

Abstract—SAD (Sum of Absolute Difference) algorithm is

heavily used in motion estimation which is computationally highly
demanding process in motion picture encoding. To enhance the
performance of motion picture encoding on a VLIW processor, an
efficient implementation of SAD algorithm on the VLIW processor is
essential. SAD algorithm is programmed as a nested loop with a
conditional branch. In VLIW processors, loop is usually optimized by
software pipelining, but researches on optimal scheduling of software
pipelining for nested loops, especially nested loops with conditional
branches are rare. In this paper, we propose an optimal scheduling and
implementation of SAD algorithm with conditional branch on a VLIW
DSP processor. The proposed optimal scheduling first transforms the
nested loop with conditional branch into a single loop with conditional
branch with consideration of full utilization of ILP capability of the
VLIW processor and realization of earlier escape from the loop. Next,
the proposed optimal scheduling applies a modulo scheduling
technique developed for single loop. Based on this optimal scheduling
strategy, optimal implementation of SAD algorithm on TMS320C67x,
a VLIW DSP is presented. Through experiments on TMS320C6713
DSK, it is shown that H.263 encoder with the proposed SAD
implementation performs better than other H.263 encoder with other
SAD implementations, and that the code size of the optimal SAD
implementation is small enough to be appropriate for embedded
environments.

Keywords—Optimal implementation, SAD algorithm, VLIW,
TMS320C6713.

I. INTRODUCTION
ECENTLY, multimedia applications which necessitate
mul timedia stream processing (motion picture

compression /display, etc.) in embedded environments such as
smart phone, digital camera, digital camcorder, embedded web
camera server, PDA, and etc. have been increasing [1,2].
Embedded processors need more computing power as demand
of multimedia stream processing ability is increasing.
Currently, adoption of VLIW (Very Long Instruction Word)
architecture becomes the trend of high-performance DSP
processor [1,3,4] since VLIW supports instruction level
parallelism by low-cost compiler compared to the dynamically
hardware-scheduled superscalar processors. TMS320C6x,
which is a high-performance DSP ASSP popularly adopted for
many multimedia applications, is also based on VLIW
architecture.

Porting multimedia applications developed on workstations
into a VLIW embedded processor simply may not achieve full
capability since VLIW architecture is not fully utilized.

Most of multimedia streaming applications need motion

Hui-Jae Yu, Sun-Tae Chung and Souhwan Jung are with School of

Electronic Engineering, Soongsil University, Seoul, Korea (e-mail:
cst@ssu.ac.kr).

picture encoding and decoding. Motion estimation is one of the
most important processes in motion picture coding since
achievement of high compression ratio depends on how well
the motion estimation is accomplished. However, motion
estimation is computationally highly demanding process, and
SAD (Sum of Absolute Difference) algorithm is the most
heavily computed part in motion estimation process. Thus, an
efficient implementation of SAD algorithm is very important.
SAD algorithm is usually implemented in a nested loop with
conditional branch. The conditional branch in SAD algorithm is
for exit from the nested loop when the computed SAD value
exceeds the minimum SAD value among previously computed
SAD values. This conditional branch saves the computational
time in finding the best matching macroblock. Loop on VLIW
processors is implemented optimally by utilizing software
pipelining technique. Optimal scheduling of software
pipelining of single loops has been investigated a lot in the past
[4]. However, researches on optimal scheduling of software
pipelining of nested loops, especially nested loop with branch
are rare [5, 6, 7].

In this paper, we propose an optimal scheduling and
implementation of SAD algorithm with a conditional branch on
a VLIW DSP processor. The proposed optimal scheduling first
transforms the nested loop with conditional branch into a single
loop with conditional branch with consideration of utilizing ILP
capability of the VLIW processor fully and realizing earlier
escape from the loop. Next, the proposed optimal scheduling
applies a modulo scheduling technique developed for single
loop.

Based on this optimal scheduling strategy, optimal
implementation of SAD algorithm on TMS320C67x, a VLIW
DSP is presented. Through experiments on TMS320C6713
DSK, it is shown that H.263 encoder with the proposed SAD
implementation performs better than other H.263 encoder with
other SAD implementations, and that the code size of the
optimal implementation of SAD algorithm is small enough to
be appropriate for embedded environments.

In the past, sizable research works on the implementation of
block matching have been done, but most of them have dealt
with efficient implementation of the algorithm itself
irrespective of processor architecture [8, 9]. Also, research
works on optimal implementation and performance of
H.263/MPEG 4 encoder have been reported [2,10,11,12,13],
but most of them deal with overall S/W design and performance
analysis on SIMD processors and VLIW processors, but rather
than optimization of specific algorithms on VLIW architecture
[14]. Texas Instrument DSP Image Library [15] provides an
assembly implementation of SAD algorithm. This
implementation deals with SAD without branch, thus the

Optimization of SAD Algorithm on VLIW DSP
Hui-Jae You, Sun-Tae Chung, and Souhwan Jung

R

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

13

performance of the motion picture encoding using TI SAD
algorithm is worse than the motion picture encoding using SAD
algorithm with conditional branch to exit from the nested loop.
For performance analysis of SAD implementations, we use
UBC H.263 encoder [16] where the SAD algorithm in motion
estimation module will be replaced by various SAD
implementations including the proposed one for each
experiment. We employ TMS320C6713 for a VLIW DSP.
Through experiments where 1 intramode and 2 intermode
encoding are performed using each SAD implementation for a
standard video sequence, foreman.qcif, it is shown that H.263
encoder using the proposed SAD implementation is much faster
than H.263 encoder adopting any other implementations of
SAD.

The rest of the paper is organized as follows. Section 2
introduces background, and Section 3 presents our proposed
optimal scheduling of SAD algorithm, and optimal
implementation of SAD algorithm on TMS320C6713, a VLIW
DSP. Experiment results are discussed in Section 4, and finally
the conclusion is presented in Section 5.

II. BACKGROUND

A. Motion Picture Codecs, Motion Estimation, and SAD
In this section, we briefly introduce motion estimation, block

matching and SAD algorithm. For more details on motion
picture codecs, H.261, H.263, H.264, and MPEG, please refer
to [17]. The fundamental difference between motion picture
encoding and still picture encoding is that motion picture
encoding enhances compression ratio by removing the temporal
visual information redundancy and encoding the only residual
visual information.

The redundant visual information is captured by motion
estimation which seeks the best matched macroblock in the
search region of the reference image frame to the current
macroblock in the current image frame. The best matched
macroblock in the reference frame to the current macroblock is
the macroblock in the search area in the reference frame which
has the minimum SAD value with the current macroblock.

Since several hundred repeated calculations of SAD
algorithm is necessary in order to find the best matched
macroblock in the search region of the reference frame for each
current macroblock and there are numerous macroblocks in a
frame (eg. 99 macroblocks for 1 QCIF size frame), it is
important to seek an efficient implementation of SAD
algorithm. Encoding utilizing motion estimation is called
intermode encoding, and the other case of encoding is called
intramode ending. Still image encoding like JPEG does
intramode encoding only.

B. VLIW (Very Long Instruction Word) Processors [3, 4]
ILP (Instruction Level Parallelism) means capability of

processing several independent instructions in parallel.
Superscalar processors and VLIW processors are representative
ILP processors. In VLIW processors, compiler checks the
dependency among instructions, schedules instructions, and

constructs instruction word packet (Very Long Instruction
Word) consisting of instructions which can be executed in
parallel. In running, instruction word packet passes through
pipeline stages such as instruction fetch and instruction
interpretation, and then instructions in the instruction word
packet are separately issued into several function blocks and are
executed in parallel.

Since determining the order of execution of instructions and
parallel execution of instructions is handled by the compiler, the
processor does not need the scheduling hardware that the
superscalar processors require. Thus, VLIW processors have
less complex hardware architecture and more suitable for
embedded processor than superscalar processors.

C. Software Scheduling, Loop Unrolling and Software
Pipelining

The purpose of software scheduling is to rearrange and group
instructions under constraints so that as many instructions as
possible are executable in parallel [4, 18, 19]. Scheduling
constraints are resource constraints (finite number of registers
and function units), data dependency among instructions,
function unit latency, and branch instruction, and recurrence
constraint. A loop is called to have recurrence constraint if an
operation in one iteration of the loop has direct or indirect
dependence upon the same operation from a previous iteration.
Loop unrolling and software pipelining are representative
scheduling techniques for optimal scheduling of loop in codes
[4, 18, 19]. Loop unrolling increases loop body by unwinding
many iterations of loop into a new iteration. Bigger loop body
will have higher chance of more efficient scheduling.
Moreover, loop unrolling reduces the branch instructions and
overhead instructions due to loop iterations. The major side
effects of loop unrolling are: a) the increased register usage in a
single iteration to store temporary variables, which may hurt
performance; and b) the code size expansion after the unrolling,
which is undesirable for embedded applications.

Software pipelining is a technique used to schedule
instructions from a loop so that multiple instructions of different
loop iterations can execute in parallel.

D. Software Pipelining Scheduling
Software pipelined loop consists of 3 code areas: prolog,

kernel, and epilog. The kernel of the software pipelined loop is
the repeating code area, the prolog is the code area above the
kernel (to enter the kernel), and the epilog is the area below the
kernel (to exit from the kernel). The constant interval between
the start of successive iterations in the kernel is termed the
initiation interval (usually denoted as II). As II is smaller, the
execution time of the loop becomes shorter since the ILP of the
software pipeline becomes higher. Therefore, the purpose of the
scheduling of software pipelining is to make II shorter as much
as possible under constraints and to achieve the maximum
performance. The minimum initiation interval is denoted as
MII, and seeking MII under constraints is well known to be
NP-complete [18]. Thus, heuristic approach is needed in
finding MII as described in the below.

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

14

1) Modulo Scheduling [4, 19]
Modulo scheduling is to schedule the instructions of the loop

in a manner that all iterations have identical schedules (single
II) except that each iteration is scheduled to start some fixed
number of cycles later than the previous iteration. Modulo
scheduling is the most popular one among software pipeline
scheduling techniques. Basically, the modulo scheduling is
proceeded as follows.

1. Initially, set II as II = max(ResMII, RecMII)
2. Search for a modulo schedule satisfying II by using

DDG (data dependence graph) and MRT (Modulo
Resource Reservation Table).

3. If one find a schedule satisfying 2, then stop.
If not, set II=II+1 and go back to step 2.

ResMII means the minimum value by resource constraints and
RecMII means the minimum value by recurrence constraints.
For practical determination of ResMII and RecMII, please refer
to [19]. DDG is a graph showing dependency among
instructions and MRT is a table which records and checks
resource utilization at a time slot {C mod II} and at a cycle C.

E. TMS320C6713
1) Architecture of TMS320C67x
The TMS320C67x is a family of 32-bit TMS320C6x DSP

with floating-point operation capability added. The
TMS320C67x supports execution of 8 instructions in parallel. It
contains two floating-point data paths. Each data path contains
two ALUs (S and L units), a multiplier (M unit), and
adder/subtractor for address generation (D unit), and 16
registers (A0 ~ A15 or B0 ~ B16). For more details about
TMS320C6713, please refer to [20].

2) Instruction Set of TMS320C6x [21]
Instruction set of TMS320C6x is RISC-like and supports

load-store, and memory reference is only allowed in load and
store instructions. The pipeline latency of an instruction is
equivalent to the number of additional cycles required after the
source operands are read for the result to be available for
reading. Multiplication of 16x16 has 1 delay slot, branch
instruction has 5 delay slots, load instruction has 4 delay slots,
but store and single cycle instructions (add, subtract, etc.) has 0
delay. The following shows an example of TMS320C6x
assembly instructions.

 LDBU .D1 *A4++, A7 ;
|| [A1] ADD .S2 B13, A8, B12 ;

As seen in the above example, TMS320C6x assembly

programming is complex since it needs to designate parallel
processing of instructions using ||, conditional execution of
instruction ([A1]), and function units to be used (.D1, .S2), and
register usage (source registers and destination register) of
instructions, and also needs to consider pipeline latency of
instructions. Texas Instruments provides linear assembly which
does not need to designate parallel execution, function units,

register usage, and pipeline latency. If a user writes linear
assembly, then the linear assembly optimizer provided by TI
translates the linear assembly into proper assembly instructions.

3) Resource Constraints of Instructions and Memory Bank
Conflicts in TMS320C6x

For resource constraints in TMS320C6x, please refer to [21].
In implementation, one should consider memory bank conflicts
in TMS320C6x [21], and most C6x processors use interleaved
memory banks, and access to the same bank in the same cycle is
penalized.

III. OPTIMIZATION OF SAD ALGORITHM ON TMS320C6X

A. Analysis of Software Pipeline Scheduling of SAD
Algorithm

C implementation of SAD algorithm used in UBC H.263
encoder [16] adopted in this paper is as follows.

int SAD_Macroblock (unsigned char *ii, unsigned char *act_block,
 int h_length, int Min_FRAME)
{ // ii ; memory pointer of search region

// act_block ; memory pointer of current macroblock
 // h_length ; width of search region
 // INT_MAX ; maximum of unsigned integer (2,147,483,647)

// Min_FRAME ; the minimum SAD value among the previously
// calculated SAD , initial value = INT_MAX

int i, j;
int sad = 0;
unsigned char *kk;
kk = act_block;
i = 16;
while (i--)
 {
 for (j=0; j<16; j++) // inner loop
 sad+= abs(*(ii+j)-*(kk+j)); // inner loop
 ii += h_length;
 kk += 16;
 if (sad > Min_FRAME) // conditional branch
 return INT_MAX;
}
return sad;

}

Fig. 1 C implementation of SAD algorithm

In order to calculate SAD about a pixel pair of a pixel in the
current macroblock in the current frame and a pixel in a
macroblock in the reference frame, we need two memory load
operations, one subtract operation, one absolute operation, and
one add operation. Thus, for SAD calculation of 1 macroblock
(16 x 16 size), we need 16 x 16 x 2 memory load operations, 16
x 16 x 1 subtract operations , 16 x 16 x 1 absolute operations,
and 16 x 16 x 1 add operations. In TMS320C6x, load operations
need 5 cycles to finish, and absolute/subtract/add operations
need 1 cycle to finish. Thus, if these operations are sequentially
processed, that is, one operation is processed after one
operation is finished; maximally 3,327 cycles are needed to
finish SAD calculation of a macroblock since 16 x 16 x 5 x 2 +
16 x 16 x 1 x 2 + 255 = 3,327. Thus, one may need ILP
capability (maximally 8 operations in parallel in one cycle) in
TMS320C6x provided by VLIW architecture.

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

15

SAD algorithm of Fig. 1 is implemented in a nested loop, and
several approaches toward scheduling software pipelining for
nest loop are considered as follows.

M1) One first applies software pipelining techniques to the
inner loop and applies again software pipelining techniques to
the outer loop whose body consists of software pipelined codes
of the inner loop.
M2) One first unfolds the inner loop fully and makes a single
loop whose body consists of unfolded codes of the inner loop
and applies the software pipelining scheduling technique
developed for single loop optimization
M3) One transforms the nested loop problem into a
multi-dimensional software pipelining problem, and applies
scheduling technique developed for multi-dimensional software
pipelining problem [7]

TI compiler takes the first approach, but the approach is not

efficient since filling and emptying the prolog and epilog of the
software pipelined code of the inner loop is repeated whenever
outer loop repeats. That is, even if the inner loop is optimally
software pipeline scheduled, that does not necessarily mean that
the whole nested loop is optimally software pipelined scheduled.
The second approach increases code size a lot since fully
unfolded inner loop makes a much bigger loop body of outer
loop. [14] takes the second approach. But, the increased code
size is disadvantageous for embedded implementation since
embedded processor has limited memory. Also, big loop body
makes optimal scheduling more difficult since one has to
consider register renaming and resource constraints more. As
for third approach, a general technique has not been developed
which can be easily applied for a nested loop with conditional
branch.

B. Optimal Scheduling of SAD Algorithm on VLIW
Processor and Implementation on TMS320C67x

1) Optimal Scheduling of SAD Algorithm on VLIW
Processor

In this paper, we propose an improved scheduling for a nest
loop with conditional branch of SAD algorithm as follows.

First, we transform the nested loop with conditional branch
into a single loop with conditional branch with consideration of
utilizing ILP capability of the VLIW processor fully and
realization of earlier escape from the loop.

Next, we apply a modulo scheduling technique developed for
single loop.

The loop body of the transformed loop will be smaller than
that of a single loop made from fully unfolding as in the
approach M2). Also, the transformed loop body will be large
enough so that the loop body can have enough independent
operations to utilize ILP of the VLIW processor. TMS320C6x
has ILP capability of executing maximally 8 operations in
parallel. Hereafter, we present optimal implementation of SAD
algorithm based on this optimal scheduling strategy on
TMS320C67x, a VLIW DSP family.

2) Optimal Implementation of SAD Algorithm on
TMS320C67x

Considering the optimal scheduling strategy proposed in the
above, we transform the nested loop with conditional branch of
the SAD algorithm presented in Fig. 1 into a single loop with
conditional branch as in Fig. 2.

int SAD_Macroblock (unsigned char *ii, unsigned char *act_block, int

 h_length, int Min_FRAME) {

// ii ; memory pointer of search region
// act_block ; memory pointer of current macroblock
// h_length ; width of search region
// INT_MAX ; maximum of unsigned integer (2,147,483,647)
// Min_FRAME ; the minimum SAD value among the previously

 // calculated SAD , initial value = INT_MAX

 int i, l=0;

 int sad = 0, sad_e=0, sad_o=0;

 unsigned char *kk;

 kk = act_block;

 for (i=0 ; i < 64 ; i+=1) {

 sad_e = abs (*(ii+l) - *kk) + abs (*(ii+2+l) - *(kk+2));

 sad_o = abs (*(ii+1+l) - *(kk+l)) + abs (*(ii+3+l) - *(kk+3));

 sad=sad_e+sad_o;

 if (sad >=Min_FRAME)

 return sad ;

 ii+=4;

 kk+=4;

 if ((i+1)%4 == 0) //(1)

 l += h_length-16; //(1)

 }

 return sad;

}

Fig. 2 Transformed C implementation of SAD algorithm

The basic idea behind C codes in Fig.2 is the following.
With consideration of the ILP capability of TMS320C67x

which can execute maximally 8 operations in parallel and of
achievement of earlier escape from loop, the C codes in Fig. 2 is
programmed so as to execute SAD operations in parallel as
much as possible for two even pixel pairs and two odd pixel
pairs, and so as to escape from loop as earlier as possible by
checking escape condition right after SAD calculation for every
4 pixel pairs is finished.

Linear assembly codes corresponding to the C codes in bold
face in the Fig. 2 can be roughly written as follows.

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

16

ZERO j, sad_e, sad_o, sad
MVK 0x40, i
MVK 0x2000, j_init
SUB h_length, 16, A_p
loop:
 LDBU *A_srcImg[1], odd_sp1
 LDBU *B_srcImg[1], odd_sp3
 LDBU *A_refImg[1], odd_rp1
 LDBU *B_refImg[1], odd_rp3

 LDBU *A_srcImg++[4], even_sp0
 LDBU *B_srcImg++[4], even_sp2
 LDBU *A_refImg++[4], even_rp0
 LDBU *B_refImg++[4], even_rp2

 SUB even_sp0, even_rp0, even_d0
 SUB even_sp2, even_rp2, even_d2
 SUB odd_sp1, odd_rp1, odd_d1
 SUB odd_sp3, odd_rp3, odd_d3

 ABS even_d0, even_a0
 ABS even_d2, even_a2
 ABS odd_d1, odd_a1
 ABS odd_d3, odd_a3

 ADD sad_e, even_a0, sad_e
 ADD sad_o, odd_a1, sad_o
 ADD sad_e, even_a2, sad_e
 ADD sad_o, odd_a3, sad_o

 ADD sad_e, sad_o, sad

 CMPLTU sad, Min_FRAME, temp
[temp] B Get_Out //(B.1)

SUB i, 1, i

[temp] MPY i, 0, i // (A.1)

 MPY j, 2, j // (A.2)
[!j] ADD A_refImg, A_p, A_refImg
 ADD A_refImg, 2, B_refImg

[!j] MPY j_init, 1, j // (A.3)

[i] B loop //(B.2)

Get_Out:
.return sad

Fig. 3 Linear assembly codes for boldface C codes in Fig. 2

The idea behind linear assembly codes of Fig.3 is that the
SAD algorithm is transformed into a single loop so as to utilize
the 8 function unit of TMS320C6x fully, and so as to achieve
the minimum resource constraint by using remaining M
function units (MPYs in (A.1), (A.2), and (A.3) in Fig. 3) for
the codes (1) in Fig. 2.

Let us schedule linear assembly codes in Fig. 3 according to
the modulo scheduling technique described in Section II.D. .

If we consider that the symbolic registers use different
registers, we need 18 registers which is less than 32 registers of
TMS320C6x, thus there is not register constraints. Now, let’s
calculate the MII. Since there are not precedence constraints,
we have to consider resource constraints. In Fig. 3, required

function blocks are as follows. 8 D function blocks for
executing 8 LDBU instructions, 4 L function blocks for 4 ABS,
12 L or S or D function blocks for 7 ADD and 5 SUB, 3 M
function blocks for 3 MPY, 1 L function block for CMPGT, 2 S
function blocks for 2 B. Thus, the minimum cycles required to
schedule instructions using each function block in the software

pipeline kernel for Fig. 3 are as follows. 4
2
8

=⎥⎥
⎤

⎢⎢
⎡ for D

function blocks, and 5
4

19
=⎥⎥

⎤
⎢⎢
⎡

 for L or S function block, and

2
2
3

=⎥⎥
⎤

⎢⎢
⎡

 for M function block. Here, ⎡ ⎤x is defined to be a

least integer greater than or equal to x. Therefore, ResII=5, and
II=5. Now, let’s search a modulo schedule for II=5 using
dependency graph and MRT under constraints: dependency
among instructions, delay slots of instructions, and memory
bank conflict.

However, in order to find a modulo schedule with II=5, we
first have to deal with delay slot of branch instruction. Since the
SAD routine in Fig. 3 has two branches: one for repeating loop
(B.2), and one for escaping from loop (B.1), and delay latency
is 5 for branch instruction, we may not escape from the loop if
we are not careful. The reason is that when the branch
instruction for escape is executed, the branch instruction for
repeating loop is already loaded into the pipeline because II=5
and one cannot separate two branch instructions into more than
4 cycles. Thus the loaded branch instruction will be eventually
executed and execution flow returns back to loop. We solve this
problem by utilizing conditional branch. The branch instruction
for repeating loop is not executed when the loop count becomes
0, thus, we set the loop count as 0 (A.1) when the branch
instruction for escape is loaded (B.1). After solving the problem
of delay slot of 2 branches, we can find a software pipelining
schedule with II=5 for SAD routine in Fig. 3 under constraints.
Final optimally scheduled assembly codes are omitted due to
the limited paper space.

IV. EXPERIMENTS

A. Experiment Environments
For experiments in this paper, we use TMS320C6713 DSK

board from Texas Instruments. C6713 DSK board is provided
with ‘code composer studio’, integrated environments for
developing a TI DSP system. Code composer studio supports
assembler, C compiler, linker, profiler, debugger, and
disassembler. C6713 DSK has 225 MHz TMS320C6713
processor and 8MB 100MHz SDRAM. L2 internal memory of
C6713 is set to 240 KB, L2 cash is set to 16 KB. Heap size and
stack size are set to 7MB and 64KB, respectively.

The H.263 encoder adopted for experiments is UBC
(University of Columbia) Version 2 (H.263+) [16] and we
tested baseline mode only. Test raw video sequence is a
standard video sequence, foreman.qcif. QCIF size is 176x144.

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

17

We use complier option -o2, which does software pipelining.

B. Experiment Results
For performance analysis, we encoded 3 raw frames with 1

frame encoded in intramode and 2 frames encoded in intermode
on C6713DSK board using four H.263 encoders for
foreman.qcif. The four H.263 encoders are as follows. 1) UBC
encoder: the original UBC H.263 encoder where SAD
algorithm of Fig. 1 is used, 2) TI SAD encoder: UBC H.263
encoder but with SAD algorithm replaced by TI library SAD
assembly implementation, 3) [14] SAD encoder: UBC H.263
encoder but with SAD algorithm replaced by SAD assembly
implementation of [14], 4) Proposed encoder: UBC H.263
encoder but with SAD algorithm replaced by the SAD assembly
implementation proposed in this paper.

Table I shows the comparisons of worst required cycles and
code size among SAD implementations.

TABLE I

COMPARISONS OF WORST REQUIRED CYCLES AND CODE SIZE AMONG SAD
ALGORITHMS

SAD implementations Worst cycles Code size

UBC SAD (-o2 option) 739 324
TI Library SAD 258 240
[14] SAD 275 808
Proposed SAD 319 252

The code size means size of assembly codes of SAD

algorithm. The code size of the proposed SAD implementation
is far less than that of [14], and 12 bytes more than that of TI
library implementation of SAD algorithm. 12 byte difference is
very small compared to the whole H.263 code size. The worst
cycles mean the worst CPU cycles required to execute SAD
routine once. The worst cycles for TI library SAD routine is
shorter than that of the proposed SAD, but this is the case about
executing SAD once. Since best block matching needs to find
minimum SAD macroblock after hundreds of SAD calculations,
H.263 encoding using the proposed SAD implementation
performs much better than that using TI library SAD, which is
shown in Table II.

TABLE II

COMPARISONS OF CPU CYCLES FOR ENCODING 3 FRAMES
SNR

SAD Implementation
Y Cr Cb

cycles

C version
(with -o2 option) 31.25 38.78 38.82 150,925,893

TI Library SAD 31.55 38.58 39.15 124,580,125
[14] SAD 31.34 38.85 39.06 109,273,707
Proposed SAD 30.90 38.25 38.58 76,484,977

The experimental data in Table II are obtained when we

encoded 3 raw frames from a video sequence, foreman.qcif with
1 frame in intramode encoding and 2 frames in intermode
encoding using UBC H.263 baseline encoder with various SAD
implementations on TMS320C6713 DSK board.

We can see the proposed SAD implementation works better

than any other SAD implementation in Table II, and the H.263
encoder using the proposed SAD implementation is 97% faster
than the one using original C version of SAD compiled with
level two optimization for encoding 3 frames of foreman.qcif
with 1 frame in intramode and 2 frames in intermode.

V. CONCLUSION
In this paper, we investigated an optimal scheduling and

implementation of SAD algorithm with conditional branch on a
VLIW DSP processor. SAD algorithm is usually implemented
as a nested loop with a conditional branch. Scheduling a nested
loop with conditional branches optimally is not an easy job. We
proposed a transformed approach. The proposed optimal
scheduling in this paper first transforms the nested loop with
conditional branch into a single loop with conditional branch
with consideration of utilizing ILP capability of the VLIW
processor fully and realization of earlier escape from the loop.
Next, the proposed optimal scheduling applies a modulo
scheduling technique developed for single loop. Based on this
optimal scheduling strategy, optimal implementation of SAD
algorithm on TMS320C67x, a VLIW DSP was presented.
Through experiments on TMS320C6713 DSK, it was shown
that H.263 encoder with the proposed SAD implementation
performs better than other H.263 encoder with other SAD
implementations, and that the code size of the optimal SAD
implementation is small enough to be appropriate for embedded
environments.

ACKNOWLEDGMENT
This work was supported by the Soongsil University

Research Fund and BK21.

REFERENCES
[1] P. G. Paulin, et al., “Embedded Software in Real-Time Signal Processing

Systems: Application and Architecture Trends,” Proc. of IEEE, Vol. 85,
No.3, pp. 419-435, Mar. 1997.

[2] M. Budagavi et. al., “Wireless MPEG-4 Video Communication on DSP
chips,” IEEE Signal Processing Magazine, pp. 36-53, Jan. 2000.

[3] J. Hennessy and D. Patterson, Computer Architecture A Quantitative
Approach, 3rd ed., MK Pub. 2003.

[4] J. A. Fisher, P. Farabosch, and C. Young, Embedded Computing A VLIW
Approach to Architecture, Compilers, and Tools, Morgan Kaufmann,
2004.

[5] K. Muthukumar and G. Doshi, “Software pipelining of nested loops,” In
R. Wilhelm, editor, CC 2001, LNCS 2027, pages 165-181.
Springer-Verlag, Berlin Heidelberg, 2001.

[6] R. Scales, Nested loop optimization on the TMS320C6x. Application
Report SPRA519, Texas Instruments, Feb. 1999.

[7] Q. Zhuge, Z. Shao, and E. H.-M. Sha, “Optimization of Nest-Loop
Software Pipelining,” Submitted paper, http://www.utdallas.edu/~edsha/

[8] G. Gupta, and C. Chakrabarti, “Architectures for hierarchical and other
block matching algorithms,” Circuits and Systems for Video Technology,
IEEE Transactions on Volume 5, Issue 6, pp. 477-489, Dec. 1995.

[9] W. Hwang, Y. Lu, Y. Zeng, “Fast block-matching algorithm for video
coding,” Electronics Letters Volume 33, Issue 10, pp. 833 - 835, May
1997

[10] D. Talla, L.K. John, V. Lapinskii, and B.L. Evans, “Evaluating signal
processing and multimedia applications on SIMD, VLIW and Superscalar
architectures,” Proceedings of 2000 International Conference on
Computer Design, pp. 163-172, Sept. 2000.

[11] S. M. Akramullah, I. Ahmad, I. and M.L. Liou, “Optimization of H.263
video encoding using a single processor computer: performance tradeoffs

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

18

and benchmarking,” Circuits and Systems for Video Technology, IEEE
Transactions on Volume 11, Issue 8, pp. 901-915, Aug. 2001.

[12] H. Miyazawa, H.263 Encoder: TMS320C6000 Implementation,
Application Report SPRA721, Texas Instruments, December, 2000

[13] O. Lehtoranta, T. Hamalainen, J. Saarinen, “Real-time H.263 encoding of
QCIF-images on TMS320C6201 fixed point DSP,” Circuits and Systems,
Proceedings of IEEE International Symposium on Circuits and Systems,
Volume 1, 28-31 pp. 583 - 586, 2000.

[14] S. Bangerjee, et.al., “VLIW DSP vs. Superscalar Implementation of a
Baseline H.263 Video Encoder,” 34th IEEE Alsilomar Conf. on Signals,
Systems and Computers, vol. 2, pp. 1665-1669, 2000.

[15] TMS320C62x Image Library, http://focus.ti.com/docs/toolsw/ folders/
print/sprc093.html

[16] B. Erol, F. Kossentini, and H. Alnuweiri, “Implementation of a fast
H.263+ encoder/decoder,” Proc. IEEE Asilomar Conf. Alsilomar Conf. on
Signals, Systems and Computers, vol.1, pp.462-466, Nov. 1998.

[17] Iain E G Richardson, Video CODEC Design Developing image and video
compression systems, John Wiley & Sons, 2002.

[18] M. S. Lam, “Software pipelining: An effective scheduling technique for
VLIW machines,” in Proc. ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, pp. 318-328, Jun.
1988.

[19] B. R. Rau, “Iterative Modulo Scheduling,” International Journal of
Parallel Processing, Vol. 24, No. 1, Feb. 1996.

[20] TMS320C6713 Datasheet, No. SPRU186D, Texas Instruments, May,
2003.

[21] TMS320C6000 CPU and Instruction Set Reference Guide, No.
SPRU189F, Texas Instruments, Oct., 2000.

International Journal of Electronics, Circuits and Systems Volume 2 Number 1

19

