
 

 

  
Abstract—SAD (Sum of Absolute Difference) algorithm is 

heavily used in motion estimation which is computationally highly 
demanding process in motion picture encoding. To enhance the 
performance of motion picture encoding on a VLIW processor, an 
efficient implementation of SAD algorithm on the VLIW processor is 
essential. SAD algorithm is programmed as a nested loop with a 
conditional branch. In VLIW processors, loop is usually optimized by 
software pipelining, but researches on optimal scheduling of software 
pipelining for nested loops, especially nested loops with conditional 
branches are rare. In this paper, we propose an optimal scheduling and 
implementation of SAD algorithm with conditional branch on a VLIW 
DSP processor. The proposed optimal scheduling first transforms the 
nested loop with conditional branch into a single loop with conditional 
branch with consideration of full utilization of  ILP capability of the 
VLIW processor and realization of earlier escape from the loop. Next, 
the proposed optimal scheduling applies a modulo scheduling 
technique developed for single loop. Based on this optimal scheduling 
strategy, optimal implementation of SAD algorithm on TMS320C67x, 
a VLIW DSP is presented. Through experiments on TMS320C6713 
DSK, it is shown that H.263 encoder with the proposed SAD 
implementation performs better than other H.263 encoder with other 
SAD implementations, and that the code size of the optimal SAD 
implementation is small enough to be appropriate for embedded 
environments.  
 

Keywords—Optimal implementation, SAD algorithm, VLIW, 
TMS320C6713. 

I. INTRODUCTION 
ECENTLY, multimedia applications which necessitate 
mul timedia stream processing (motion picture 

compression /display, etc.) in embedded environments such as 
smart phone, digital camera, digital camcorder, embedded web 
camera server, PDA, and etc. have been increasing [1,2]. 
Embedded processors need more computing power as demand 
of multimedia stream processing ability is increasing. 
Currently, adoption of VLIW (Very Long Instruction Word) 
architecture becomes the trend of high-performance DSP 
processor [1,3,4] since VLIW supports instruction level 
parallelism by low-cost compiler compared to the dynamically 
hardware-scheduled superscalar processors. TMS320C6x, 
which is a high-performance DSP ASSP popularly adopted for 
many multimedia applications, is also based on VLIW 
architecture.  

Porting multimedia applications developed on workstations 
into a VLIW embedded processor simply may not achieve full 
capability since VLIW architecture is not fully utilized. 

Most of multimedia streaming applications need motion 
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picture encoding and decoding. Motion estimation is one of the 
most important processes in motion picture coding since 
achievement of high compression ratio depends on how well 
the motion estimation is accomplished. However, motion 
estimation is computationally highly demanding process, and 
SAD (Sum of Absolute Difference) algorithm is the most 
heavily computed part in motion estimation process. Thus, an 
efficient implementation of SAD algorithm is very important. 
SAD algorithm is usually implemented in a nested loop with 
conditional branch. The conditional branch in SAD algorithm is 
for exit from the nested loop when the computed SAD value 
exceeds the minimum SAD value among previously computed 
SAD values. This conditional branch saves the computational 
time in finding the best matching macroblock. Loop on VLIW 
processors is implemented optimally by utilizing software 
pipelining technique. Optimal scheduling of software 
pipelining of single loops has been investigated a lot in the past 
[4]. However, researches on optimal scheduling of software 
pipelining of nested loops, especially nested loop with branch 
are rare [5, 6, 7].  

In this paper, we propose an optimal scheduling and 
implementation of SAD algorithm with a conditional branch on 
a VLIW DSP processor. The proposed optimal scheduling first 
transforms the nested loop with conditional branch into a single 
loop with conditional branch with consideration of utilizing ILP 
capability of the VLIW processor fully and realizing earlier 
escape from the loop. Next, the proposed optimal scheduling 
applies a modulo scheduling technique developed for single 
loop.  

Based on this optimal scheduling strategy, optimal 
implementation of SAD algorithm on TMS320C67x, a VLIW 
DSP is presented. Through experiments on TMS320C6713 
DSK, it is shown that H.263 encoder with the proposed SAD 
implementation performs better than other H.263 encoder with 
other SAD implementations, and that the code size of the 
optimal implementation of SAD algorithm is small enough to 
be appropriate for embedded environments. 

In the past, sizable research works on the implementation of 
block matching have been done, but most of them have dealt 
with efficient implementation of the algorithm itself 
irrespective of processor architecture [8, 9]. Also, research 
works on optimal implementation and performance of 
H.263/MPEG 4 encoder have been reported [2,10,11,12,13], 
but most of them deal with overall S/W design and performance 
analysis on SIMD processors and VLIW processors, but rather 
than optimization of specific algorithms on VLIW architecture 
[14]. Texas Instrument DSP Image Library [15] provides an 
assembly implementation of SAD algorithm. This 
implementation deals with SAD without branch, thus the 
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performance of the motion picture encoding using TI SAD 
algorithm is worse than the motion picture encoding using SAD 
algorithm with conditional branch to exit from the nested loop. 
For performance analysis of SAD implementations, we use 
UBC H.263 encoder [16] where the SAD algorithm in motion 
estimation module will be replaced by various SAD 
implementations including the proposed one for each 
experiment. We employ TMS320C6713 for a VLIW DSP. 
Through experiments where 1 intramode and 2 intermode 
encoding are performed using each SAD implementation for a 
standard video sequence, foreman.qcif, it is shown that H.263 
encoder using the proposed SAD implementation is much faster 
than H.263 encoder adopting any other implementations of 
SAD.  

The rest of the paper is organized as follows. Section 2 
introduces background, and Section 3 presents our proposed 
optimal scheduling of SAD algorithm, and optimal 
implementation of SAD algorithm on TMS320C6713, a VLIW 
DSP. Experiment results are discussed in Section 4, and finally 
the conclusion is presented in Section 5. 

II. BACKGROUND  

A. Motion Picture Codecs, Motion Estimation, and SAD  
In this section, we briefly introduce motion estimation, block 

matching and SAD algorithm. For more details on motion 
picture codecs, H.261, H.263, H.264, and MPEG, please refer 
to [17]. The fundamental difference between motion picture 
encoding and still picture encoding is that motion picture 
encoding enhances compression ratio by removing the temporal 
visual information redundancy and encoding the only residual 
visual information.  

The redundant visual information is captured by motion 
estimation which seeks the best matched macroblock in the 
search region of the reference image frame to the current 
macroblock in the current image frame. The best matched 
macroblock in the reference frame to the current macroblock is 
the macroblock in the search area in the reference frame which 
has the minimum SAD value with the current macroblock.  

Since several hundred repeated calculations of SAD 
algorithm is necessary in order to find the best matched 
macroblock in the search region of the reference frame for each 
current macroblock and there are numerous macroblocks in a 
frame (eg. 99 macroblocks for 1 QCIF size frame), it is 
important to seek an efficient implementation of SAD 
algorithm. Encoding utilizing motion estimation is called 
intermode encoding, and the other case of encoding is called 
intramode ending. Still image encoding like JPEG does 
intramode encoding only. 

B. VLIW (Very Long Instruction Word) Processors [3, 4] 
ILP (Instruction Level Parallelism) means capability of 

processing several independent instructions in parallel. 
Superscalar processors and VLIW processors are representative 
ILP processors. In VLIW processors, compiler checks the 
dependency among instructions, schedules instructions, and 

constructs instruction word packet (Very Long Instruction 
Word) consisting of instructions which can be executed in 
parallel. In running, instruction word packet passes through 
pipeline stages such as instruction fetch and instruction 
interpretation, and then instructions in the instruction word 
packet are separately issued into several function blocks and are 
executed in parallel.  

Since determining the order of execution of instructions and 
parallel execution of instructions is handled by the compiler, the 
processor does not need the scheduling hardware that the 
superscalar processors require. Thus, VLIW processors have 
less complex hardware architecture and more suitable for 
embedded processor than superscalar processors.  

C. Software Scheduling, Loop Unrolling and Software 
Pipelining 

The purpose of software scheduling is to rearrange and group 
instructions under constraints so that as many instructions as 
possible are executable in parallel [4, 18, 19]. Scheduling 
constraints are resource constraints (finite number of registers 
and function units), data dependency among instructions, 
function unit latency, and branch instruction, and recurrence 
constraint. A loop is called to have recurrence constraint if an 
operation in one iteration of the loop has direct or indirect 
dependence upon the same operation from a previous iteration. 
Loop unrolling and software pipelining are representative 
scheduling techniques for optimal scheduling of loop in codes 
[4, 18, 19]. Loop unrolling increases loop body by unwinding 
many iterations of loop into a new iteration. Bigger loop body 
will have higher chance of more efficient scheduling. 
Moreover, loop unrolling reduces the branch instructions and 
overhead instructions due to loop iterations. The major side 
effects of loop unrolling are: a) the increased register usage in a 
single iteration to store temporary variables, which may hurt 
performance; and b) the code size expansion after the unrolling, 
which is undesirable for embedded applications.  

Software pipelining is a technique used to schedule 
instructions from a loop so that multiple instructions of different 
loop iterations can execute in parallel.  

D. Software Pipelining Scheduling 
Software pipelined loop consists of 3 code areas: prolog, 

kernel, and epilog. The kernel of the software pipelined loop is 
the repeating code area, the prolog is the code area above the 
kernel (to enter the kernel), and the epilog is the area below the 
kernel (to exit from the kernel). The constant interval between 
the start of successive iterations in the kernel is termed the 
initiation interval (usually denoted as II). As II is smaller, the 
execution time of the loop becomes shorter since the ILP of the 
software pipeline becomes higher. Therefore, the purpose of the 
scheduling of software pipelining is to make II shorter as much 
as possible under constraints and to achieve the maximum 
performance. The minimum initiation interval is denoted as 
MII, and seeking MII under constraints is well known to be 
NP-complete [18]. Thus, heuristic approach is needed in 
finding MII as described in the below.  
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1) Modulo Scheduling [4, 19] 
Modulo scheduling is to schedule the instructions of the loop 

in a manner that all iterations have identical schedules (single 
II) except that each iteration is scheduled to start some fixed 
number of cycles later than the previous iteration. Modulo 
scheduling is the most popular one among software pipeline 
scheduling techniques. Basically, the modulo scheduling is 
proceeded as follows.  

 

1. Initially, set II as II = max(ResMII, RecMII)  
2. Search for a modulo schedule satisfying II by using 

DDG (data dependence graph) and MRT (Modulo 
Resource Reservation Table). 

3. If one find a schedule satisfying 2, then stop.                        
If not, set II=II+1 and go back to step 2.  

 

ResMII means the minimum value by resource constraints and 
RecMII means the minimum value by recurrence constraints. 
For practical determination of ResMII and RecMII, please refer 
to [19]. DDG is a graph showing dependency among 
instructions and MRT is a table which records and checks 
resource utilization at a time slot {C mod II} and at a cycle C.  
 

E. TMS320C6713 
1) Architecture of TMS320C67x 
The TMS320C67x is a family of 32-bit TMS320C6x DSP 

with floating-point operation capability added. The 
TMS320C67x supports execution of 8 instructions in parallel. It 
contains two floating-point data paths. Each data path contains 
two ALUs (S and L units), a multiplier (M unit), and 
adder/subtractor for address generation (D unit), and 16 
registers ( A0 ~ A15 or B0 ~ B16). For more details about 
TMS320C6713, please refer to [20]. 

 
2) Instruction Set of TMS320C6x [21] 
Instruction set of TMS320C6x is RISC-like and supports 

load-store, and memory reference is only allowed in load and 
store instructions. The pipeline latency of an instruction is 
equivalent to the number of additional cycles required after the 
source operands are read for the result to be available for 
reading. Multiplication of 16x16 has 1 delay slot, branch 
instruction has 5 delay slots, load instruction has 4 delay slots, 
but store and single cycle instructions (add, subtract, etc.) has 0 
delay. The following shows an example of TMS320C6x 
assembly instructions. 

 
 

                 LDBU     .D1   *A4++,   A7 ;   
||   [A1]     ADD        .S2   B13,    A8,   B12 ; 

 

       
As seen in the above example, TMS320C6x assembly 

programming is complex since it needs to designate parallel 
processing of instructions using ||, conditional execution of 
instruction ([A1]), and function units to be used (.D1, .S2), and 
register usage (source registers and destination register) of 
instructions, and also needs to consider pipeline latency of 
instructions. Texas Instruments provides linear assembly which 
does not need to designate parallel execution, function units, 

register usage, and pipeline latency. If a user writes linear 
assembly, then the linear assembly optimizer provided by TI  
translates the linear assembly into proper assembly instructions.  
 

3) Resource Constraints of Instructions and Memory Bank 
Conflicts in TMS320C6x 

For resource constraints in TMS320C6x, please refer to [21]. 
In implementation, one should consider memory bank conflicts 
in TMS320C6x [21], and most C6x processors use interleaved 
memory banks, and access to the same bank in the same cycle is 
penalized.  

III. OPTIMIZATION OF SAD ALGORITHM ON TMS320C6X 

A. Analysis of Software Pipeline Scheduling of SAD 
Algorithm 

C implementation of SAD algorithm used in UBC H.263 
encoder [16] adopted in this paper is as follows. 
 

 

int SAD_Macroblock (unsigned char *ii, unsigned char *act_block,   
          int h_length, int Min_FRAME) 
{     //   ii ; memory pointer of search region 

//  act_block ; memory pointer of current macroblock 
  //  h_length ; width of search region  
  //  INT_MAX ; maximum of unsigned integer (2,147,483,647) 

//  Min_FRAME ; the minimum SAD value among the previously   
//  calculated SAD , initial value = INT_MAX   
   
int i, j; 
int sad = 0; 
unsigned char *kk; 
kk = act_block; 
i = 16; 
while (i--) 
 {       
        for (j=0; j<16; j++)    // inner loop 
         sad+= abs(*(ii+j)-*(kk+j)); // inner loop 
     ii += h_length; 
       kk += 16; 
      if (sad > Min_FRAME) // conditional branch 
      return INT_MAX; 
} 
return sad; 

} 
 

Fig. 1  C implementation of SAD algorithm  
  

In order to calculate SAD about a pixel pair of a pixel in the 
current macroblock in the current frame and a pixel in a 
macroblock in the reference frame, we need two memory load 
operations, one subtract operation, one absolute operation, and 
one add operation. Thus, for SAD calculation of 1 macroblock 
(16 x 16 size), we need 16 x 16 x 2 memory load operations, 16 
x 16 x 1 subtract operations , 16 x 16 x 1 absolute operations, 
and 16 x 16 x 1 add operations. In TMS320C6x, load operations 
need 5 cycles to finish, and absolute/subtract/add operations 
need 1 cycle to finish. Thus, if these operations are sequentially 
processed, that is, one operation is processed after one 
operation is finished; maximally 3,327 cycles are needed to 
finish SAD calculation of a macroblock since 16 x 16 x 5 x 2 + 
16 x 16 x 1 x 2 + 255 = 3,327. Thus, one may need ILP 
capability (maximally 8 operations in parallel in one cycle) in 
TMS320C6x provided by VLIW architecture.  
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SAD algorithm of Fig. 1 is implemented in a nested loop, and 
several approaches toward scheduling software pipelining for 
nest loop are considered as follows.  
 
M1) One first applies software pipelining techniques to the 
inner loop and applies again software pipelining techniques to 
the outer loop whose body consists of software pipelined codes 
of the inner loop. 
M2) One first unfolds the inner loop fully and makes a single 
loop whose body consists of unfolded codes of the inner loop 
and applies the software pipelining scheduling technique 
developed for single loop optimization 
M3) One transforms the nested loop problem into a 
multi-dimensional software pipelining problem, and applies 
scheduling technique developed for multi-dimensional software 
pipelining problem [7] 

 
TI compiler takes the first approach, but the approach is not 

efficient since filling and emptying the prolog and epilog of the 
software pipelined code of the inner loop is repeated whenever 
outer loop repeats. That is, even if the inner loop is optimally 
software pipeline scheduled, that does not necessarily mean that 
the whole nested loop is optimally software pipelined scheduled. 
The second approach increases code size a lot since fully 
unfolded inner loop makes a much bigger loop body of outer 
loop. [14] takes the second approach. But, the increased code 
size is disadvantageous for embedded implementation since 
embedded processor has limited memory. Also, big loop body 
makes optimal scheduling more difficult since one has to 
consider register renaming and resource constraints more. As 
for third approach, a general technique has not been developed 
which can be easily applied for a nested loop with conditional 
branch.  

B. Optimal Scheduling of SAD  Algorithm on VLIW 
Processor and Implementation on TMS320C67x 

1) Optimal Scheduling of SAD Algorithm on VLIW 
Processor 

In this paper, we propose an improved scheduling for a nest 
loop with conditional branch of SAD algorithm as follows.  

First, we transform the nested loop with conditional branch 
into a single loop with conditional branch with consideration of 
utilizing ILP capability of the VLIW processor fully and 
realization of earlier escape from the loop.  

Next, we apply a modulo scheduling technique developed for 
single loop.  

The loop body of the transformed loop will be smaller than 
that of a single loop made from fully unfolding as in the 
approach M2). Also, the transformed loop body will be large 
enough so that the loop body can have enough independent 
operations to utilize ILP of the VLIW processor. TMS320C6x 
has ILP capability of executing maximally 8 operations in  
parallel. Hereafter, we present optimal implementation of SAD 
algorithm based on this optimal scheduling strategy on 
TMS320C67x, a VLIW DSP family.  

2) Optimal Implementation of SAD Algorithm on      
TMS320C67x 

Considering the optimal scheduling strategy proposed in the 
above, we transform the nested loop with conditional branch of 
the SAD algorithm presented in Fig. 1 into a single loop with 
conditional branch as in Fig. 2.  

 
 

int SAD_Macroblock (  unsigned char *ii, unsigned char *act_block, int  

           h_length, int Min_FRAME  )  { 

// ii ; memory pointer of search region 
// act_block ; memory pointer of current macroblock 
// h_length ; width of search region  
// INT_MAX ; maximum of unsigned integer (2,147,483,647) 
// Min_FRAME ; the minimum SAD value among the previously  

 // calculated SAD , initial value = INT_MAX    
 

   int i, l=0;  

 int sad = 0, sad_e=0, sad_o=0;  

 unsigned char *kk;  

 kk = act_block;  

 for (i=0 ; i < 64 ; i+=1)   { 

  sad_e = abs (*(ii+l) - *kk) + abs (*(ii+2+l) - *(kk+2));  

  sad_o = abs (*(ii+1+l) - *(kk+l)) + abs (*(ii+3+l) - *(kk+3));  

  sad=sad_e+sad_o;  

  if (sad >=Min_FRAME)  

    return sad ;      

      ii+=4;  

      kk+=4;  

      if ((i+1)%4 == 0)     //(1) 

         l += h_length-16;    //(1) 

 }  

 return sad;  

} 

  

Fig. 2 Transformed C implementation of SAD algorithm 
 

The basic idea behind C codes in Fig.2 is the following.  
With consideration of the ILP capability of TMS320C67x 

which can execute maximally 8 operations in parallel and of 
achievement of earlier escape from loop, the C codes in Fig. 2 is 
programmed so as to execute SAD operations in parallel as 
much as possible for two even pixel pairs and two odd pixel 
pairs, and so as to escape from loop as earlier as possible by 
checking escape condition right after SAD calculation for every 
4 pixel pairs is finished. 

Linear assembly codes corresponding to the C codes in bold 
face in the Fig. 2 can be roughly written as follows. 
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ZERO      j, sad_e, sad_o, sad 
MVK      0x40, i   
MVK      0x2000, j_init   
SUB      h_length,  16, A_p     
loop:  
      LDBU  *A_srcImg[1],      odd_sp1 
      LDBU  *B_srcImg[1],      odd_sp3 
      LDBU  *A_refImg[1],      odd_rp1 
      LDBU  *B_refImg[1],      odd_rp3 
 
      LDBU  *A_srcImg++[4],   even_sp0 
      LDBU  *B_srcImg++[4],   even_sp2 
      LDBU  *A_refImg++[4],   even_rp0 
      LDBU  *B_refImg++[4],   even_rp2 
 
      SUB   even_sp0,  even_rp0,  even_d0 
      SUB   even_sp2,  even_rp2,  even_d2 
      SUB   odd_sp1,   odd_rp1,     odd_d1   
      SUB   odd_sp3,   odd_rp3,     odd_d3 
 
      ABS   even_d0,  even_a0 
      ABS   even_d2,  even_a2 
      ABS   odd_d1,    odd_a1 
      ABS   odd_d3,    odd_a3 
       
      ADD   sad_e,     even_a0,    sad_e 
      ADD   sad_o,     odd_a1,     sad_o 
      ADD   sad_e,     even_a2,    sad_e 
      ADD   sad_o,     odd_a3,     sad_o 
 
      ADD   sad_e,      sad_o,       sad 
 

           CMPLTU  sad,   Min_FRAME,   temp   
[temp] B     Get_Out                             //(B.1) 

SUB   i,   1,   i 
 
[temp] MPY  i,  0,  i                             // (A.1) 
 

       MPY   j,  2,  j                            //  (A.2) 
[!j]  ADD   A_refImg,    A_p,    A_refImg   
       ADD   A_refImg,    2,        B_refImg 
 
[!j]  MPY    j_init,    1,    j                // (A.3) 
 
[i]   B    loop                                   //(B.2) 
      
Get_Out: 
.return         sad 

 

Fig. 3 Linear assembly codes for boldface C codes in Fig. 2  
 

The idea behind linear assembly codes of Fig.3 is that the 
SAD algorithm is transformed into a single loop so as to utilize 
the 8 function unit of TMS320C6x fully, and so as to achieve 
the minimum resource constraint by using remaining M 
function units (MPYs in (A.1), (A.2), and (A.3) in Fig. 3) for 
the codes (1) in Fig. 2.  

Let us schedule linear assembly codes in Fig. 3 according to 
the modulo scheduling technique described in Section II.D. .  

If we consider that the symbolic registers use different 
registers, we need 18 registers which is less than 32 registers of 
TMS320C6x, thus there is not register constraints. Now, let’s 
calculate the MII. Since there are not precedence constraints, 
we have to consider resource constraints. In Fig. 3, required 

function blocks are as follows. 8 D function blocks for 
executing 8 LDBU instructions, 4 L function blocks for 4 ABS, 
12 L or S or D function blocks for 7 ADD and 5 SUB, 3 M 
function blocks for 3 MPY, 1 L function block for CMPGT, 2 S 
function blocks for 2 B. Thus, the minimum cycles required to 
schedule instructions using each function block in the software 

pipeline kernel for Fig. 3 are as follows. 4
2
8

=⎥⎥
⎤

⎢⎢
⎡  for D 

function blocks, and 5
4

19
=⎥⎥

⎤
⎢⎢
⎡

 for L or S function block, and 

2
2
3

=⎥⎥
⎤

⎢⎢
⎡

 for M function block. Here, ⎡ ⎤x  is defined to be a 

least integer greater than or equal to x. Therefore, ResII=5, and 
II=5. Now, let’s search a modulo schedule for II=5 using 
dependency graph and MRT under constraints: dependency 
among instructions, delay slots of instructions, and memory 
bank conflict.  

However, in order to find a modulo schedule with II=5, we 
first have to deal with delay slot of branch instruction. Since the 
SAD routine in Fig. 3 has two branches: one for repeating loop 
(B.2), and one for escaping from loop (B.1), and delay latency 
is 5 for branch instruction, we may not escape from the loop if 
we are not careful. The reason is that when the branch 
instruction for escape is executed, the branch instruction for 
repeating loop is already loaded into the pipeline because II=5 
and one cannot separate two branch instructions into more than 
4 cycles. Thus the loaded branch instruction will be eventually 
executed and execution flow returns back to loop. We solve this 
problem by utilizing conditional branch. The branch instruction 
for repeating loop is not executed when the loop count becomes 
0, thus, we set the loop count as 0 (A.1) when the branch 
instruction for escape is loaded (B.1). After solving the problem 
of delay slot of 2 branches, we can find a software pipelining 
schedule with II=5 for SAD routine in Fig. 3 under constraints. 
Final optimally scheduled assembly codes are omitted due to 
the limited paper space.  

IV. EXPERIMENTS 

A.  Experiment Environments 
For experiments in this paper, we use TMS320C6713 DSK 

board from Texas Instruments. C6713 DSK board is provided 
with ‘code composer studio’, integrated environments for 
developing a TI DSP system. Code composer studio supports 
assembler, C compiler, linker, profiler, debugger, and 
disassembler. C6713 DSK has 225 MHz TMS320C6713 
processor and 8MB 100MHz SDRAM. L2 internal memory of 
C6713 is set to 240 KB, L2 cash is set to 16 KB. Heap size and 
stack size are set to 7MB and 64KB, respectively.  

The H.263 encoder adopted for experiments is UBC 
(University of Columbia) Version 2 (H.263+) [16] and we 
tested baseline mode only. Test raw video sequence is a 
standard video sequence, foreman.qcif. QCIF size is 176x144. 
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We use complier option -o2, which does software pipelining. 

B. Experiment Results 
For performance analysis, we encoded 3 raw frames with 1 

frame encoded in intramode and 2 frames encoded in intermode 
on C6713DSK board using four H.263 encoders for 
foreman.qcif. The four H.263 encoders are as follows. 1) UBC 
encoder: the original UBC H.263 encoder where SAD 
algorithm of Fig. 1 is used, 2) TI SAD encoder: UBC H.263 
encoder but with SAD algorithm replaced by TI library SAD 
assembly implementation, 3) [14] SAD encoder: UBC H.263 
encoder but with SAD algorithm replaced by SAD assembly 
implementation of [14], 4) Proposed encoder: UBC H.263 
encoder but with SAD algorithm replaced by the SAD assembly 
implementation proposed in this paper. 

Table I shows the comparisons of worst required cycles and 
code size among SAD implementations. 

 
TABLE I 

COMPARISONS OF WORST REQUIRED CYCLES AND CODE SIZE AMONG SAD 
ALGORITHMS 

SAD implementations Worst cycles Code size 

UBC SAD (-o2 option) 739 324 
TI Library  SAD 258 240 
[14] SAD 275 808 
Proposed SAD 319 252 

 

 
The code size means size of assembly codes of SAD 

algorithm. The code size of the proposed SAD implementation 
is far less than that of [14], and 12 bytes more than that of TI 
library implementation of SAD algorithm. 12 byte difference is 
very small compared to the whole H.263 code size. The worst 
cycles mean the worst CPU cycles required to execute SAD 
routine once. The worst cycles for TI library SAD routine is 
shorter than that of the proposed SAD, but this is the case about 
executing SAD once. Since best block matching needs to find 
minimum SAD macroblock after hundreds of SAD calculations, 
H.263 encoding using the proposed SAD implementation 
performs much better than that using TI library SAD, which is 
shown in Table II.  

 
TABLE II 

COMPARISONS OF CPU CYCLES FOR ENCODING 3 FRAMES 
SNR 

SAD Implementation 
Y Cr Cb 

cycles 

C version  
(with -o2 option) 31.25 38.78 38.82 150,925,893 

TI Library SAD 31.55 38.58 39.15 124,580,125 
[14] SAD 31.34 38.85 39.06 109,273,707 
Proposed SAD 30.90 38.25 38.58 76,484,977 

 
 
The experimental data in Table II are obtained when we 

encoded 3 raw frames from a video sequence, foreman.qcif with 
1 frame in intramode encoding and 2 frames in intermode 
encoding using UBC H.263 baseline encoder with various SAD 
implementations on TMS320C6713 DSK board. 

We can see the proposed SAD implementation works better 

than any other SAD implementation in Table II, and the H.263 
encoder using the proposed SAD implementation is 97% faster 
than the one using original C version of SAD compiled with 
level two optimization for encoding 3 frames of foreman.qcif 
with 1 frame in intramode and 2 frames in intermode. 

V. CONCLUSION 
In this paper, we investigated an optimal scheduling and 

implementation of SAD algorithm with conditional branch on a 
VLIW DSP processor. SAD algorithm is usually implemented 
as a nested loop with a conditional branch. Scheduling a nested 
loop with conditional branches optimally is not an easy job. We 
proposed a transformed approach. The proposed optimal 
scheduling in this paper first transforms the nested loop with 
conditional branch into a single loop with conditional branch 
with consideration of utilizing ILP capability of the VLIW 
processor fully and realization of earlier escape from the loop. 
Next, the proposed optimal scheduling applies a modulo 
scheduling technique developed for single loop. Based on this 
optimal scheduling strategy, optimal implementation of SAD 
algorithm on TMS320C67x, a VLIW DSP was presented. 
Through experiments on TMS320C6713 DSK, it was shown 
that H.263 encoder with the proposed SAD implementation 
performs better than other H.263 encoder with other SAD 
implementations, and that the code size of the optimal SAD 
implementation is small enough to be appropriate for embedded 
environments.  
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