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1         Introduction 

 Road pricing is one of the most efficient methods to avoid congestion problems on road networks 
(May, A.D. and Milne, D.S. (2000), Verhoef, E.T. (2002b)). With the use of appropriate tolls the road 
authority can influence travelers to behave so as to improve the performance of a given traffic 
system. This led to the introduction of the so-called optimal toll design problem (Joksimovič, D., 
Bliemer, M.C.J. and Bovy, P.H.L. (2004), Zhang, L. and Levinson, D. (2005), Larson, T. and 
Patriksson, M. (1997)). 

Some researchers have attempted to solve the optimal toll design problem by means of a game-
theoretic approach, in which the game is of a Stackelberg type (Chan, K.S. and Lam, W.H.K. (2005), 
Joksimovič, D., Bliemer, M.C.J. and Bovy, P.H.L. (2004), Verhoef, E.T. (2002a)). 

We introduced (Staňková, K., Olsder, G.J. and Bliemer, M.C.J. (2006)) the static optimal toll design 
problem in which the link tolls are set in a different manner, as functions of link or route traffic flows 
in the network (We called the underlying game theoretic concept inverse Stackelberg game). We 
considered travelers driven by the Wardrop equilibrium and solved the problem analytically. With 
certain assumptions on network topology this approach led to better outcomes than the 
“conventional” toll. In Staňková, K., Bliemer, M.C.J. and Olsder, G.J. (2006) we extended the 
presented outcomes to the dynamic networks. 

The approach proposed in this paper is inspired by San Diego's Interstate 15 congestion pricing 
project (Supernak, J., Golob, T., Kaschade, C., Kazimi, C., Schreffler, E. and Steffey, D. (2002)), in 
which the two-link highway network was studied. One of the links was tolled according to network 
occupancy and toll was established in a heuristic manner. We consider case studies with a three-link 
network, the problem being dynamic. The aim of the road authority is to minimize the total travel 
time of the system or to maximize the total toll revenue of the system by tolling a proper subset of 
the links, whereas each traveler decides which link to use so as to minimize his or her travel costs. As 
a reference case a situation with toll being constant or time-varying is considered. The outcome of 
this game is compared with outcomes of games in which the road authority uses alternative toll 
policies. As we will see, the traffic-flow dependent toll brings a better outcome for the road 
authority. 

This paper is organized as follows: In Section 2 the dynamic optimal toll design problem is defined. 
In Section 3 we analytically solve case studies on a 3-link network. In the considered toll spaces the 
best possible tolls for the road authority are found and the results of these games are compared with 
the results of a traditional Stackelberg game with constant or time-varying toll. The results obtained 
and possibilities for future research are discussed in Section 4. 

2         Dynamic Optimal Toll Design Problem 

 In this section the dynamic optimal toll design problem will be formulated as a leader-followers 
game. The dynamic optimal toll design problem was studied as a Stackelberg game in, e.g., 
Joksimovič, D., Bliemer, M.C.J. and Bovy, P.H.L. (2004), while its static version was studied in, e.g., 
Verhoef, E.T. (2002b). The static variant of the optimal toll design problem was introduced in 
Staňková, K., Olsder, G.J. and Bliemer, M.C.J. (2006). 
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2.1        Preliminaries 

 Let  ( ) be a time interval index set, i.e., |}|,{1,2,= KK K NK ∈|| K∈k  identifies the k -th time 
interval, let  [h] be the time interval size. The time intervals are supposed to be equal and set to one 
hour. Let  be a strongly connected road network with a finite nonempty node set N  and a 
finite nonempty set  (

Δ
( )ANG ,=

A }= |A,,{ |1 ll K NA ∈|| ) of directed links (arcs). Let  be a set of tollable 

links. Let  be a set of origin-destination pairs. We will denote the nonempty set of 
simple routes from origin o  to destination  by  and the set of all simple routes in the 

network by  Let  [veh/h] be the average departure rate of travelers departing during -
th time interval from  to  For the sake of simplicity,  is assumed to be inelastic and 
given. The link flow rate of travelers entering link 

A⊆T
NNOD ×⊆

.R (oD
d ,),( doR
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)(),,( kdoD
∈jl  during the k -th time interval will be 

denoted by  [veh/h], the route flow of travelers departing during k -th time interval along route 

 will be denoted by  [veh/h]. In this paper the link travel time on link  for travelers 

entering link  during k -th time interval will be denoted by  and will be defined as  
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 Here 
jlβ  and 

jlγ  are positive constants and  [veh] is the number of travelers on link  (the link 

traffic volume) at the beginning of k -th time interval, defined as the cumulative inflow minus the 
cumulative outflow, i.e.,  
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 where  This means that the number of drivers on link  in the k -th time 

interval is computed as the number of all drivers which entered the network till the -th time 
interval minus the number of drivers who left this link during before time  [h]. The drivers 
entering the link in time interval 

}.|{= )()( kww w

jl
k

j ≤+τW jl

k
k

)1,[ kk −  are assigned to the traffic volume for the -th time 
interval. 

k

Generally, the link travel time can be any function increasing with the link volume on the same link. 
Initially, the network is considered to be empty. 

The feasibility and nonnegativity conditions on the route flow rates have to be satisfied:  
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 Note that  depends on the link travel times. Link flow rate  [veh/h] is 

defined through the route flows as follows:  
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 With each  we associate the link travel cost  [€] for travelers entering  during 

the k -th time interval. This cost is defined as  
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where  [h] is the link travel time on  )(k

jlτ ,jl α  [/h] is the travelers' value of time (VOT), and  [€] 

is the link toll paid by travelers entering link  during k -th time interval. The route travel times and 
the route travel costs are supposed to be additive, i.e.,  
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 The travelers are driven by the dynamic route choice equilibrium assignment model (Bliemer, M.C.J. 
(2001)), which is based on the assumptions that all road users have complete and accurate 
information about the traffic conditions, and that they choose the shortest routes available. In an 
equilibrium state, for each origin-destination pair and for each departure time interval, the actual 
route costs on all used routes are equal.  

Remark 2.1 So far we did not mention, for the sake of simplicity, independent variables in the 
description of traffic flows, times, volumes or costs. To stress the dependent variables, in the 
following we will add these variables to the descriptions of these functions. For example, we will use 
the notation  if the link flow rate function is in the k -th time interval dependent on ( )ξ)(k

jlq .ξ   

2.2        The Dynamic Optimal Toll Design Problem  

from a Game-theoretic Viewpoint 
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 Let  denote the toll matrix (5), where the toll on each link and for each time interval is defined 

as a function of link flows in the network. Here  belongs to the set 

)(⋅Θ
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jlθ ,Ω  which is defined as a 

set of all twice continuously differentiable mappings from ( ))(
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Two problems for the leader will be dealt with:  

    • Minimize the total travel time of the system by tolling tollable links, which can be symbolically 
written as  
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    • Maximize the total toll revenue of the system by tolling tollable links, which can be symbolically 
written as  
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q θ
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In both problems the drivers minimize their dynamic travel costs according to the dynamic route 
choice model and the traffic dynamics is defined in Section 2.1. 

Followers  are the drivers on the road network. The decision variables of the drivers are 

their route choices, i.e.,  if  travels from o  to  starting during k -th time interval. The 

decisions made by all the travelers determine the link volumes and flow rates in the network. In 
equilibrium state, the dynamic route choice equilibrium (Bliemer, M.C.J. (2001)) takes place. 

mFF K,1
),()( dok

i
u RF ∈ iF d

In this paper we will attempt to answer the following question: ``How will the outcome of the game 
change with traffic-flow dependent tolls?'' As a reference case we take a situation with traffic-flow 
invariant, but possibly time-varying tolls. In Staňková, K., Bliemer, M.C.J. and Olsder, G.J. (2006) we 
showed that for a two-link static network the outcome can be remarkably improved by such a toll 
choice. In the following section we will answer this question for the dynamic case with a three-link 
network. 

Remark 2.2 It can be shown that the problems P1 and P2 are NP-hard (Staňková, K. (2009)).  

3         Case Studies 

 In this section problems P1 and P2 introduced in Section 2.2, played on the network depicted in 
Figure 1, will be dealt with.   

1 2

l1

l2

l3 - untolled  

Figure  1. One origin-destination pair network with 3 links. 
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Here  Other initial parameters are given as follows:  [veh/h],  

[veh/h],  [veh/h],  [veh/h],  [veh/h],  [veh/h], 

 [veh/h], 

,7}.{1,= KK
3000=(3)d

2000=

2000=(1)d 2000=(2)d
20003000=(4)d 2500=(5)d =(6)d

(7)d 8=α  [/h], ,
5
1=1δ  ,

4
1=2δ  ,

3
1=3δ  ,

3000
1=1β  ,

2000
1=2β  

2500
1=3β . 

The outcomes of the games will be found analytically. For each of the two problems, a few games, 
differing in chosen toll strategies, will be solved and compared.  

3.1        Total travel time minimization 

 Let us consider problem P1 with objective to minimize the total travel time of the network. In the 
following four games we will consider different toll variants. We will compare a traffic-flow 
invariant and a traffic-flow dependent tolls. We will restrict ourselves to toll functions having the 
same number of unknown parameters as the corresponding standard toll cases. The aim is to find a 
toll strategy which does not increase complexity of the problem4 and which will still provide a better 
outcome. 

3.1.1      Game 1 

 Let only link  be tolled. Two problems will be compared:   1l

    • The problem of total travel time minimization with uniform toll, i.e.,   .= 0

1

d
)(

1 +∈Rl

ef
k

l θθ

    • The problem of total travel time minimization with toll defined as a 1ξ -multiple of an actual link 

traffic flow on link , i.e.,  .   1l ( ) ,= )(

11

d
)(

1

)(

1

k
l

ef
k

l
k

l qq ξθ 0
1 +∈Rξ

The optimal toll for the first problem is 0.39
135
52

≈  [€] and yields a total travel time of 9590.79  [h]. 

A slightly better outcome,  [h], can be reached in the second game with an optimal value of 9583.12

1ξ  equal to 3100.36 −⋅
10455525

3809
≈ . 

3.1.2      Game 2 

Let both links  and  be tolled. Two problems will be compared:   1l 2l

    • A problem of total travel time minimization, where toll is uniform, i.e.,  

  

,= 0
d

)(
+∈R

jl

ef
k

jl θθ

{1,2}.∈j

    • A problem of total travel time minimization with toll on link  (jl {1,2}∈j ) defined as a jξ -

multiple of actual link traffic flow on link , i.e., jl ( )= )(
1

d
)()( k

jl

ef
k

jl
k

jl qq ⋅ξθ , ξ    ,0
+∈R ∈jj {1,2}.

                                                        
4 This may be important for possible real-time applications. 
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For the first problem the optimal tolls on links  and  are 1l 2l 15
8

 [€] and 
3
1

 [€], respectively, and yield 

a total travel time of  [h] (the same outcome as in the previous case). The optimal values of 9590.79
1ξ  and 2ξ  for the second problem are  and  respectively, and yield the outcome 

 [h]. 

3−100.50 ⋅ ,10 3−⋅0.51
9578.36

3.1.3      Game 3 

Let only link  be tolled. Two problems to be compared are:   1l

    • Find  minimizing the total travel time of the system, where  )(
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k
lθ

  
⎪⎩

⎪
⎨
⎧

∈

∈

{3,4,5}.,~
{1,2,6,7},,

=
1

1
d

)(

1 k
k

l

lef
k

l θ

θ
θ

    • Find ( ))(

1

)(

1

k
l

k
l qθ  minimizing the total travel time of the system, where  

  ( )
⎪⎩

⎪
⎨
⎧

∈

∈

{3,4,5}.,~
{1,2,6,7},,

= )(

11

)(

11d
)(

1

)(

1 kq
kq

q k
l

k
lef

k
l

k
l ξ

ξ
θ

The optimal values of 
1l

θ  and 
1

~
lθ  in the first game are 0.39

135
52

≈  [€] and 0.39
135
52

≈  [€], 

respectively, and yield the total travel time  [h]. The optimal values of 9590.79 1ξ  and  are 1
~ξ

3100.43
29925

13 −⋅≈  and ,100.44 ⋅
225
1 2−≈  respectively, and yield a total travel time of 9582.68  [h]. 

3.1.4      Game 4 

Let links  and  be tolled. Two problems to be solved are:   1l 2l
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The optimal values of ,
1l

θ  ,
2l

θ   and  for the first problem are ,~
1l

θ
2

~
lθ 15

8
 [€], 

15
8

 [€], 
3
1

 [€], and 
3
1

 

[€], respectively, and yield a total travel time of  [h]. The optimal values of 9649.51 ,1ξ  ,2ξ  ,~
1ξ  and 

 for the second problem are  1.29   and  respectively, and 
yield a total travel time of 9577.38  [h]. 

2
~ξ ,10 2−0.77 ⋅ ,10 2−⋅ 0.78 ,10 2−⋅ ,101.26 2−⋅

3.1.5  General outcome 

Minimization of the total travel time function with respect to the traffic flows yields the link traffic 
flows and the link travel times as depicted in Table 1.  If these traffic flows and travel times are the 

travelers' response to the tolls, minimal total travel time 9577.29
108

1034347
≈  [h] will be obtained. This 

means that the second strategy from Game  yields a total travel time close to the optimal outcome. 
To reach the (first-best) optimal outcome 9577.29 [h] more parameters in toll functions should be 

included. In Table 2 you can see the optimal linear toll strategy ( ) and the 

optimal standard Stackelberg strategy, when minimizing the total travel time of the system. Since for 
linear toll strategy parameters  are free (and therefore the solution of the game with linear tolls is 

nonunique), it can be seen that 7  parameters in toll function are needed to obtain the optimal 
outcome. Obviously, with setting  to 0  the optimal standard Stackelberg strategy will be 
reached. Therefore, with enough toll parameters the outcomes of the two strategies would be the 
same. However, in practical applications we cannot change toll on each link and for each time 
period. 

4

)()()(
d

)( = k
j

k

jl
k

j

ef
k

jl bqa +θ

)(k
ja

)(k
ja

Table 1. The optimal link traffic flows [veh/h] and link travel times [h]-total travel time 
minimization 

    k    )(

1

k
lq   )(

2

k
lq )(

3

k
lq  

 1  
 

3
2660

   
9

4870
   

9
5150

 

2   
 

3
2660

   
9

4870
  

9
5150

 

3    
3

3860    
9

7270   
9

8150  

4   
 

3
3860

  
9

7270
  

9
8150

 

5  
 

3
3260

  
9

6070
  

9
6650

 

6  
 

3
2660

  
9

4870
  

9
5150

 

7  
 

3
2660

  
9

4870
  

9
5150
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Continued Table 1.    

   k )(

1

k
lτ  )(

2

k
lτ     )(

3

k
lτ

 1  
 
450
223

   
1800
937

  
450
253

 

2   
 
450
223

 
1800
937

 
450
253

 

3  

450
283

 
1800
1177

 
450
313

 

4  

450
283

 
1800
1177

 
450
313

 

5  

450
253

 
1800
1057

 
450
283

 

6  

450
223

 
1800
937

 
450
253

 

7  

450
223

 
1800
937

 
450
253

 

Table  2. The optimal link toll function coefficients and optimal tolls (standard Stackelberg game) 
[€]: Total travel time minimization  

    k    )(
1

kb   )(
2

kb
 1  (1)

13
2660

15
8 a−   (1)

29
4870

3
1 a−   

2   (2)
13
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15
8 a−   (2)
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3
1 a−  

3   (3)
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3860
15
8 a−   (3)
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7270

3
1 a−  

4   (4)
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15
8 a−  (4)

29
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3
1 a−  

5  (5)
13

3260
15
8 a−  (5)

29
6070

3
1 a−  

6  (6)
13

2660
15
8 a−  (6)

29
4870

3
1 a−  

7  (7)
13

2660
15
8 a−  (7)

29
4870

3
1 a−  
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Continued Table 2.  
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 1  
 
15
8

   
3
1

  

2   
 
15
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3
1

 

3  

15
8

 
3
1

 

4  

15
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3
1

  

5  

15
8

 
3
1

 

6  

15
8

 
3
1

 

7  

15
8

 
3
1

 

   

3.2        Total toll revenue maximization 

Let us deal with problem P2 to maximize the total toll revenue of the network depicted in Figure 1. 
The total toll revenue function is the sum of all tolls that the drivers have to pay when traveling in 
the network during the observed time interval. To obtain the first-best tolls, one has to know the 
derivative of the objective function with respect to the traffic flows. But in this case, the objective 
function changes according to our choice of the toll function. Therefore, the first-best tolls are not 
explicitly known in advance. 

Please note that leaving link  untolled prevents the situation in which the tolls on links  and  
would be set infinitely high in order to obtain higher profit. In such a case all the drivers would use 
link  as it follows from the dynamic route choice equilibrium assignment model (Bliemer, M.C.J. 
(2001)). 

3l 1l 2l

,3l

3.2.1      Game 1 

We will first assume that only link  is tolled. Two problems will be compared:   1l

    • The problem of total toll revenue maximization, where the toll is uniform, i.e.,   .= 0
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d
)(

1 +∈Rl
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l θθ

    • The problem of total toll revenue maximization with toll defined as a 1ξ -multiple of actual link 

traffic flow on link , i.e.,  .   1l ( ) ,= )(
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 The optimal toll for the first problem is 2.48
945
2344

≈ [€] and yields a total toll revenue of 9690.19  

[€]. The solution of the second problem is 
225
1=jξ  and yields a total toll revenue of 9931.46  [€]. 

3.2.2      Game 2 

Let both links  and  be tolled. We will compare two problems:   1l 2l

    • The problem of total toll revenue maximization, where the toll is uniform, i.e., 

  {1,2}.,= 0
d

)( ∈∈ + j
jl

ef
k

jl Rθθ

    • The problem of total toll revenue maximization, with toll defined as a jξ -multiple of actual link 

traffic flow on link , i.e.,   jl ( ) {1,2}.,,= 0)(
1

d
)(

1

)( ∈∈⋅ + jqq j
k

jl

ef
k

l
k

jl Rξξθ

 The optimal tolls for the first problem are 4.30
105
452

≈  [€] and 4.10
105
431

≈  [€] for links  and , 

respectively, yielding the total toll revenue 26071.23  [€]. For the second problem the optimal values 
of 

1l 2l

1ξ  and 2ξ  are  and 1.27  respectively. The resulting total toll revenue is 
 [€].  

2100.77 −⋅ ,10 2−⋅
26794.74

3.2.3      Game 3 

Let only link  be tolled. We will compare two problems:   1l
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 The optimal values of 
1l

θ  and 
1

~
lθ  for the first problem are 2.16

135
292

≈  [€] and 2.90
135
392

≈  [€], 

respectively, and yield the total toll revenue  [€]. The optimal values of 9901.83 1ξ  and 1
~ξ  for the 

second problem are 
225
1

 and ,
225
1

 respectively, and yield a total toll revenue of  [€]. 9931.46
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3.2.4      Game 4 

Let both link  and  be tolled. We will compare two problems:   1l 2l

    • Find  and  maximizing total toll revenue of the system, with  )(
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θ  ,~
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2

~
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≈  [€], 5.07
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≈  [€], and 4.87
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,

 [€], respectively, and yield a total toll revenue of  [€]. The 

optimal values of 
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1ξ  ,2ξ   and  for the second problem are   

 and 1.26  respectively, and yield a total toll revenue of  [€]. 

,~
1ξ 2

~ξ ,10 2)(−⋅ 1.290.77
26795.01

,10 2−⋅
,100.78 2−⋅ ,10 2−⋅

 Since the total toll revenue function will vary depending on the chosen structure of the toll 
functions, it is impossible to know the maximal total toll revenue before knowing the toll structure 
used. In the following game the optimal value of the total toll revenue with linear tolls will be 
computed, as this toll brought the best possible outcome when various polynomial toll functions 
were tested.  

3.2.5      Game 5 

We will consider the situation, where the road authority maximizes the total toll revenue of the 
system by setting tolls defined as follows:  
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 are negative, local maxima of the total toll 
revenue function with respect to the link traffic flows will be reached with flows depicted in Table 3. 
These traffic flows are dependent on  and  (  ). 1,2,3, ,71,= Kk
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Table  3. Optimal link flows: Total toll revenue maximization with linear toll functions 
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Table  4. Coefficient of linear toll functions yielding local maximum of the total toll revenue 
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The road authority maximizing the total toll revenue, aiming to influence the travelers so that the 
traffic flows depicted in Table 3 will be obtained, has to take into account the dynamic deterministic 
user equilibrium conditions. If all three links are used, these conditions will yield coefficients  

and  as depicted in Table 4. 

)(
1

kb
)(

2
kb

Here    are free. However, after substituting    from Table 

4 into the total toll revenue function and maximizing the obtained function with respect to  

  the values of the coefficients of the toll function can be obtained. These coefficients 

are depicted in Table 5 and yield the maximal toll revenue  [€].  

,)(
1

ka

1,=k

,)(
2
ka

,7,K

,7,1,= Kk ,)(
1

kb

410⋅

,)(
2

kb ,7,1,= Kk
,)(

1
ka

,)(
2
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2.6795

Table  5. Optimal toll function coefficients and resulting tolls [€]: Total toll revenue maximization 

    k    )(
1

ka    )(
1

kb    )(
2
ka   )(

2
kb )(

1

k
lθ  )(

2

k
lθ  

 1   0.0077−    7.4795 0.0129−    7.0757  3.7397   3.5379  
2    0.0077−    7.4795 0.0129−    7.0757  3.7397   3.5379  
3    0.0078−  10.6860   0.0126−    10.2769  5.3430   5.1384  
4    0.0078−  10.6860   0.0126−    10.2768  5.3430   5.1384  
5    0.0077−    9.0533 0.0127−    8.6608  4.5267   4.3304  
6    0.0077−    7.4795 0.0129−    7.0757  3.7397   3.5379  
7    0.0077−    7.4795 0.0129−    7.0757  3.7397   3.5379  

  
Substituting the coefficients    and  from Table 5 into (8) will result in toll values 

 and  as depicted in the same table. We have also considered tolls defined as polynomial 

function (of the actual link flow) of degree higher than 1.  This choice of toll did not lead to a better 
outcome, thus this is the best outcome that we could achieve. The second strategy for the road 
authority from Game 4 is the best strategy that we could find. 

,)(
1

ka ,)(
1

kb ,)(
2
ka )(

2
kb

)(

1

k
lθ

)(

2

k
lθ

3.3  Discussion 

The case studies suggest that the traffic-flow dependent toll is a very promising tool for improving 
the system performance for the second-best pricing problems. This follows also from the results 
obtained in the first-best pricing theory (following, e.g., Pigou, A.C. (1920) or Wardrop, J.G. (1952)). If 
all links could be tolled the toll minimizing a general objective function of the road authority would 
be traffic-flow dependent.5 

More complicated toll functions may improve the system performance even further, if the first-best 
optimum cannot be reached by simple toll choice. However, the considered traffic model is very 
simple. In the next step of our research the departure time choice will be included and more realistic 
travel time functions will be considered. Although the authors believe that also in this case the 
traffic-flow dependent toll improves the system performance, this belief needs to be validated. 
                                                        
5 For example, the first-best toll minimizing the total travel costs is equal to the marginal external cost and is therefore 
traffic-flow dependent. The first-best toll maximizing the total toll revenue of the system is defined as the sum of the 
toll minimizing the total travel costs and of an origin-destination dependent surcharge based on marginal revenues. 
Also this toll is traffic-flow dependent. 
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Applicability of the traffic-flow dependent in real-time problems has to be discussed, too. Some 
discussion on this topic can be found in Staňková, K. (2009). 

Our results suggest that this traffic-flow dependence applies also for the second-best pricing case. 

4         Conclusions & Future Research 

In this paper we dealt with the dynamic optimal toll design problem as a game of Stackelberg type, 
with travelers as followers driven by a dynamic route choice equilibrium and the road authority as 
leader minimizing the total travel time or maximizing the total toll revenue of the system. 
Alternative toll strategies, where the toll was set as a function of the traffic flow, were considered, 
and outcomes of the games with such strategies were compared to outcomes of the games with 
standard (traffic-flow invariant) toll strategies.  

Moreover, on a benchmark network inspired by the San Diego experiment (Supernak, J., Golob, T., 
Kaschade, C., Kazimi, C., Schreffler, E. and Steffey, D. (2002)) we performed case studies with 
different toll strategies, and computed analytically their outcomes for the road authority. In this way 
we illustrated that the road authority choosing even a very simple alternative toll strategy may 
improve the system performance remarkably. It is quite clear that since the alternative tolls are 
defined as a generalization of standard toll strategies, with use of the same initial conditions these 
alternative tolls will never bring a worse outcome for the road authority than the standard tolls. 

The use of the alternative tolls is one of the possible methods for avoiding congestion on the road 
networks. Further research on this topic may help to build more-efficient tolling systems in the 
future. Future research will focus on more complex toll schemes, too.  

Also, additional research is needed to solve large problems of the same type. For these purposes a 
numerical model has been developed.  

The problem considered in this paper was fully deterministic. Stochastic nature has to be included 
into the model, too, to provide more realistic view on the problem of congestion pricing. 
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