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Abstract

Recent developments in ergodic theory, additive combirephigher
order Fourier analysis and number theory give a central tmke class of
algebraic structures calledimanifolds In the present paper we continue a
program started by Host and Kra. We introdunilspacesas structures sat-
isfying a variant of the Host-Kra axiom system for paralpgped structures.
We give a detailed structural analysis of abstract and cetrip@ological
nilspaces. Among various results it will be proved that caoimilspaces are
inverse limits of finite dimensional ones. Then we show thatdidimen-
sional compact connected nilspaces are nilmanifolds. fidery of compact
nilspaces is a generalization of the theory of compact abajroups. This
paper is the main algebraic tool in the second authors apprtoaGowers’s
uniformity norms and higher order Fourier analysis.
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1 Introduction

We start with the formal definition df-step nilmanifolds.

Definition 1.1. Let L be ak-nilpotent Lie group. This means that theold
iterated commutator
[...[[L, L], L], L...]

is trivial. LetT" be a co-compact subgroup i The left coset spac =
L /T is a compact topological space which is calle@-atepnilmanifold .

Nilmanifolds were first introduced and studied by Mal'ce@[in 1951.
He proved many crucial facts which can be also found in thekad].
Nilmanifolds are interesting from a purely geometric pahview [7],[11].
However recent development [5],[6],[8].]18] shows thepiortant role in
ergodic theory and additive combinatorics.

The main motivation for this paper comes from higher orderrtey anal-
ysis. Letf be a bounded measurable function on a compact abelian group
A. We denote by\, f the functionz — f(z)f(z + t). TheU, uniformity
norm of f introduced by Gowers$[3[,[4] is defined by

ok
||f||Uk = (Et1;t2;~~~;tkAtl;t2;~~~;tk (f)) .

In particular it can be computed that

I17los = (X 1001)

xEA

whereA is the dual group ofd. This formula explains the behavior of the
U, norm through ordinary Fourier analysis.

Based on results in ergodic theolry [B].[18] it is expecteat the behavior
of theU,, norm is in some sense connectedte 1 step nilmanifolds. How-
ever to clarify the precise connection (at least in the sé@uthor’s interpre-
tation) one needs a generalizationke$tep nilmanifolds that we cakl-step



nilspaces. (Another independent approach to this probéeamnounced in
[6] which deals with Gowers norms on cyclic groups)

Before giving the precise definition éfstep nilspaces we give a list of
motivations and reasons to generalize nilmanifolds.

1.

The structures which naturally arise in ergodic theogyraot nilmani-
folds but inverse limits of them.

A k-step nilspace (even if it is a nilmanifold topologicall\d$an extra
algebraic structure which seems to be needed in Higher Giolaier
analysis.

In higher order Fourier analysis it will be convenient tady mor-
phisms between nilmanifolds and nilspaces. It turns outrittgpaces
are more natural for this purpose than nilmanifolds.

. To study Gowers norms of functions on abelian groups widnyn

bounded order elements nilmanifolds are not enough.

. Nilspaces are directly defined through a simple set ofragio This

helps to separate the algebraic and analytic difficulty ighér order
Fourier analysis.

Gowers norms can be naturally defined for functions on @ainpil-
spaces. This means that the notion of Higher order Fourialysis
naturally extends to them.

Related to the so-called limit theory for graphs and hgpaghs, in-
teresting limit notions can be defined for functions on abrefjroups.
The limit objects are functions on nilspaces.

The axiom system of nilspaces is a variant of Host-Kra’s exgystem
[9] for parallelepiped structures. Roughly speaking, apgke is a structure
in which cubes of every dimension are defined and they belmageviery
similar way as in an abelian group. An abstraedimensional cube is the set
{0,1}™. A cube morphism : {0,1}" — {0,1}" is a map which extends
to an affine homomorphism (a homomorphism plus a shift) f#@ihto 7.™.
Anilspace is a selN together with set€ (N) € N10:1}" of n dimensional
cubesf : {0,1}™ — N for every integern > 0 which satisfy the following
three axioms:

1.

2.
3.

(composition). If ¢ : {0,1}" — {0,1}™ is a morphism andf €
C™(N) thengo f € C™"(N)

(ergodicity): C1(N) = N{0:1},

(gluing): Let f : {0,1}"\ 1™ be a map whose restrictions 10—
1 dimensional faces containifij® are all cubes. Theyf extends to
{0,1}™ as an elementin™(N).

We don't always assume the ergodicity axiomNfis not ergodic then
it can be decomposed into a disjoint union of ergodic nilsgat\Ve say that



N is a k-step nilspaceif in the gluing axiom the extension is unique for
n = k+ 1. Itis not hard to see thatstep nilspaces are affine abelian groups
with the usual notion of cubes. A culje: {0,1}"™ — A in an abelian group
A'is a map which extends to an affine homomorphism f@m— A.

If a setV satisfies the first axiom (but not necessarily the others) whe
say thatV is acubespace A morphism h : N — M between two cube-
spacesV and M is a cube preserving map. We require that for evéry
C"™(N) the compositiory o h is in C™(M). We denote byHom (N, M) the
set of morphisms betwee¥i andM . In particularC™ (N) = Hom({0, 1}", N).
With this notion we can introduce the categories of cubespand nilspaces.

Every morphismp : {0,1}" — {0,1}™ induces a map : C"(N) —
C™(N) such thath(f) = ¢ o f. We say thatV is a compact nilspace if all
the setg"™ (V) are compact, Hausdorff, second countable topologicakspac
and the mapés are all continuous. Morphisms between compact nilspaces
are required to be continuous.

The present paper consists of two parts. In the first part udystbstract
nilspaces and in the second part we study compact nilspabesnain topics
in abstract nilspaces are the following:

1. For every natural numbér and nilspaceV we introduce a factor of
N which is ak-step nilspace. Then we prove basic properties of these
factors.

2. We give a structure theorem farstep nilspaces in terms of iterated
abelian bundles.

3. We introduce a cohomology theory for extensions of nidgjsa

4. We study a sequence of groupsns; (V) acting on a-step nilspace
N. They form a central series in tienilpotent grouplrans; (V).

The main topics in compact nilspaces are the following:

1. We generalize the concept of Haar measurekfstep compact nil-
spaces.

2. We prove a rigidity result for morphisms. This means thaiost mor-
phisms into finite dimensional nilspaces can be correctedprecise
morphisms.

3. We show that a&-step compact nilspace is the inverse limit of finite
dimensional ones.

4. We show that a finite dimensional compact nilspace cansiston-
nected components that are nilmanifolds. In particulaneated finite
dimensional nilspaces are nilmanifolds.



To complete the picture about nilspaces we put in a chaptutatat-
egory theoretic aspects of nilspaces. This is importanfudher general-
izations in the subject. However proofs in the paper doretthe category
theoretic terminology.

1.1 The role of nilspaces in Higher order Fourier analysis

This chapter is a short announcement of the upcoming papgrThe main
goal in [16)] is to give structure theorems for functions ompact abelian
groups in terms of Gowers’s uniformity norms. To be more @metet f :
A — C be a measurable function on the compact abelian grbapch that
|f| < 1. The goal is to decompogieas

f:fs+fe+fr

wheref is a structured part of bounded complexijfyis an error with small
L? norm andyf,. is quasi random with very small,, norm. We will refer to
this decomposition as thé-regularity lemma. (We omit here the precise
statement) Note that the quadratic cdse-(3) was settled for arbitrary finite
abelian groups iri[15]. Of course the main question is thieviohg.

What kind of structure is encoded jia?

It will turn out in [1§ that f, is the composition of two functiong :

A — N andg : N — CwhereN is a compact finite dimensional— 1-step
nilspace of bounded complexity,is a nilspace morphism ands Lipschitz
with bounded constant. (We omit here the definition of the jglexity of a
nilspace.)

The proof of the decomposition theorem is based on a decdtigos
theorem on ultra product groups. L&tbe the ultra product of finite (or more
generally compact) abelian groups. One can introduce aalaneasure
space structure oA and ac-topology (like a topology but only countable
unions of open sets need be open). A topological factoA aé given by
a surjective continuous map : A — T (called factor map) wher&' is a
separable compact Hausdorff space. (Such a factor can als@®Wwed as
an equivalence relation oA whose classes are the fibresfof Every such
factor inherits a cubespace structure fréaby composing the cubes iA
with the factor mapf. A nilspace factorof A is a topological factor oA
whose inherited cubespace structure satisfies the nilgpacens.

The non-standartl;,-regularity lemma is much simpler and cleaner than
the standard one. It says the following.

Non-standard U-regularity lemma: Every measurable functiofi: A —
C with || f|lc < oo can be (uniquely) decomposed As= f, + f. where



I f+ll, = 0 and £, is Borel measurable in a compakt— 1 step nilspace
factor.

Note thatUy, is only a semi-norm o\ so it is possible thaf,. is not0
but|| f-||u, is 0. The non-standarti;-regularity lemma implies the ordinary
one using the rigidity theorem for morphisms proved in thespnt paper.
One can give restrictions on the structure of the nilspactefa if the abelian
groups (that we take the ultra product of) are chosen froneaiapfamilies
(for example exponer groups). We don't discuss the details of this here.

Limits of functions on abelian groups: Quite interestingly the non-standard
U-regularity lemma can also be used for a different purposee¥ery fixed
natural numbek, one can introduce limit objects for functions on finite (or
compact) abelian groups which are measurable functionsmpactt-step
nilspaces. We demonstrate the convergence notion in aifiedplersion
where the functions arf0, 1} valued. This means that they can be viewed
as subsets in abelian groups. For a sulsset A in an abelian groupt we
introduce ak + 1 uniform hypergraph on the vertex sétwhose edges are
thek+1tuples(zy, za, ..., o) in AR satisfyinngjl1 x; € S. We say
that a sequence of subs¢fs }°°, in abelian group$ A; }5°, is k-convergent

if the corresponding: + 1-uniform hypergraphs converge in the sense of
[2]. The non-standard, -regularity lemma implies that the appropriate
limit objects for this convergence notion are measurahtetions onk-step
compact nilspaces. Note that as a special case we get lijpittstior Cayley
graphs in commutative group4.imits of Cayley graphs in general (not
necessarily commutative) groups are analyzedin [17]. prisved that the
limit of Cayley graphs is a Cayley graphon of a compact togial group.

1.2 Nilmanifolds as nilspaces

Let G be an at mosk-nilpotent group. Le{ G; f:ll be a central series with

Gr41 = {1}, G1 = G and[G;, G;] C G;+,. We define a cubic structure on
G which depends on the given central series. The setdimensional cubes
f:40,1}™ — G is the smallest set satisfying the following properties.

1. The constant map is a cube,

2. If f:{0,1}™ — G is acube ang € G, then the functiorf’ obtained
from f by multiplying the values on sorfe—i)-dimensional face from
the left byg is a cube.

This definition builds up cubes by a generating system. Hewthere is
another way of describing them through equations. For evevg introduce
an orderingy,, : {0,1}™ — {1,2,...,2"} in the following way. Ifn =1
theng;(0) = 1,¢1(1) = 2. If n > 1 then

gn(a17a27 . 'aan) = gnfl(alaaQa s aanfl)



if a,, = 0and
gnlar,as,...,an) =2"+1—gpn_1(ar,az,...,an-1)

if a,, = 1. Itis clear that (a cyclic version of) this ordering definddamil-
tonian cycle of the one dimensional skeleto{ 0f1}".

Definition 1.2. LetG be a group and’ : {0,1}" — G. We say thaf satisfy
theGray code property if

2" i
[T @ =1,

A function f : {0,1}" — G is a cube if for everyi € N andi-
dimensional face" the restriction off to F' satisfies the Gray code prop-
erty moduloG;. If ¢ > k + 1 then we defingz; to be trivial. An easy
induction shows that cubes @& defined as above are symmetric under the
automorphisms of0, 1}".

Assume thatz has a transitive action on a sa@t. Then we say that
f:{0,1}" = Nis acubeiff(v) = /') wheref’ : {0,1}* — Gisa
cube andr € N is a fixed element.

1.3 The category of nilspaces

The definition of nilspace presented in the introductionliaifly makes use
of what we call thecategory of discrete cubethe category whose objects are
the sets of the forn{0, 1}™ and whose morphism@, 1}"* — {0,1}" are
those functions which are restrictions of some affine honrpmemzZ™ —
Z™. There are two other descriptions of the morphisms of theguat which
are easily seen to be equivalent to this description:

1. f:40,1} — {0,1}™ is a morphism of discrete cubes iff it can be
written asf (z1,...,zm) = (y1,...,yn) Where eachy; is eithero, 1,
x; orl — z; for somej (depending or).

2. We can think of 0, 1}" as the set of all characteristic vectors of sub-
sets of{1,...,n}. Afunctionf : {0,1}" — {0,1}" is a morphism
sending(0, ...,0) to (0,...,0) iff, regarded as a function from sub-
sets of{1,...,m} to subsets of 1, ..., n}, it sends disjoint unions to
disjoint unions. A general morphism (one not necessaritgsey0 to
0) is of the formf(A) = g(A) & S whereg is a morphism sending
0to0, S is some subset dof1,...,m}, and® denotes the symmetric
difference of sets.

We can rephrase the definition of nilspace in category thieatderms
using this category of discrete cubes. To begin, the candttiat cubes in a



nilspace be closed under composition with morphisms oféiecubes says
that given a nilspacé/, the assignment

{0,1}" — C"(N) = the set ofn-cubes inN,

is the object part of a contravariant functor from the catggoubes of dis-
crete cubes to the category of sets (on a morphistine functor gives the
function of composition with3). In category theory, contravariant functors
from a category to the category of sets are often callp@sheaves od.
The collection of all presheaves @éhforms a category in which the mor-
phisms are just the natural transformations of functord, a&fter recasting
nilspaces as presheaves satisfying certain conditionsilvi@deed organize
them into a category by simply taking all natural transfotiores between
them as morphisms. From this point of view it also makes stntsgk about
morphisms from arbitrary presheaves@nbes into nilspaces, and we will
occasionally do so.

To say which presheaves @ubes arise from nilspaces, consider an
abstract presheaf’ : Cubes — Sets. If it did come from a nilspace,
we could recover the set of points 85 := F({0,1}"). (Well almost: the
definition does not require every point of the underlyingdehe nilspace to
actually appear as a vertex in any cube. Of course, thoséspbiat are not
vertices of cubes are totally irrelevant and can be ignasedsay, assumed
to not exist.) Also, given any abstragtcubec € F({0,1}"), we could
recover the functiof0, 1} — N that corresponds toby using all the2™
morphisms from th@-dimensional cube to the-dimensional one: namely,
if for any p € {0,1}", we denote by, the morphism in the category of
discrete cubes sendifg, 1}° top € {0, 1}", then the cube corresponds to
the function{0, 1} — N given byp — F(¢,)(c).

Definition 1.3. We say that a presheaf : Cubes®” — Sets is determined
by its pointsif for any n, the function

n 27’2,
F({0,1}") = (F({0,1}")
whose coordinates are th€(.,,) for p € {0, 1}™ is injective.

A morphism between presheaves determined by their poijustia func-
tion between their point sets that sends cubes to cubes.eSe flresheaves
are exactly the cubespaces from the introduction.

Remark 1.1. The property of being determined by points is analogous to
(part of) the difference between a simplicial complex ans-aomplex: in a
simplicial complex each simplex is determined by the sés oEitices, while

in a generalA-complex this is not the case, and, for example, two singlice
can share their boundary.

Remark 1.2. Presheaves o€ ubes are closely related to what are called
cubical setsn the algebraic topology literature (see e.qg., the work oivin
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and Higgins on strictu-groupoids, or the recent bookl[1]). Our category of
discrete cubes has a subcateg@wbes, with the same objects but whose
only morphisms are those given by formulas of the féim ..., z,,) —
(y1,...,yn) Where eachy; is either0, 1 or z; for somej depending on
such that the sequence g$ used is strictly increasing. This subcategory is
generated by projections and embeddings of cubes into hidjheensional
ones as faces. A cubical set is precisely a presheaf on ttégogyCubesy,
which means that each preshdafon Cubes gives rise to a cubical set by
composition:

Cubes;” < Cubes® £, Sets.

Now we will restate the glueing property from the definitidmdspaces
in a more geometrical language. This will be immediatelacl® readers
familiar with either cubical complexes or simplicial setsalgebraic topol-
0gy.

Presheaves on any base category can be thought of in a ge@inetry
as some sort of complexes built out of objects of the basgogtdy gluing
along morphisms. So, just like cubical complexes, presteanCubes
are geometric objects that are built out of cubes. As a venpla example,
each cube can be regarded as a representable presheatube is the con-
travariant functor{0, 1} — Homcupes({0,1}™,{0,1}"). The Yoneda
lemma says that given an arbitrary preshabn Cubes, the set of mor-
phisms from this:-cube toF is in bijection with F'({0, 1}™), which is what
we previously called the set afcubes inF.

Now we will define a presheaf that corresponds tcoaner of a cubge
i.e., a cube minus one poin{0,1}™ \ {(1,1,...,1)}. Such an object can
be obtained by glueing togetherdifferent (n — 1)-cubes alongn — 2)
dimensional faces. Categorically, this meanssheorner is the colimit of
the relevant diagram dfn — 2)- and (n — 1)-cubes. A simple alternative
explicit description is as follows: the corner as a subsef®fi}" is the
union of the images of the face embeddings, : {0,1}"~! — {0,1}",
ain(T1, .o Tn—1) = (1,...,2i-1,0,24,...,2,), SO we can define the
n-corner as the presheaf of maps that factor through one séthe

{0,1}™ + {7 :{0,1}™ — {0,1}™ | ~ factors through some; ,, }.

One can easily check that this has the desired property thigghisms of
presheaves from the-corner to an arbitrary presheBfare in bijection with
n-tuples(cy, ..., ¢,) of (n—1)-cubes ofF (thatis, each; € F({0,1}"1))
that fit together to form a corner, i.e., tuples such thgty; ,,—1)(c;) =
F(oj41,n-1)(ci) foralli < j. Also notice that ifF’ is a presheaf determined
by its points, a morphism from the-corner intoF" is simply a function from
{0,1}™\{(1,1,...,1)} to the set of paints of", such that the restrictions to
all (n — 1)-dimensional faces of the corner dre— 1)-cubes ofF".

The glueing condition in term of presheaves simply says dngtmor-
phism of presheaves (that is, any natural transformatimm the corner of
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ann-cube to a nilspace, can be extended to a morphism from théewho
cube.

Remark 1.3. The glueing property is reminiscent of the Kan condition for
simplicial sets in algebraic topology. For those familiaithvcubical sets

it should be pointed out that this extension condition isthetsame as the
condition for a cubical set to be fibrant: that every morphisom a cube
without the interior and without one face can be extendeti¢onthole cube.

Finally, note that erodicity is also an extension conditi@ne can de-
fine a presheaf that corresponds to two disjoint points (harttEs is the
non-erogodic nilspace with two points and only constant snap cubes).
This embeds into the representable presheaf givefoby}' and ergodic-
ity simply means that any morphism from the pair of pointsexis to the
1-dimensional cube.

2 Abstract nilspaces

2.1 Notation and basics

When composing two functionsandg we will use the notatiorif o g)(x)
for g(f (x)).

Let N be a nilspace. For a natural numldewe denote the set df-
dimensional cubes iV by C*(N). In Z* we denote by)* and1* the ev-
erywhere) and everywheré vectors. IfS is a finite set and is a subset of
S then we denote by0, 1}7 the set of vectors supported drwhich can be
regarded as the discrete cube of dimenslidiis the obvious way.

Definition 2.1. Let .S be a finite set and/ be an arbitrary set system ii.
The collection of all cube morphisms

{f:{0,1}" - {0,1}Y |[neN, h e H}

defines a presheaf structure ane {0, 1}7. Cubic presheaves arising this
way will be calledsimplicial.

Note that without loss of generality we can assume thas downwards
closed. This means thatif € H then every subset df is also inH. Such
set systems are called simplicial complexes.

The above construction produces a cubespace for everyisiahgom-
plex. It is not quite a functor from simplicial complexes tabespaces:
any dimension-preserving simplicial map between simplicomplexes pro-
duces a morphism between the corresponding cubespaces)apst that
identify two vertices of a single simplex do not induce a nidsm.

Lemma 2.1(Simplicial gluing) Let NV be a nilspace$ a finite set and® be
a simplicial presheaf corresponding to a set syst@mThen any morphism
f : P — N extends to a morphisnf, : {0,1}° — N of the full cube
{0,135,

10



Proof. We assume thall is a simplicial complex. IfH is the full complex

of subsets inS then there is nothing to prove. H is not the full complex

then there is a sét’ which is not in H but every subset of’ is contained

in H. Let H' = H U {h'} be a new simplicial complex. The gluing axiom

guarantees that we can extefitb U, 7 {0, 1}7 with the presheaf structure

corresponding td{’. By iterating this step we can exterfdo the full cube.
O

2.2 Operations with nilspaces

If Ny andN- are nilspaces then we define thaiirect product as the nilspace
N7 x Ny whose cubes are functiorfs: {0,1}" — N; x Ny such that the
projectionsf; and f> to the direct components are both cubes. (Ergodicity
and the gluing axiom hold automatically fdf x N,.

If Vis a nilspace then the previous construction yields a nilssruc-
ture on N x N. However there is another interesting cubic structure on
N x N and we will refer to it as tharrow space In this construction a map
f1x f2:{0,1}" — N x N is a cube if the functiorf’ : {0,1}"+! — N de-
fined by f/(v,0) = f1(v), f'(v,1) = f2(v) is a cube inNV. The arrow space
has fewer cubes than the direct product. The arrow space isecessarily
ergodic but lemmBA2l1 implies that it satisfies the gluingpaxand so all its
ergodic components are nilspaces.

We will also need the following variants of arrow spaces. Tiie ar-

row space is a (not necessarily ergodic) nilspaceNoxx N. Let fy, fo :
{0,1}™ — N be two maps. We denote y;, f2); the mapy : {0, 1} —
N such thaty(v, w) = fi(v) if w € {0,1}*\ {1'} andg(v,w) = fa(v) if
w= 1% 1f f:{0,1}" — N x N is a single map with componenfs, f>
then we denote byf), the map(fi, f2);. Amapf:{0,1}" - N x Nisa
cube in thei-th arrow space if f); is a cube inN.

2.3 The 3-cubes

In this section we define a class of cube spaces which will b&ulism many
calculations. These will simply be-cubes of side length two, divided into
unit cubes. (They are called 3-cubes because they haveiBegedn each
side). We will typically use them to form new cubes in a nilspay glueing
together other cubes into a 3-cube and taking the outeicesrtas justified
in LemmdZ.2 below.

LetT,, = {—1,0,1}". Foreveryvectov = (vy,va,...,v,) € {—1,1}"
we define the cube

() = [J(0.0)

in T,,. The cubes of the forn¥(v) span a cubespace structure’Bn (this
just means that th&/-cubes ofT;, are taken to be the mags, 1}V — T,
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that factor through the inclusion of sonigv)). Note that in terms of the
direct product introduced abovg, is just(77)™.

Let f : {-1,0,1} — {0,1} be a function such that(0) = 0. Then
fm:{-1,0,1}" — {0, 1}™ is a morphism.

Similarly, let f be the functionf(1) = (1,0), £(0) = (0,0), f(-1) =
(0,1). Theng = f™ is an embedding of;, into the2n dimensional cube
{0, 1}?". By abusing the notation we will identify,, with the subset(T},)
in {0,1}2".

Finally, letw : {0,1}™ — T,, be equal tof™ where f(0) = —1 and
f(1) = 1. SinceT;, is a subset 0f0, 1}?" we can regard as a map from
{0,1}" to {0, 1}

Lemma 2.2. Letm : T;, — N be a morphism into a nilspac¥. Then the
compositiono o m is in C™(N).

Proof. Itis clear thatT, is simplicial in {0, 1}?" so by lemm&2]1 the map
m extends to{0, 1}?". On the other hand is a cube morphism of0, 1}"
into {0, 1}2. O

2.4 Characteristic factors

Let NV be a nilspace. A congruence of\ais an equivalence relation on N
such that the cube space 8if ~ induced by the mapy — N/ ~ satisfies
the nilspace axioms. The nilspad® ~ obtained this way will be called a
factor of N. In this section we introduce factors of nil-spaces thataveial
building blocks of them.

Definition 2.2. Let~y, be the relation defined through the property that
y if and only if there are two cubes, c; € Ck¥T1(N) such thate; (15+1) =
z,co(1F1) = yandeci(v) = co(v) for every element € {0, 1}F+1\
{1k+1}_

The relation~y, is obviously reflexive and symmetric. The next lemma
will imply transitivity.

Lemma 2.3. Two elements,y € N satisfyxz ~j y if and only if there
is a cubec € C*+1(N) such thate(1*+1) = y andc(v) = z for all v €
{O, 1}k+1 \ {1k+1}_

Proof. Letcy, co be two cubes satisfying the condition in definition]2.2. Let
us define the map = f**1: T, — {0,1}*+! on the 3-cubd}, , where
f(=1)=1,f(0) =0, f(1) = 1. We denote by : T;,.1 — N the function
which is obtained from o ¢; by modifying the value ori**! from z to y.
The condition on; andc, guarantees that is a morphism. Using lemma
2.2 we get thab o g is in C*+1(N). O

Corollary 2.1. The relation~y, is an equivalence relation for evekye N
and nilspaceV.
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Proof. Assume that inV three elements satisfy ~, y andy ~j z. then
by symmetry and lemmia_2.3 we obtain that there are two cubes <
CKTL(N) such thaty (1¥+1) = 2, co(151) = 2 andc; (v) = e2(v) = y for
everyv # 1¥*1. This means that ~, z. O

Lemma 2.4. Two elements, y € N satisfyz ~y, y if and only if for every
cubec; € CFHL(N) with ¢;(0¥+1) = z the mapc, : {0,1}F1 — N
satisfying

c2(0") = yand cp(v) = ¢1(v) Yo € {0, 1} {0FF1}
isin C*1(N).

Proof. Let ¢ = f**1 : Ty — {0,1}F+1 where f(—1) = 0, f(0) =
0,f(1) = 1. Letg : Tr+1 — N be the function obtained from o ¢; by
modifying the value or{—1)**! from z to y. Lemma 2B guarantees that
g is a morphism. According to lemnla 2.2 the compositiowaindg is in
CF+1(N). Onthe other hand, = w o g. O

Corollary 2.2. For everyk € N and cubec € C*¥*1(V) we have that if a
functione, : {0, 1}*+1 — N satisfies:(v) ~ c2(v) for everyv € {0, 1}++1
thency, € C*1(N).

Proof. We get the statement by iterating lemimd 2.4. Note that byytmerse-
tries of cubes the vect®*! can be replaced by any other vector in lemma

2.4. O

Corollary 2.3. A cubec € C™(N/ ~) is uniquely determined by the ele-
mentsc(v) wherev € {0, 1}™ contains at mosk one’s.

Proof. Forn = k + 1 it follows directly from corollary{2.2. Ifn > &k +
1 then straightforward induction on the number of one’'sinomplete the
proof. O

Lemma 2.5. For everyk € N and nilspaceN the equivalence relatior
is a congruence.

Proof. Let M = N/ ~j, with the induced cubespace structure. It is clear
that M satisfies the ergodicity property. We need to check the glaitiom.
Letf:{0,1}™\ {1"} — M be a map which is a morphism of the corner of
then dimensional cube to the preshédf. We need to show that extends

to the whole cubg0, 1} as a morphism. LeT" be the subset if0,1}"

of vectors with at most + 1 one’s in the coordinates. Corolldry 2.2 shows
that the restriction of to 7" can be lifted fromM to NV as a morphism. Let

f denote a lift. Lemm&2]1 implies thgtextends to a morphisnfi, of the
whole cube{0, 1} to N. It is easy to see that the composition (calf4)

of f, with the factor mapr : N — M is equal tof when restricted to
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{0,1}™\ {1"}. Now corollary[2.8 shows that the restriction fif to each
face in{0,1}" of dimensionn — 1 and containind™ is equal tof. This
completes the proof. O

Definition 2.3. For a nilspaceN we denote byF; (V) the factorN/ ~j.
We say thaiV is a k-step nilspaceif N = Fi(N).

Another way of formulating the previous definition is th¥tis a k-step
nilspace if and only if every morphism of the corner of the- 1 cube toNV
extends in a unique way to a morphism of the- 1 dimensional cube. In
other words the gluing axiom fdr+ 1 dimensional cubes holds in a stronger
form where unigueness of the extension is guaranteed. Natéhisunique
closing property also appears in the Host-Kra theory of parallelepiped struc
tures.

Definition 2.4. We say that a cubespade has thelifting property if for
every nilspaceV and natural numbek we have that every morphise :
P — Fi(N) has alift¢’ : P — Fi41(N) such thaty = ¢ modulo~y,.

Lemma 2.6. Every simplicial cubespack has the lifting property.

Proof. Lemmal[Z1 shows that if : P — Fi(N) is a morphism then it

extend to a morphism of the corresponding cube. On the otlred bubes

have the lifting property by the definition of the cubespéacecture onFy.
O

Lemma 2.7. Let N be ak-step nilspace andh > k + 2. A functionc :
{0,1}™ — NisinC™(N) if and only if its restrictions td + 1 dimensional
faces with at least one point within the last coordinate are all i*+1(N).

Proof. Let P be the set of elements 0, 1}™ with at mostk ones. Note
that P is the union of th&-dimensional faces containirty. The condition
of the lemma implies that restricted to such faces are cubes. Using lemma
2 and the fact thalV is k-step we get that there is a unique elemérin
C™(N) whose restriction td” is equal to the restriction efto P. We claim
thatc = /. Lett be the maximal integer such that= ¢’ on every element
v € {0,1}™ with at mostt ones in its coordinates. By contradiction assume
thatt < n. Then there is an element € {0, 1}" with ¢ 4+ 1 ones such that
d(w) # c¢(w). Sincet > k It can be seen that is contained in & + 1
dimensional facé’ such that every element ifi \ {w} has at most ones
and furthermore there is at least one poinf'ifvith 0 in its last coordinates.
Such a face can be found by choosing theast elements from the support
of w and then changing those coordinatesin

We know that the restriction efto F is in C**1 (V). Since there is only
one way of completing” \ {w} to a cube the proof is complete. O
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2.5 Linear and higher degree abelian groups

We will see that abelian groups appear in the structuredsygades in various
ways as building blocks. Every abelian gradas a natural nilspace struc-
ture that we call “linear”. Cubes i (A) are functionsf : {0,1}" — A
satisfying

f(el,eg,...,en):ao—i—Zeiai (1)
i=1
for some elementsg, a1, ..., a, € A. There is however another way of de-

scribing these functions. Jf satisfies[(lL) then every morphism {0, 1}* —
{0,1}™in Cubes satisfies the property that

f(9(0,0)) = f(6(0,1)) = f(¢(1,0)) + f(#(1,1)) = 0

and it is easy to see that it gives an alternative charaetésiz for linear
cubes. The advantage of the second description is that ibeamaturally
generalized. For an arbitrary mgp {0,1}" — A to an abelian group let us
introduce the weight of by

w(f)= Y fl)(-1 ()

vef{0,1}n
whereh(v) = Y7 | v;.

Definition 2.5. For everyk € N and abelian groupA let us define the
nilspaceDy (A) on the point sefl in the following way. Amay : {0,1}" —
A'is in C™(Dy(A)) if and only if for every morphismp : {0, 1}*+1 —
{0,1}™ we have thatv(¢ o f) = 0. We say thaD(A) is thek-th degree
structure on A.

To check the gluing axiom i, (A) is a straightforward calculation.

Lemma 2.8. One step nilspaces are affine abelian groups with the linear
nilspace structure.

Proof. Let N be a one step nilspace. Let us distinguish an arbitrary eleme
e € N and call it identity. For every,,y € N we definer + y as the unique
extension of the morphism defined Ify0,0) = ¢, f(1,0) = =, f(0,1) =y
(of the corner of the two dimensional cube)(tg 1). We need to check the
abalian group axioms.

Commutativity of+ follows directly from the symmetry of0, 1}2 inter-
changing(1,0) and(0, 1).

If 2,y,2 € N the we can extend the mag0,0,0) = e, g(1,0,0) =
2,9(0,1,0) = y,9(0,0,1) = =z to the full cube{0,1}3. Let go denote
the extension. The composition g§ by the mapsp;, ¢, : {0,1}? —
{0,1}%, ¢1(a,b) = (a,a,b) andgz(a,b) = (a,b,b) shows associativity.

If 7(0,0) = x, f(1,0) = e, f(0,1) = e then the unique extensign=
f(1,1) satisfiest +y = e.

O
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A generalization of the previous lemma will be important.

Definition 2.6. Let N be a nilspace and: € N. Then we define a cube-
spaced, (N) on the point set ofV such thatf : {0,1}" — N is a cube
in 0,.(N) if and only if the mapf’ : {0,1}"*! — N defined byf’(v,0) =
f(), f'(v,1) = zis a cube inN.

It is easy to see from lemnia2.1 that(N) satisfies the gluing axiom
however it is not necessarily ergodic. Nevertheless it a k-step nilspace
then clearly all the ergodic componentsif N) arek — 1 step nilspaces.

Lemma 2.9. If a k-step nilspaceV satisfies that: ~_; y for everyz,y €
N thenN is isomorphic taDy,(A) for some abelian groupl.

Proof. We use induction o. LemmdZ.8 shows the statement for= 1.
Assume thak > 2 and the statement is already proved#or 1. Lete be a
fixed element inV. After £ — 1 repeated applications éf to N we obtain
a 1-step nilspac&”* 1 N. The condition thatV is a single class of-;,_;
implies by lemmd2]2 that every functigh: {0,1}* — N is a cube. In
particularo*~! N is ergodic. Lemma2]8 implies thaf—' N is isomorphic
to an abelian groupg with the linear structure.

Let M be the arrow space ovéYy. Sincek > 2 we have thatM is
ergodic. Cubes of dimensidn+ 1 in N are in a one to one correspondence
with cubes of dimensioh in M. We claim that two arrows = (1, z2) and
y = (y1,y2) In M are~j_1 equivalentif and only ifc; — 25 = y1 — y2 in
A. First notice thatV/ is in a single~_» class and so the factdf,_; (M)
satisfies the condition of the lemma with- 1. Let f : {0,1}* — M be the
map defined in a way that(0%) = z, £(1,0,0,...,0) = yandf(v) = e
everywhere else. The induction hypothesis guaranteesrcthaty in the
factor F_1 (M) if and only if f is a cube inM. This shows that ~_1 y
if and only if 1, 22, y1, 2 form a two dimensional cube i ~!(N) = A.
This proves the claim.

We obtain from the claim that if € C*T1(N) is an arbitrary cube then
if we add the same elementine A to thec values of two endpoints of an
arbitrary edge if{0, 1}**1 then the resulting new function is still a cube. By
repeating this operation we can produce a new etilrewhich all but one of
the vertices are mapped ¢o Using that constant functions are all cubes and
the unique closing property we obtain tlkahas to be the constant function.
In other words: can be obtained from the constant function with the inverses
of the previous operations which shows that all the cube@aPg (A). The
fact that every2*+! — 1 points can be completed to a cube shows that the
cubes inN are exactly the cubes iRy (A).

O

Corollary 2.4. If N is a k-step nilspace then every equivalence class of
~,_1 is an abelian group with thé-degree structure.
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2.6 Bundle decomposition of nilspaces

We give a structure theorem faérstep nilspaces which follows relatively
easily from the axioms but which is useful as an intermeditgp to prove
deeper structure theorems.

Definition 2.7. Let A be an abelian group. An (abstrac)-bundle over a
setS is a setl” with an actiona : Ax T — T andabundlemag : T' — S
such that

1. the actiona is free i.e. the stabilizer of every element is the trivial
subgroup in4,

2. m gives a bijection between the orbits4fin 7" and the elements &f.

Ifthe spacesi, S, T' are topological then we will require thatis continuous.
A k-fold abelian bundle with structure groupsAd,, 4., ..., Ay is the last
member of a sequentg, 11, . . ., T}, of “factors” where T} is a one element
set andl; is an A; bundle ovefT;_;. k-fold abelian bundles come together
with projections (bundle mapsy, ; : 7; — T for i > j. By abusing the
notation we use the short hand notatiepfor 7; ;.

Note that if 7" is an A-bundle overS then fibres (preimages of points
underr) can be regarded as affine versionsAaf We will use the short
hand notation: + a for a(a, z). There is no distinguished bijection between
the elements of a fibré and A but there is a well defined difference map
F x F — Awhich, if z,y € F, is given by the unique elementine A
satisfyingy + a = x. We simply denote the difference efandy by = — y.

Definition 2.8. A degree4 bundle N is a k-fold abelian bundle with struc-
ture groupsA;, As, ..., A and factors

Ty, T4, ..., T = N such thatV is a cubespace with the following property.
Foreveryd <i < k,n € Nandc € C"(T;+1) we have that

{02|02 S Cn(T’lJrl) , COT; = C2 O 7Ti} = {C—|— 03|03 (S Cn(DZ+1(AZ+1))}

whereC™(T;) = m;(C™(N)).

Theorem 1 (Bundle decomposition)A cubespacéV is a degreek bundle
if and only if N is a k-step nilspace. Furthermor&;(N) is equal toT; for
everyl <1 < k.

Proof. First we show that ifV is a degreés bundle then it is &-step nil-
space. ltis clear thaV satisfies the ergodicity axiom. It remains to show
the gluing axiom. We use induction ario prove it in7;. If : = 0 then the
statement is trivial.

Assume that we have gluing ifi. Let f : {0,1}"\ {1} — T4, be a
morphism of the corner of the-dimensional cube. The mafp r; has an ex-
tensionfs : {0,1}™ — T; to the full cube. Sinc&€"(T;) = m;(C™(N)) we
have thatf; can be lifted (with respect to;) to a morphismyfs : {0,1}" —
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T;11. Letus considef, = f — f3on{0,1}™\ {1"}. It follows by definition
that f4 is a morphism of the corner B, (4,+1) and so it can be extended
to a morphismyfs : {0,1}" — D;+1(A;+1). Now it is clear thatfs + f5 is
an extension of to the full cube. The definition of degreédsundles implies
thatF; (V) = T;.

We prove the other direction by induction énThe step: = 0 is trivial.
Assume that it holds fok — 1 and N is ak-step nilspace. By induction we
have thet — 1 degree bundle structure df,_1 (V).

LetM = {(z,y)|z,y € N, x ~,_1 y} C NxN. NotethatF: x ' ¢ M
holds for every clas$’ of ~;_1. We introduce an equivalence relatisnon
M. Let Fy, I, be two~j_; classes of &-step nilspaceV. If x1,20 €
Fy andyl,yz € F, then we say tha@xl,xg) ~ (yl,yQ) if (Il,yl) ~Ne—1
(z2,y2) in the arrow spac&’ of N. Note thatN”’ is not necessarily ergodic
but it will not cause any problem.

By lemmalZ® we get that if, = F; then(zq,22) ~ (y1,%2) if and
only if x5 — x1 = y2 — 1. In other words, inside one class ®f,_; the~
classes of vectors are naturally parametrized by the elenoérthe abelian
group constructed in lemna2.9.

The unique closing property implies that for every = € F; andy; €
N there is a uniqug, such tha{xy, z2) ~ (y1,y2). This creates a bijection
¢ between~ classes insidg; x F} and ~ classes insidéy, x Fy. We
show that this map gives an isomorphism between the comelépgabelian
groups. The definition of- shows that if(z1, x2) ~ (y1,y2) and(xq, x3) ~
(y2,y3) then(z1,23) ~ (y1,y3). Inside one fibre the class ¢f1,x3) is
the sum of the classes @f1,z2) and(z2, z3). It follows that¢ preserves
addition in both directions and so it is a group isomorphism.

Let us denote byl the unique abelian group formed by theclasses in
F x F for each~j_; classF. The groupA acts on each-;_; class and
so on the whole spack’. We denote this action by simple addition. This
action satisfies that if € Fy,y € Fy the(z,x + a) ~ (y,y + a) for every
a € A. It follows thatifc : {0,1}**! — N is any cube and € A then
by applying the action of to the two endpoint of an arbitrary edgednwve
get a cube. Assume now that two culgsandc, in C*T1(IV) satisfy that
c1 ~k—1 c2. Then by repeating the previous operations we can create/a ne
cubed, from ¢, that differs frome; at most at one vertex. Using the unique
closing property this implies that = ¢; andea — ¢1 € Di(A). O

An interesting consequence of theorgim 1 is that instep nilspaceV
the~;,_1 classes are all isomorphic abelian groups viittiegree structures
and there is a distinguished set of affine isomorphisms letveay two of
them. LetF; and I, be ~,_; classes and let us fix elementse I} and
y € Fy. Thenthe map(z+a) = y+a, a € Ay defines an affine morphism
betweenly and F;. Such maps will be callebbcal translations. The next
characterization of local translations follows directigrh theoreni 1.
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Lemma 2.10.Let N be ak-step nilspace. Let us fix two,_; classes, F>
and two elements € Fy,y € F,. For everyz € F} we denote by, ,(z)
the unique closure of the corner: {0, 1}*+1\ {1**1} — N defined by
c(v,0) = zifv # (1¥,0), ¢(1%,0) = zande(v, 1) = yif v € {0, 1}*\ {1*}.
Then the map,, ,, is the local translation corresponding toandy.

2.7 Sub-bundles and bundle morphisms

Definition 2.9. Let T}, be ak-fold abelian bundle with structure groups
Ay, As, ..., Ay, factorsTy, T1, . .., Ty, and projectionsry, s, ..., ;. We
define the notion of aub-bundleof T}, with structure groupst; < A;, A <
As, ... Al < Ay and factorsT) = Ty, T] < Ty,..., T, < Tp. If k =0
thenT} = T}, and both are equal to a one point space. For a genérale
have the condition thal]_, = m,_1(7}) is already a sub-bundle and for
everyz € T, we have that

{ala € Ag,a+z €T} = Aj.

In particular if £ = 1 then a sub-bundle is just a coset4f.

An important example for sub-bundles is the following. et {0, 1}
be a cube an@v be ak-step nilspace. Let us consider the natural embedding
Hom(P, N) into the direct powetN". This means that every homomor-
phism¢ : P — N is represented by the vector whose component at coordi-
natep € P is ¢(p). According to theorel] THom(P, N) is a sub-bundle in
NP with structure groupslom (P, D;(A;)).

Definition 2.10. LetT' = T}, andT’ = T}, be twok-fold abelian bun-
dles with structure group$A;}¥_, {AL}F | and factors{T;}%_, {T/}F .

We define the notion of bundle morphism ¢ : T — T’ with structure
morphisms«; : A; — A} by the next two axioms.

1. If1 < i < k we haver;(z) = m;(y) thenm; (¥ (x)) = mi(¢(y)). In
other wordsy induces well defined maps : 7; — T

2. Yi(z+a) = Yi(x) + ax(a) wherex € T;,1 < i < k anda € Ay.

We say that) is totally surjective if all the structure morphisms are surjec-
tive.

Lemma 2.11. Lety : T — T’ be a totally surjective bundle morphism
between twd-fold bundles. Then

1. Foreveryt € T’ andi < k we have thaty; ' (m;(t)) = m: (1 (t))
2. Foreveryt € T" we have that)~!(¢) is a sub-bundle iff” with struc-
ture groups{ker(a;)}¥_;.

Proof. Let us start with the first statement. We do downwards induain:.
Casei = kis trivial. Assume that we have the statementifer1. It is clear
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thatm; (1= (t)) € ¢; *(mi(t)) so we have to prove the other containment. If
x € T; is an element with); () = m;(t) then for an arbitrary lify € T4
with 7;(y) = = we have that);,1(y) = mi41(t) + o for somea’ € Aj ;.
Using total surjectivity, there is an element A, with «;41(a) = o’ and
S0%;i41(y —a) = mi41(t). By induction we have that—a € w11 (v ~1(t))
and sor = m;(y — a) € m(Y1(t)).
We prove that second statement by inductiorkoAssume that it is true

for k—1. By the first statement we have thgt ', (7,1 () = mr—1 ("1 (t))
and sori_1 (1~ 1(t)) is a sub-bundle iy, _;. If x € y~1(t) thenx +a €
¥1(t) for a € Ay if and only if ax(a) = 0. This means thap—1(¢) is a
sub-bundle off" and the kernel oy, is thek-th structure group. O

Lemma 2.12. A morphismy) between twd-step nilspacesvV and N’ is a
bundle morphisms between the correspondiftiegree bundle® and7”.

Proof. Lemma 2.8 shows that if ~; y theniy(z) ~; ¥(y). This verifies
the first axiom.

First we prove the second axiom when the nil-spaces are ofotine
D;(A;) andD;(A%). The abelian group structure of; and A; can be re-
covered by applying:—! to the cubic structure with some fixed element
in A; or A]. ltis clear that); preserves this structure and ¢phas to be
an affine homomorphism between the two abelian groups whednsthat
iz + a) = ¢¥;(x) + a(a) wherea is a homomorphism.

Now let F' be a~,_1 classinT;. ThenF' = D(A4;) and by the first part of
the proof we have that; restricted taF” satisfies); (z+a) = ;(x)+ar(a)
wherex € F,a € A, andap : A; — A, is a group homomorphism.

It remains to show that we have the same group homomorphjsicor-
responding to eack; ; class. This follows from the fact that the relatien
defined in the proof dfll is preserved underbecause it is defined through
cubes. O

Definition 2.11. A morphismy : Ny — N> between two nilspaces will be
calledfibre surjective if for everyn € N the image of a-,, class inV; is a
~, class inNs.

The next lemma follows immediately from lemiha2.12

Lemma 2.13. Afiber surjective map between twestep nilspaces is a totally
surjective bundle morphism between the correspondifjd bundles.

We will need the next lemma.

Lemma 2.14. Let¢ : N — N’ be a fibre surjective morphism between
two k-step nilspaces. Then every cube C™(N’) can be lifted to a cube
¢ € C™(Ny) such that' o ¢ = c.

Proof. The proof is an induction ok. If k& = 0 then there is nothing to
prove. Assume that we have the statementifer 1. The mapy induces a
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map¢’ from Fj,_1(N) to Fr—1(N'). This means (using the lifting property
of cubes) that there is a cube € C" (V) such thatey o ¢ ~,_1 ¢ and so
c3 = ca0¢ —cisin C"(D(A,)). Now it is enough to find a lifes of c3
under the surjective homomorphism : A, — Aj, because the, — ¢4 is
a lift of c.

the existence of, follows by first considering an arbitrary lift of &-
dimensional corner af; and then by extending it (uniquely) to ardimensional
cube. O

The previous lemma together with lemmal2.1 implies the nesdltary.

Corollary 2.5. Let¢ : N — N’ be a fibre surjective morphism between two
k-step nilspaces. Then every morphisms P — N’ of a simplicial cube
space can be lifted as a morphisni : P — N withm’ o ¢ = m.

An important example of a fiber surjective map is the follogvih.et N
be ak-step nilspace with structure grougs, A,, ..., Ay andletB C A be
a subgroup ofA. We introduce a nilspace denoted Ny B in the following
way. Let us say that two elementsy € N satisfyx ~p yif v ~p_1 y
andz — y € B. The elements olN/B are the equivalence classes-of. It
follows from theorenil thav/ B is a factor of N and the projectiolv —
N/ B is fibre surjective.

2.8 Restricted morphisms

Definition 2.12. Let P, C P be a subset of the cubespaleand let f :

P> — N be an arbitrary function. We define thestricted homomorphism
setHom¢ (P, N) as the collection of those homomorphisms whose restric-
tions toP; is equal tof.

Note that the restricted homomorphism sets might be empty.

Lemma 2.15. Let (4, Cs be two elements i€ubes and letg : C; — Cs
be an injective morphism. Then there is an endomorphisnt’s — ¢(C1)
suchthatp oy = ¢. If f: C; — P is any morphism to a cubespaéethen
there is a morphismm : C; — P such thatf = ¢ o m.

Proof. Assume that’; = {0,1}% andC, = {0, 1}*. The morphismy is of
the formo(z1, xa, ..., xq) = (y1,92, ..., ys) Where eacly; is equal to one
of z;,1—x;,0,1forsomel < j < a. NowletVi, Vs, ..., V,, Wy, Wi bethe
partition of [b] defined inaway that e V; if y; =z, ory; =1—x;,j € Wy

if y; =0andj € Wy if y; = 1. We define a further partition; = V2 U V;!
such thatj € V if and only if y; = ;. Let us choose a representative
system{t, € V;}?_, and assume that € V;“ for somee € {0, 1}. Now we
definey in the following way. The valug = v;(z1, 22, . .. , 2,) satisfies

1. qZOiijEWQ
2. q=1ifz; e W,
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3.q=z,ifjevVs
4. qg=1—z, ifjeVil_ei'.

It can be seen easily thdtsatisfies the requirement.

The second statement follows from the first one. fet ¢(Cy) — P
be defined a® ! o f. Letm = ¢ o f. Thenitis clear thatn satisfies the
requirement. O

Lemma 2.16. LetC; andCs be as in lemmRa2.15 and let us identify with
¢(Cy). Let N be ak-step nilspace and : C; — N be a morphism. Then
Hom (Cs, N) is a sub-bundle oV <2,

Proof. We proceed by induction ok. There is nothing to prove far = 0.
Assume that the statement if true for 1. We have thalf = Homy¢.,, ,(Cs, N)
is a sub-bundle oF;,_; (N)“=. First we show that every elemelntn H can
be lifted to an element: in Hom(C5, N). The morphisnh is a cube in
Fr—1(N) so it can be lifted to a cubk’ : C; — N. We have thaff — b’/
on C is a morphism o’} into Dy (A). Then by lemm&2.15 we get that
f — k' can be extended to a morphisni : Cy; — Dy (Ay). Itis clear now
thatm = m’ + 1/ isinHom(Cs, N).

A functiong : Co — N is a lift of h to a morphism inHom¢(Cs, N)
if it differs from m by a morphism ind; = Hom.(C2, Dy (Ax)) where
z : C1 — Di(Ayg) is the function mapping every element intdtdlt is clear
that H, is an abelian group. O

Lemma 2.17. Let P = {0,1}" be a cube and®, be a subcube. Lep :
N — N’ be afibre surjective morphism between twwetep nilspaces. Then

1. Hom(P, N) is a sub-bundle in the direct powe¥” with structure
groupsHom(P, D;(A;))

2. P : Hom(P, N) — Hom(P, N') is a totally surjective bundle mor-
phism with structure morphisms

af : Hom(P, D;(A;)) — Hom(P, D;(A}))

3. The preimage dfe Hom(P, N’) under(x»¥’)~1 is a bundle with struc-
ture groupsHom (P, D; (ker(c;))).

4. Lett € Hom(P, N') and lett, € Hom(P», N') be its restriction taP,.
Then the projectionrp, from (»7)~1(¢) to (1»2)~1(t,) is a totally
surjective bundle morphism.

Proof. We prove the first statement by induction én Fork = 0 it is
trivial. If we know the statement fok — 1 then we have by the lifting
property of cubes thaHom (P, Fy_1(N)) = m,—1(Hom(P, N)) and so
we have thatr_; (Hom (P, N)) is a sub-bundle ofF,_;(N)”. Lety €
Hom(P, Fr—1(N)). If ¢ is any lift of ¢/ to N then by theoreni]1 the
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other preimages of) are exactly those that differ front’ by an element
in Hom(P, Dy (Ag)), which is clearly a subgroup A%

For the second statement we check the two axioms of bundlghizons.
The first axiom follows from the fact (use lemial2.3) that trepm’ pre-
serves the relation;. Letc € Hom(P, F;(N)). Itis clear that the structure
morphisms are given by! on Hom(P, D;(A;)) but we have to show that
they map surjectively tdlom (P, D;(A%)). This follows by taking an arbi-
trary preimage of a-dimensional full corner ofP underoz;1 and then by
extending it in a unique way to a full morphism Bf

The third statement follows directly from lemma2.11.

In the fourth statement the structural maps are computed as

Hom(P, D;(ker(c;))) — Hom(Py, D(ker(ay))).
It follows from lemmd 215 that these are surjective maps. O
Lemma 2.18. Let
P ={0,1}*", P, = {(0,1),(1,0)}", P5 = {(0,0),(1,0)}",

andu = (1,0)" = PsN P,. If f : P, — N is a morphism into &-step
nilspaceN then the projectiolom (P, N) — Homg, (Ps, N) is a totally
surjective bundle morphism.

Proof. Lemm&Z.Tb shows thdfom, (P, N) andHomy (P3, N) are sub-
bundles in the spacéé” andN*=. The structure groups atbom., (P, D;(A;))
andHom., (Ps,D;(A;)) wherez; is the0 map onP, andz is the0 map
on u. We have to show that the natural projection between thetsire
groups is surjective. Similarly to the proof of lemmal2.3 vemsider the
map¢ = f" : T, — {0,1}" on the 3-cubel;, C P so thatf(-1) =
1, f(0) =0, f(1) = 1. By identifying {0, 1} C T, with P; we get that any
morphismg : P; — D;(A;) with g(u) = 0 can be lifted to the three cube
T, asgs = ¢ o g. Itis clear thaty, restricted toP; is the constan® func-
tion. Then lemm&2]1 says that we can further exignich P as a morphism
g3 : P — N. We have thays|p, is the0 map. This proves the surjectivity in
guestion. O

2.9 Extensions and cohomology

Definition 2.13. Let N be an arbitrary nilspace. A degreeextension of
N is an abelian bundlé/ over N which is a cube space with the following
properties.

1. Foreveryn € Nandc € C™(N) there is¢ € C™(N) such that
() = ¢,

2. Ifeg € C™(M) andcg : {0,1}™ — M with w(¢;) = w(c2) then
co € C"(M) ifand only ifc; — co € C™(Dy(A)).
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The mapr is the projection from\/ to N. The extensioi/ is called a split
extension if there is a cube preserving morphism: N — M such that
m o 7 is the identity map oiV.

A motivation to study such extensions is that we can obta@myek-step
nilspace from a trivial nilspace by consecutive extensions of increasing
degree. In the rest of the chapter we assumeMhas ak-degree extension
of N and that~ is the equivalence relation whose classes are the fibres of

The main idea of describing extensions in the following. bethoose a
representative syste C M for the ~ classes and let : M — S be the
function such that(z) is the representative of the class containingrhen
we define the functiorf : M — A by f(z) = = — r(x). For an arbitrary
cubec € C*+1(M) we define its weighp(c) as the weight (se€l(2)) of the
functionco f.

We have from the definition 2,13 thafc) is determined by: o 7. In
other wordsp can be defined as a functien C*+!(N) — A. Two natural
guestions arise.

Which functiong : C*¥*1(N) — A arise from somé:-degree extension of
N by A?

What happens tp if we change the representative systgf

The answer to the second question is quite easy. A(€Y, A) denote
the set of functiong : C**1(N) — A such that there is some function
f: N — Awith h(c) = w(co f). The elements aB(N, A) form an abelian
group with respect to point wise addition. It is clear that& modify.S then
the new functiorp, differs from the original by an elementiB(N, A).

To answer the first question we need to understand the prepeart
weight functions arising from extensions. We define a sulygd, , of
AHom(C1,C2) whereC; = {0, 1}? andCy = {0, 1}%. Amapm : Hom(C1, Co) —
Ais in H,, if and only if there is a functionf : C — A such that
m(¢) =w(go f).

It is clear from the definition op and the lifting property of cubes that if
c € C™(N) is an arbitrary cube then the map. : Hom ({0, 1}¥** {0,1}") —
A defined bym.(¢) = o(¢ o ¢) is an element irf{;, 1 ,,. We define (degree
k) cocycles as functiong : C**1(N) — A satisfying this property. Let
Y (N, A) denote the set of degréeeocycles. It is clear from the definition
that they form an abelian group and tiatN, A) C Y(N, A). The coho-
mology groupH (N, A) is defined as the factor grodp(N, A)/B(N, A).

Our goal is to show that every elementhf( N, A) represents an exten-
sion. Letp be a cocycle it (N, A). We define a cubspace structure on the
point setM = N x A in the following way. A map: : {0,1}" — M is a
cube if its projection taV is a cube and for every morphispr {0, 1}¥+! —
{0,1}"™ we have thatv(¢pocoma) = o(¢p o comy). Itis clear that it creates
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a cubespace structure . Simple calculation show that the gluing axiom
is also true.

Now we give another description of the gratip/N, A) in terms of finitely
many equations.

Definition 2.14. A functiong : C™(N) — A is said to be automorphism
consistent if it satisfies the next conditioncIf {0,1}" — N isin C"(N)
and¢ : {0,1}" — {0,1}™ is an automorphism thef(¢ o ¢) = g(¢)(—1)?
whereq is the number of’s in ¢(0™)

Definition 2.15. A functiong : C**1(N) — A is a cocycle if it satisfies the
next three axioms.

1. pis automorphism consistent

2. For every pair of equivalent cubes,c, € C*1(N) let us define
o' (cica) = o(c1) — o(cz). Theng' : CF2(N) — A is automorphism
consistent.

3. Ifcy, co, c3 € CF(N) are three equivalent cubes thefeicz)+o(cacs) =
Q(0103)-

2.10 Translations

For an arbitrary subsét in {0, 1}™ and mapy : N — N we define the map
ol from C™(N) to N{%1" such thata’' (c)(v) = alc(v)) if v € F and
af(e)(w) =clv)ifv ¢ F.

Definition 2.16. Let N be a nilspace. A map : N — N is called a
translation of hight; if for every natural numben > i, n — ¢ dimensional
face F C {0,1}" andc € C™(N) the mapa’'(c) is in C"(N). We denote
the set of hight translations byTrans;(N). We will use the short hand
notationTrans(N) for Trans; (V).

It is clear from this definition that
Trans; (N) D Transe(N) O Transg(N) D ....

Lemma 2.19. A mapa : N — N is in Trans; (V) if and only if the map
h: N — N x N defined byh(n) = (n,a(n)) is a morphism into the-th
arrow space.

Proof. Itis clear thate € Trans; (V) implies thath is a morphism. For the
other direction assume thatis a morphism. Let € C"(N) be such that
n > i. Let F C {0,1}"™ be then — i dimensional face witld’s in the lasti
coordinates. Using the symmetries of cubes it is enoughdw shat for this
particular facex”'(c) € C™(N).

Let@ = {0,1}" " x {—1,0,1}* = {0,1}"~¢ x T3, let f, be the identity
on{0, 1} andf; be the function withfa(—1) = 1, f2(0) = 0, f2(1) = 0. Let
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= f{"i x fi. The functionh = focis a morphism frong) to N. Leth’ be
the function obtained from by applyinga to the values oq0, 1}~ x 1¢.

Itis easy to see from our assumption thais also a morphism té/. On
the other hand by lemnia2.1 the restrictiomoto {0,1}"~¢ x {—1,1}%is
a morphism taV. This restriction is equal ta’ (c). O

Note that definitio 2.6 implies that translations presenwbes. Recall
that two cubes ir0” (V) are called equivalent if they are two opposite faces
of a cube iINC™" (V). Itis clear that a map is a translation if and only if
a(c) is equivalent withe for every cube: € C™(N). The next lemma shows
a strengthening of this fact férstep nilspaces.

Lemma 2.20. Let N be ak-step nilspace. An arbitrary map : N — N is
ain Trans;(N) if and only if for everye € C*(N) we have thatc, a(c)); €
Ck"'i(N).

Proof. Let ¢ € C™(N) be an arbitrary cube and let = (¢, a(c));. By
lemmal2.IP it is enough to prove thet € C"*(N). formed byc and
a(c) as two faces. Using lemnia2.7 it is enough to show thagstricted
to k + 1 dimensional faces ig0, 1}™ with at least one point witl in the
last coordinate are cubes. This follows immediately from ¢ondition of
the lemma. O

Lemma 2.21. Let N be ak-step nilspace. Then translations restricted to
~._1 classes are local translations.

Proof. It follows from lemmd2.B that ift ~j_1 y thena(x) ~r_1 a(y).
LemmalZ.ID shows that if the,_; classes ofr anda(z) are F} and I,
thena(z + a) = a(z) + « for an arbitrary element in the structure group
Ap. O

Lemma 2.22. If N is ak-step nilspace thefirans(V) is a group.

Proof. By induction onk and using lemmBaZ.21 we get that translations are
invertible transformations. We need to show that the irvefsa translation

« is again a translation. We go by induction bn Assume that we have
the statement fok — 1. Then in particular we have that the image of a
k dimensional cube undera—! is a cube module-;_;. This means by
lemmaZ2 thatv—!(c) is also inC*(N). Sincea(a'(c)) = c we obtain
that(a=1(c),c) € CF1(N). By lemmd2.2D applied with = 1 the proof

is complete. O
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2.11 Translation bundles

Let N be ak-step nilspace and letbe an elementifirans;(F;_1(N)). We
say thatw can be lifted tdIrans; (N) if there is an element’ € Trans;(N)
such thatr—1(¢/(n)) = a(mk—1(n)) holds for everyn € N. Recall that
mx—1 IS the projection toF;,_1 (N). Our goal is to understand when cate
lifted this way. We introduce a nilspace whose algebraipprtes decide if
there is such a lift or not.

Let7 = T(a, N, i) be the set of pairée, y) € N2 wherea(m—1(x)) =
mr—1(y). We interpret]” as a subset of thieth arrow space ove¥. Itis easy
to see that it > 7 + 1 then7 is an ergodic nilspace with the inherited cubic
structure.

We defineT* asFj—1 (7). We will use the next two algebraic properties
of 7*.

1. The groupd; x Ay acts on the spacg by
(z,y) = (z + a1,y + a2).

This action induces an action df, on7*. Fora,as € A, we have
that(z + a1,y + a2) ~k—1 (z,y) if and only if a1 = as. It follows
that the elements of * represent local translatiogs: F;, — F5 where
Fy, F; are~j_; classes inV with a(Fy) = Fs.

2. The map(z,y) — x creates a maff — N. Itinduces a mapy :
T — fk_l(N).

Combining these two facts one can see easily fiats a degreé: — 7
extension ofF;,_1 (N) by Ay.

Proposition 2.1. Let N be ak-step nilspace and. € Trans;(Fi_1(N)).
If 7% = T*(a, N,i) is a split extension then lifts to an elemenf3 €
Trans; (V).

Proof. Let v’ : Fr—1(N) — T* be a morphism such that o v is the
identity map. The element' (7,1 (z)) in 7* represents a local translation
from the~_; classF; of x to the classy(F}). Let 3(x) denote the image
of 2 under this local translation. We claim that the m&js in Trans; (V).
Leth : N — N x N be the map defined by(n) = (n,8(n)). According
to lemmd2.2D it is enough to show that for everg C*(N) we have that
co his a cube in the-th arrow space oV x N. Sincey’ is a morphism we
have thaty’(m_1(c)) is in C*(T*). By lemmdZR we obtain that any lift of
Y(mr_1(c)) to T isin C*(T). The pairs{(c(v), B(c(v)))|v € {0,1}*} form
such a lift. This shows thdt o ¢ in a cube inT. O

The condition of lemm&2l1 holds far if and only if 7o(a, N) is a
split extension. A way of checking the condition is to shoattthe cocycle
describing7y(«, N) as an extension of_, by A, is a coboundary.
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2.12 Nilpotency

Let N be ak-step nilspace. In this part we investigate the propertighe
groupsTrans; (V).

Lemma 2.23. We have thafTrans;(N), Trans;(N)] C Trans;; (V).

Proof. Let F be a face in{0, 1}"™ of codimension + j. ThenF = F; N F5
where F is a face of codimension and F; is a face of codimensiop.
Assume thaty; € Trans;(N) anday € Trans;(N). Then[al®, al?] =

[c1, )P, This implies that ife € C™(N) then[ay, a2]¥ (c) € C*(N). O

Corollary 2.6. The groupTrans(N) is k-nilpotent and{ Trans;(N)}** ! is
a central series in it.

Lemma 2.24. if k > i then the action ofi, is in Trans; (V).
Proof. It follows directly from theorerl1. O

Definition 2.17. We say that two cubes,ce € C™(N) are translation
equivalent ife; can be obtained from; be a sequence applications of oper-
ationsa!” wherea € Trans;(N) and F is a face in{0, 1}" of codimension

1. Note that the numbercan be different in the above operations. A cube is
called translation cube if it is translation equivalent tvia constant cube.

3 Compact nilspaces

In this part of the paper we study compact topological versiaf nilspaces.

Definition 3.1. A nilspace is called compact if all the set¢ (N) are sec-
ond countable Hausdorff topological spaces and the m?japsCm(N) —
C™(N) (defined in the introduction) are continuous for everyn € N and
morphismg : {0,1}" — {0,1}™.

An important consequence of compactness isHdtV) is compact for
everyk € N. Furthermore all the abelian groups occurring in thedremel a
compact abelian groups.

3.1 Haar measure on abelian bundles and nilspaces

Compactk-step nilspaces are generalizations of compact abeliampgrdt
will be important to generalize the normalized Haar measutbem. Recall
that the normalized Haar measure is a shift invariant Bar@bability mea-
sure. Such measures always exist on compact groups andréhegigue.
First we define the Haar measure for compact abelian bunidé g be
an A bundle over a sef and actiorny : AxT — T. Assume thaf’, S andA
are compact Hausdorff spacesis a topological group and is continuous.
Assume thaitS has a Borel probability measurg;. Then we introduce the

28



extensionu of ug as the unique Borel probability measureBrwhich is A
invariant. The measure can be defined through the property that

i) = | (s (5) N H) 3)

whereH is a Borel set off’ andr is the projection tc.

We define the Haar measure on a compatnld abelian bundle itera-
tively. If it is already defined fok — 1 fold bundles then we usEl(3) to extend
it from the factorl},_; to T},. We use theoref 1 to define (normalized) Haar
measures fok-step nilspaces.

By abusing the notation we will always denote the Haar meabuyi..
Since we never define two different measure on one strudtwit not cause
any problem.

The following fact is well known for compact abelian groups.

Lemma 3.1. Surjective continuous (affine) homomorphisms between com-
pact abelian groups are measure preserving.

We will need a generalization of this fact feffold compact abelian bun-
dles.

Lemma 3.2. Let¢ : T — T’ be a totally surjective continuous map be-
tween two compadi-fold abelian bundles. Thepi preserves the Haar mea-
sure. This means that for an arbitrary Borel S8t C 7" we haveu(H) =

p(¢~ (H)).

Proof. The proofis aninduction using lemial.1. The mdpduces a map
¢’ fromTy,_, to T} _,. If we know the statement fdr— 1 then¢’ is measure
preserving. On the other hand it is measure preserving ofildfess so the
integral in [3) is preserved. O

The next lemma follow directly form lemnia3.2 and lenima R.12

Lemma 3.3. Continuous fibre surjective morphisms betwgestep nilspaces
are measure preserving.

3.2 Fibre bundles

In this part we studyd bundles wherel is a compact abelian group of finite
dimension. We say that is of finite rank if the dual groupl is finitely
generated. It is well known that is of finite rank if and only if it is finite
dimensional. Finite rank compact abelian groups are dpemducts circles
(R/Z) and finite cyclic groups. Their dual groups are direct poidiof
cyclic groups. The main result in this chapter is the follogviemma.

Lemma 3.4. Let C be a compact second-countable Hausdorff topological
space which is aml bundle for some finite rank compact abelian group.
Then the bundle is locally trivial.
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Proof. Since A is of finite rank the dual groupl is the direct product of
finitely many, sayn, cyclic group. Let us pick generatoss, x2, - - -, Xn
one for each cyclic component. Note that the mapA — C™ defined by
7:(a) = xi(a) defines an isomorphism betweenand a subgroup of)"
whereQ is the unit circle (with multiplication) in the complex planlf the
dual group is torsion free ther(A) = Q™.

For everyl < i < n we introduce the averaging operatéyon the space
of continuous functions o6’ by

A(f)() = / @) () d

It is easy to see that the continuity gfimplies thatA4,;(f) is continuous. It
is also clear that

Ai(f) (@ + a) = Ai(f)(@)xi(a) 4)
holds for everyr € X, a € A.

Claim:If { f;}7_,is a system of continuous functions@such that4; (f;) (y) #
0 for everyl < i < n for somey € C theny has an open neighborhodd
such that is the union ofA orbits and the bundle restricted @ is trivial.

Let Uy = N {z|Ai(fi)(z) # 0}. Itis clear thatU; is an open set
containingy which is, by [4), the union ofl orbits. Let us introduce the map
¢ : C — Q" defined byp; (z) = A;(fi)(z)/|Ai(fi)(x)] onUy.

First note that if all the charactesg are of infinite order the o 7!
proves the triviality of the fibration restricted &6.

If x; is of finite order for some then the image of does not coincide
with 7(A) and so for everyl orbitz+ A in C' we will need a third map which
creates an affine isomorphism betwegm + A) andr(A). Furthermore we
need to choose these maps in a continuous way. Notéthat A) is always
of the formwr(A4) wherew € Q™. Our goal is to choosea € Q™ with
we(x + A) = 7(A) continuously for everyl orbit in a small neighborhood
of y.

Let I C [n] be the set of indicesfor which y; is of finite order and led;
be the composition of with the projection!™) — Q’. For everyz € U;
the imagey; (z+ A) is (affine) isomorphic to the torsion part df For every
e we can choose a neighborho@dof y insidelU; such that for every: € U,
the Hausdorff distance between(y + A) and¢;(z + A) is at most. If €
is smaller than half of the minimal distance insiflgy + A) then for every
x € U, there is a unique element € Q! (depending only on the orbit of
such thatp; (x)v is the nearest element iy (y + A) from ¢;(z). Itis clear
thatv, depends continuously on the orbit:aof Let v/, be the element i)™
whose coordinates ihare given by, and coordinates outsideare all1’s.
Now the mapr — 71 (v’ ¢(z)) proves the triviality of the fibration of..

x

Now we can finish the proof of the lemma. Itis enough to find tardus
functions{ f;}_, from C to C such that property in the claim holds. Let

30



us take a separating family of functiofig; }.c; on C. Then the functions

fl+ A — C defined byf!/(a) = fi(y + a) also form a separating family on

A. According to the Stone-Weierstrass theorem, for eyeey A there is an

elemeny in the function algebra generated §/ } ;< ; such thaf| x — g/| o <

1. This means thatg, x) # 0. We can use the same polynomial which

produceg; for the functions{ f;};c; and obtain a continuous functidnon

C' with the property thab(y + a) = g(a) for everya € A. Itis clear now

that the integray‘A x(a)h(y + a) du is not zero. This completes the proof.
O

3.3 Finite rank nilspaces and averaging

Let N be a compack-step nilspace. We have from theorEin 1 thais a
degreek-bundle with structure group4,, A,, ..., A;. The compactness of
N implies that the structure groups are compact abelian growe define
the rankrk (V') by

k
rk(N) = Z rk(A;)

whereA; is the Pontrjagin dual ofl; andrk(A4;) is the minimal number of
generators ofl;. According to lemm&3]4 we have that finite rank nilspaces
are iterated locally trivial fibrations of finite dimensidreompact abelian
groups. Topologically, they are finite dimensional marmfol

Finite rank abelian groups are direct products of finite disienal tori’s
and finite abelian groups. There is a natural way of metrizireg. For
two elements,y € R"/Z™ = T,, we define their distancé,(x, y) as the
minimal possible Euclidean distance between a preimageaatl a preimage
of y under the maR™ — R™/Z". If the abelian group is not connected then
points in different connected components have infiniteadise.

Let X; and X> be two Borel random variables taking values in a finite
rank compact abelian group. In general there is no natural way of defining
their expected values. However if they take values in smathéter sets in
A then there is a canonical way of defining their expected vaheit will
satisny(X1 + XQ) = E(Xl) + E(XQ)

Leta € T™ be an element anB, (a) be the open ball of radiusaround
a. Leta’ € R™ be an arbitrary preimage af under the homomorphism
R™ — T,,. If a Borel random variablé takes all its values if3; /4 (a) then
there is a unique way of lifting{ to a random variabl&’ on R™ in a way
that the values are closer thap4 to o’. We defineE(X) as the image of
E(X’) under the mafR™ — T,,. Itis easy to see th@t(X) does not depend
on the choice ofi. If m random variables take their values in sets of diameter
at mostl /5n then the additivity of the expected value is guaranteed.

The next lemma is an important application of averaging.
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Lemma 3.5. Let N bel-step nilspace andl be a finite rank abelian group.
Then there is an such that every Borel measurable cocyeleC**+1(N) —
A of degreek with d2(o(c), 0) < e for everye € C¥+1(M) is a coboundary.

Proof. We defineg : N — A by
g(m) = EceHomf({o,l}k+1,N)U(0)

wheref maps the point**! to m. The expected value makes sense because
o is always close t® and by lemm&2.16 the s&tom ({0, 1}**1, N)is a
sub-bundle inV{%1}*"" so the Haar measure gives a probability space.

We claim thato is a coboundary corresponding to the functipnlLet
c € C*¥1(N) be an arbitrary element. Let us use the notation of lelma 2.18
for an arbitrary morphisny : P — N andv € {—1,1}**! let us denote by
v, the restriction ofy to the cubel ;1 (v). Observe that ify| p, = ¢ then

o)=Y o))" ®)

ve{0,1}k+1

whereh(v) = > v;. By averaging the equation over the $&tm.(P, N)
and using lemm@a2.18 we obtain the claim. O

3.4 The Inverse limit theorem

Theorem 2 (Inverse limit theorem) Every k-step compact nilspace is an
inverse limit of finite rank nilspaces. The maps used in therse system are
all fiber surjective morphisms.

This whole chapter deals with the proof of this statement.

We prove the theorem by induction én If & = 0 then there is nothing
to prove. Assume that it is true fér— 1. Let NV be ak-step nilspace with
structure groupsl;, Ao, ..., Ag. ByinductionM = Fj_,(N) is the inverse
limit of a systemM; < M, < ... where the maps are all fiber surjective
morphisms. Let us denote bythe projection tal/; and letr be the projec-
tion N — M. Let Q; denote the collection of open sets of the fon’ﬁf(U)
whereU is open in)M;. SinceM is a compact Hausdorff space, its topology
is generated by the systef®,}° ;.

Since Ay is a compact abelian group we have tHatis the inverse limit
of finite rank compact abelian groups. This implies thatéhigia descending
chainA, = By > By > ... of subgroups with trivial intersection such that
each factord;, / B; is of finite rank. The nilspac# is the inverse limit of the
nilspacesV/B; and all the map&v — N/B; are fibre surjective. It follows
that it is enough to prove the theorem for the special casenwhe- Ay is
already of finite rank.

From theoreri 314 we have thatas anA-bundle is locally trivial. Letd
be a metrization olV. For an arbitrary epsilon and every poinE M we can
choose an open neighborhobg of p with the following three properties.
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1. there is a continuous cross sectign: U, — N aboveU,
2. Sp(U,) has diameter at most
3. Up € Qy(p) for somet(p) € N.

Itis clear that we can guarantee the first two properties.ldsteproperty
follows from the fact that the topology alf is generated by the topologies
onM;.

The compactness @ff implies that there are finitely many points ps, ..., pn
such thaf{U,, }1_, is a covering system af/. Lett = max{t(p;)}1-,. We
have that every set iU, }"_; isin Q;.

Now we can create a Borel measurable cross seétiond/ — N with
the following properties.

1. S'is continuous on every preimagg ' (v) wherev € M
2. The diameter of (7, *(v)) is at most for everyv € M.

This can be constructed by dividiny into the atoms of the Boolean
algebra generated By, }_; and then using one type of cross section for
each atom. The cross sectiSrgenerates a cocycle: C**1(M) — A on
M.

If e is small enough than we can guarantee that for any two atjbes €
CFHY(M) with ¢1 o 74 = ¢ o 7, We have

da(o(c1) — o(c2)) < ea. (6)

Let P = {0, 1}**1. We have by lemnma2.17 that the map Hom (P, M) —
Hom(P, M;) given by the restriction of/” to Hom(P, M) is totally surjec-
tive and preimages of elementstifom(P, M;) arek — 1-fold sub-bundles
of Hom(P, M). We define the function’ : C*+1(M) — A by

0'(c) = Evep1(8(e)) (0(c)))-

It makes sense to use the expected value becguse (6) intf@idstc’)|c’ €
B~1(B(c))} has small diameter if, is small enough. Note that we compute
the expected value according to the Haar measurgdij3(c)).

We claim thato’ is a cocycle onV/. This follows basically from the fact
that the cocycle axioms are all linear equations on cubeswdmsionk + 1
andk + 2 and expected value is additive. However we need to use thithfou
point of lemmd 2,17 to connect the probability spacek af2 dimensional
cubes and: + 1 dimensional cubes.

Now we have thap’ is a cocycle and sp” = ¢’ — g is also a cocycle.
We have by[(B) thatlz(0”(c),0) < e holds for everye € C¥*1(M). By
lemmd3b we get that” is a coboundary.

Since the difference of andy’ is a coboundary corresponding to a func-
tion g we have that by adding to our cross sectio® we get a new cross
sectionS’ such that the cocycle correspondingois equal tog’. The way
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we produceds’ (see the proof of lemnia3.5) guarantees that it is continuous
on the preimages of points i/; underr;. Let us define the map: N — A
by ¢(z) = = — S'(n(x)). We say that: ~, y for two elements,y € N if
T:(z) = 7(y) andg(z) = ¢(y). Itis now easy to see that, creates a factor
which is isomorphic to the extension &f,, with the cocycleo’. (Note that
o' can be interpreted as a cocycle bf.)

It is also clear that factoring by, provides a fibre surjective morphism
of N to a finite rank nilspace. By repeating the argument for sarfirife
increasing sequence 8§ the proof is complete.

3.5 Rigidity of morphisms

Let N and M be compact-step nilspaces and let be a metric onM
(metrizing its topology). We say that a map: N — M is ane-almost
morphism if for an arbitrary € C**1(N) there isc’ € C*¥T1(V) such that
d(co ¢,c") < e point wise.

An ¢ modification of a magy : N — M is another map)’ satisfying
d(¢(x),¢'(x)) < eforeveryz € N.

Theorem 3. For every finite rankk-step nilspacell with metricd there is
a functionf : R™ — R with lim, .o f(2) = 0 andeg > 0 such that if
¢ : N — M is a Borele-almost morphism with < ¢, from a compact
k-step nilspacéV to M then it can bef (¢)-modified to a morphisny’.

In the rest of this chapter we prove this theorem.

We go by induction ork. Fork = 0 there is nothing to prove. Assume
that we have the statement for- 1. The metricd induces another metri¢
on Fi_1(M) such that

d'(2',y") = min{d(z,y)|z,y € M, mp_1(x) =o', m_1(y) = y'}.

The assumption that is ane-morphism trivially implies that) o 731
is ane-morphism intoF;_;(M). By induction we canf’(e)-modify ¢’ to
get a morphismb, : N — Fj_1(M). Itis easy to see that there is a Borel
measurable lift ofs; to ¢35 : N — M which is an at most, = f/(€) + 2¢
almost-morphism.

Now we introduce an averaging process to get a funetioin the follow-
ing way. LetP, = {0, 1}*+1\ {1¥*1} be the corner of thé + 1 dimensional
cubeP. Using corollary 2.P and the fact that is a morphism we get thai;
takesk-dimensional cubes iV into k-dimensional cubes in/. This means
that for every morphism : P — N the compositiony| p, o ¢3 is @ morphism
of the cornerP,. For a morphismy : P — N We denote byQ () € M the
unique completion ofy| p, o ¢ in M.

Now we define

$4(z) = Eyctiom, (.8 (Q(Y))
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where f maps the point**! to z. The averaging makes sense because all
the elementsg) () are in the same fibre. H, is small enough then we can
average. Itis easy to see thatis continuous. It remains to show thaf is

a morphism.

According to lemm&2]7 we need to show tkat 1 dimensional cubes
map to cubes undey;. Letc € C*T1(N). LetTy ; be the3-cube embedded
into B = {0,1}2**2, Let By = w({0,1}**1) andB3 = T},1 \ B2. By
abusing the notation the cubean be interpreted as a functien B, — N.
For every element € Hom,(B, N) we denote byQ (k) € C**1(M) the
cube obtained by first taking the unique extension|gf, o ¢3 to @ morphism
B — M and then restricting it t@5. Now

c2 = Eyctiom, (B,n)Q(K)

makes sense #; is small enough and by theorém 1 it will be a cube. On the
other hand By lemma 2,118 we obtain that= c o ¢,.

3.6 Nilspaces as nilmanifolds

Let N be a compack-step nilspace. By abusing the notation we denote by
Trans(N) the set of translations of which are continuous functionsnftVvV
to N. A simple induction ork together with lemmBA2.21 shows that every
element ofTrans(/N) is measure preserving.

Let d be a metrization of the topology aN. This induces a metricon
Trans(N) defined by

t(g, h) = maxd(g(z), h(z)).
It is easy to see th&frans(N) is a Polish group with this metrization. Simi-
larly we will denote byTrans; (V) the set of continuous translations of hight
1.

From now on we assume that is a finite rankk-step nilspace. Our goal
is to show thafTrans(V) is a k-nilpotent Lie group which acts transitively
on the connected components/of

From lemmdZ.21 we obtain that,_; classes are imprimitivity do-
mains of Trans(/N). This means that the action eny,_; classes induces
a homomorphisnf, : Trans(N) — Trans(Fx_1(N)). It is clear that
h(Trans;(N)) C Trans;(Fx—1(N)). Let M = F,_1(N) and let us denote
the version of the metric onM by ¢'.

Lemma 3.6. Let i be a natural number. There is a positive number
0 such that ifa € Trans;(M) satisfiest'(o,1) < e then there isg €
Trans; (N) with h(53) = a.

Proof. The translation bundl§* = 7*(a, N,7) is ak — ¢ degree exten-
sion of M by A;. Our goal is to show it is small enough then the cocycle
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describing the extension is a coboundarye i$ small enough then we can
choose a Borel representative syst&rfor the fibres of the mag™ — M
such thatz,y) € T represents an element fhthend(z,y) < ez. A stan-
dard compactness argument shows that if small enough then the cocycle
corresponding te is also small. Then lemnia3.5 and lemimd 2.1 finish the
proof.

O

Lemma 3.7. Assume that > k. Then
ker(h) N Trans;(N) = hom(M, Dy—;(Ax)).

Proof. The elements oker(h) are those translations which stabilize every
~k—1 Cclass inN. It follows that if « € ker(h) then the mapy’ : = —
a(z) —x can be viewed as a map frohd to A.. LemmdZ.2D implies that’
arises this way if it is a homomorphism 61 to Dy (Ay). Itis easy to see
that if in additiona’ € Trans;(N) then itis a morphism t®;,_;(Ax). O

Lemma 3.8. Letk,r > 1 be two natural numbers and, B two compact
abelian groups. Assume that is finite dimensional. Then there is a con-
stante = e(r, B) > 0 such that if¢p € Hom(Dy(A),D,(B)) satisfies
d(o(x), ¢(y)) < eforeveryx,y € Atheng is a constant function.

Proof. Using thatHom(Dy(A), D,-(B)) € Hom(D;(A),D,(B)) we can
assumethat = 1. Let¢ be an arbitrary non-constant morphism frém(A)
to D,.(B).

For anyt € A and functionf : A — B we denote by\, f the function
x — f(x)— f(z+t). With this notation we have that ff € Hom(D;(A), D;(B))
then A, f € Hom(D;(A),D;—1(B)). for everyt € A. It follows that
A¢ to,...t,¢ IS constant for every-tuple of elements,ts,..., ¢, in A.
We obtain that there is a numbér< r and element$,¢s,...,t; € A
such thaty’ = Ay, 4,...+;¢ is non-constant buf\,¢’ is constant for every
t € A. Itfollows that¢' is a non-constant affine group homomorphism from
A to B. In particular there is a constantdepending only o3 such that
there arex,y € A with d(¢/(z),¢'(y)) > ¢. We get that if the variation
max, , d(¢(z), ¢(y)) is too small this is impossible. In other words there
is a non-zero lower bound (depending only Brandr) for the variation of

®. O

Corollary 3.1. Letr > 1 be a natural numbers an@ a compact finite
dimensional abelian groups. L&Y be ak-step compact nilspace. Then
there is a constant = e(r, B) > 0 such that if¢p € Hom(N,D,(B))
satisfiesi(¢(z), ¢(y)) < e for everyz,y € N theng is a constant function.

Proof. Assume thatl(¢(z), ¢(y)) < eforeveryx,y € N wheree = ¢(r, B)
is the constant from lemnia_3.8. We prove by inductionkahat ¢ is con-
stant.
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If ¥ = 1thenN is abelian and lemnia 3.8 finishes the proof. Assume that
the statement holds fdr — 1. We get from lemm@&-3]8 that is constant on
the~j_; classes ofV. This means thap can be regarded as a function on
Fr—1(N). Then our assumption finishes the proof. O

Lemma 3.9. The grougker(h) is a Lie group.

Proof. Letx € N be an arbitrary element and |&t be the stabilizer of
in ker(h). Then by lemm&3]7 we obtain thiatr(h) = F x Ay. It follows
from corollan[3.1 that" is discrete and sincd,, is a Lie-group the proof is
complete. O

Theorem 4. Leti be a natural number. Then the following statements hold.
1. Trans;(N) andTrans;(N)° are Lie groups,
2. h(Trans;(N)°) = Trans;(M)°.

Proof. We prove the statements by induction onlif £ = 1 thenN is an
abelian Lie-group and all statements are clear. Assumehbattatements
hold for k — 1. In particular we have thafrans; (M) is a Lie-group.

First we show that

Trans;(M)® C h(Trans;(N)) (7)

To see this we use thdtrans; (M) is a Lie group and so every element
a € Trans;(M)? is connected with the unit element with a continuous path
p : [0,1] — Trans;(M) with p(0) = 1 andp(l) = . Letn € N be
sufficiently big and lety; = p((i — 1)/n)"'p(i/n). Thena = [, a;.
Lemmal3.6 implies that if: is big enough then for every; there isp3; €
Trans;(N) with h(8;) = . Let 8 =[], ;. We have thab(3) = a.

The see the first statement we observe fhat (7) impliegitiatins; (NV))
is a Lie-group. It follows from lemmia3.9 thatans; (/) is an extension of
a Lie-group with a Lie-group. SincErans;(/N) is a Polish group we get that
it is a Lie-group.

Now we show the second statement. Sihde continuous we have that
h(Trans;(N)?) = h(Trans;(N))°. Equation[(¥) implies thafrans; (M )° C
h(Trans;(N))? and soTrans;(M)°? C h(Trans;(N)°). The other contain-
ment is trivial. O

Corollary 3.2. The actioriTrans(N)? is transitive on the connected compo-
nents ofiV.

Proof. By inductionTrans(M)° acts transitively on the connected compo-
nents ofM and furthermored;, C Trans(NV). By theoreniUTrans(M)° =
h(Trans(N)?). It follows that the groud” generated byl;, andTrans(N)°

is transitive on the connected components\of Since A? is a finite index
subgroup in4; we have thaflrans(/V)? is of finite index inT. This is
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only possible ifTrans(N)? is already transitive on the connected compo-
nents. O

Definition 3.2. A k-step nilspace is calletbrsion free if all the structure
groupsA; have torsion free dual groups.

Note that a compact finite dimensional abelian graupas torsion free
dual group if and only if4 is isomorphic tqR /Z)™ for some natural number
n.

Theorem 5. If N is finite rank torsion freg:-step nilspace the is a nil-
manifold with structure corresponding to the central sefi@rans; (N )°}5_;
in Trans(N)°.

Proof. We prove the statement by induction én If £ = 1 thenN is

an abelian group and the statement is trivial. Assume thist itue for

k — 1. Letz € N be any fixed point. From theore 4 and our induc-
tion hypothesis it follows that for every cukee C™(N) there is a cube
¢’ € C™(N) suchthat’ is translation equivalent with the constartube and
mr—1(c) = mr_1(c’). It follows from theorenil that — ¢’ € C"(Dy(Ag))-
Since A, C Transg(N) it is easy to that is translation equivalent with
with translations fromd,,. O
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