4 Distribution of Distances when rows =odd and columns=odd

Thus the table of Fig. 4 gives the effective distance matrix

ED. For this ED, the ASIV is given by,
G=ASVI(ED)=[(2,4) (2,3) (1,4) (2,5) (3,4) … (3,7)]
The size of G is 15 (which is equal to MxN).
G[1] gives the position of the smallest element of D.
G[2] gives the position of the next smallest element of D.
……………………………………………………………
G[15] gives the position of the largest element of D.

The nature of ED matrix
When the no of rows of the grid M is odd and the no of

columns N is odd, the center of the grid area is at row
(M+1)/2 and column (N+1)/2 as in Fig 4. In this case the ij th
element of ED is given by,

1 1ED(i, j) 1 i (M 1) j (N 1)
2 2

= + − + + − + . (17)

When M and N are both even, the center of the grid is
represented by 4 grids as shown in Fig. 5.

Fig. 5 Distribution of Distances when rows =even and columns=even

In this case, the ij th element of ED matrix is given by,

1 1ED(i, j) i (M 1) j (N 1)
2 2

= − + + − + (18)

When M = odd and N = even, the ED matrix appears as

shown in Fig. 6.

Fig. 6 Distribution of Distances when Rows =odd and columns=even

In this case, the ij th element of ED matrix is given by,

1 1 1ED(i, j) i (M 1) j (N 1)
2 2 2

= − + + − + + (19)

When M = even and N = odd, the ED matrix appears as
shown in Fig. 7.

Fig. 7 Distribution of Distances when rows =even and columns=odd

In this case, the ij th element of ED matrix is given by
Eq.(19).

XI. OPTIMUM PLACEMENT ALGORITHM
To place MxN processors for minimum ECL in a 2-D

grid
 1. Get the T vector from the given traffic load data. Size of
T vector is MxN.
 2. Calculate the ED (Effective Distance) matrix from
Eqs.(17), (18) or (19) which is applicable.
 3. Find the DSIV of T by a suitable sorting algorithm (say
Bubble sort) and call it S. That is, get S=DSIV(T). Then, PS(k)
is the processor having the k th largest traffic load.
 4. Get G=ASIV(ED).
G[1] = gives the row-column position of the smallest
 element of ED.
G[2] = gives the row-column position of the 2 nd smallest
 element of ED.
…………………………………………………………….
G[MxN] = gives the row-column position of the largest
 element of ED.
In general,
G[k] = gives the row-column position of the k th smallest

5 4 3 2 3 4 5

4 3 2 1 2 3 4

4 3 2 1 2 3 4

5 4 3 2 3 4 5

4 3 2 2 3 4

3 2 1 1 2 3

4 3 2 2 3 4

11 12 1N

21 22 2N

M1 M2 MN

5 4 3 2 3 4 5

4 3 2 1 2 3 4

5 4 3 2 3 4 5

4 3 2 2 3 4

3 2 1 1 2 3

3 2 1 1 2 3

4 3 2 2 3 4

International Journal of Electronics, Circuits and Systems Volume 2 Number 3

130

 element of ED, for k=1,2,…, MxN.
 5. Place Processor PS(k) at location given by G(k) for
 k=1,2,…, MxN.
 This minimizes the total ECL.

XII. EXAMPLE
Let the grid size be 3x7. The ED matrix is given as shown

in Fig. 4. Let the Traffic Load be given by (values assumed
arbitrarily) the T vector of size 21 as,
T =[20 25 2 10 15 5 7 9 12 13 24 3 8 21
 11 14 6 23 16 1 19]

Then DSIV of T is,
S = [2 11 18 14 1 21 19 5 16 10 9 15 4 8
 13 7 17 6 12 3 20]

From the matrix of Fig. 4, G is given by
G = [(2,4) (1,4) (2,3) (2,5) (3,4) (1,3) (1,5)
 (2,2) (2,6) (3,3) (3,5) (1,2) (1,6) (2,1)
 (2,7) (3,2) (3,6) (1,1) (1,7) (3,1) (3,7)]

Now, from vectors S and G,
For k =1, Processor 2 is placed at location (2,4).
For k =2, Processor 11 is placed at location (1,4).
For k =3, Processor 18 is placed at location (2,3).
……………………………………………………
In general, Processor PS(k) is placed at location G(k).
For k =21, Processor 20 is placed at location (3,7).

XIII. PRIORITY CONSIDERATIONS
When different Processors have different Priority levels

based on the functionality and system logic, the placement
location of the Processors can be modified to take care of the
Priorities. Let the Priority of Processor Pk be quantified by a
number Rk for k = 1, 2, 3,… MxN, such that higher the
numerical value of Rk greater is the priority represented by it.
For higher overall efficiency, higher priority processors
should be placed closer to one another. Therefore from the
consideration of priority, a high priority processor should be
placed to have a low Effective Distance. The Traffic Load
consideration also demands a similar requirement. Hence, the
Priority number Rk and Traffic load Tk of Processor Pk are
multiplied to get the Effective Traffic Load of that Processor,
denoted by ETk and given by,

kkk T.RET = (20)

for k =1,2,…MxN.
Thus ETk of Processor k represents both its Priority and

Traffic Load combined together. The ET vector for the system
is given by,

[]JJ2211 T.R...T.RT.RET = (21)

Where J=MxN is the total number of Processors.
Now we use the ET vector instead of T vector in the

Optimum placement Algorithm of section 11. This takes care
of both Traffic Load and Priority requirements.

XIV. CONCLUSION
In this paper, we have presented a new technique to

determine the placement of Processing Blocks to achieve
maximum communication efficiency in both single line and 2-
D grids.

REFERENCES
[1] Prof. David Pan. VLSI placement (II).

Users.ece.utexas.edu/~dpan/2006Sp_EE382V/notes/lecture20_placemen
t_2.ppt

[2] Andrew B. Kahng University of California & Gabriel Robins University
of Virginia. “On Optimal Interconnections for VLSI”
vlsi.ucsd.edu/Publications/Books/Books.pdf

[3] M. S. Bazaraa, J. Jarvis, and H. D. Sherali. Linear Programming and
Network Flows. John Wiley & Sons, 2nd edition, 1990.

[4] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. GORDIAN: VLSI
placement by quadratic programming and slicing optimization. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems,10(3):356–365, 1991.

[5] H. Eisenmann and F. M. Johannes. Generic global placement and
floorplanning. In Proc. Design Automation Conf, pages 269–274, 1998.

[6] M. W. P. Savelsbergh. A branch-and-price algorithm for the generalized
assignment problem. Operations Research, 6:831–841, 1997.

Aswatha A.R received B.E Degree from Mysore
University in 1991, M.Tech Degree from M.I.T
Manipal in 1996, M.S. Degree from B.I.T.S. Pilani in
2002, pursuing Ph.D degree in Dr. M.G.R University.
Currently he is working as Associate Professor in
Electronics & Communication Department, Dayanand
Sagar College of Engineering, Bangalore, India. His
main research Interests include Analysis and design of
Low Power VLSI Circuits and Image Processing.

T. Basavaraju received B.E Degree from U.V.C.E,
Bangalore in 1962, M.Sc (Engineering) Degree from
PSGCT, Coimbatore in 1967, Ph.D degree from
Bangalore University, Bangalore, India, in 1980.
Currently he is working as Director (Accademics) in
Sri Revana Siddeshwara Institute of Technology,
Bangalore India. His main research Interests include
Analysis and design of Device Technology.

Bhaskara Rao N. received B.E Degree in Electrical
Engineering from UVCE Bangalore, M.E Degree in
Control Systems from IISC Bangalore, India.
Currently he is working as Professor in Computer
Science Engineering, Department, Dayanand Sagar
College of Engineering, Bangalore, India. His main
research Interests include VLSI Design and Image
Processing.

International Journal of Electronics, Circuits and Systems Volume 2 Number 3

131

