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Abstract

Recent developments in ergodic theory, additive combinatorics, higher
order Fourier analysis and number theory give a central roleto a class of
algebraic structures callednilmanifolds. In the present paper we continue a
program started by Host and Kra. We introducenilspacesas structures sat-
isfying a variant of the Host-Kra axiom system for parallelepiped structures.
We give a detailed structural analysis of abstract and compact topological
nilspaces. Among various results it will be proved that compact nilspaces are
inverse limits of finite dimensional ones. Then we show that finite dimen-
sional compact connected nilspaces are nilmanifolds. The theory of compact
nilspaces is a generalization of the theory of compact abelian groups. This
paper is the main algebraic tool in the second authors approach to Gowers’s
uniformity norms and higher order Fourier analysis.
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1 Introduction

We start with the formal definition ofk-step nilmanifolds.

Definition 1.1. LetL be ak-nilpotent Lie group. This means that thek-fold
iterated commutator

[. . . [[L,L], L], L . . . ]

is trivial. Let Γ be a co-compact subgroup inL. The left coset spaceN =
L/Γ is a compact topological space which is called ak-stepnilmanifold .

Nilmanifolds were first introduced and studied by Mal’cev [10] in 1951.
He proved many crucial facts which can be also found in the book [12].
Nilmanifolds are interesting from a purely geometric pointof view [7],[11].
However recent development [5],[6],[8],[18] shows their important role in
ergodic theory and additive combinatorics.

The main motivation for this paper comes from higher order Fourier anal-
ysis. Letf be a bounded measurable function on a compact abelian group
A. We denote by∆tf the functionx 7→ f(x)f(x + t). TheUk uniformity
norm off introduced by Gowers [3],[4] is defined by

‖f‖Uk
=

(

Et1,t2,...,tk∆t1,t2,...,tk(f)
)2−k

.

In particular it can be computed that

‖f‖U2
=

(

∑

χ∈Â

|(f, χ)|4
)1/4

whereÂ is the dual group ofA. This formula explains the behavior of the
U2 norm through ordinary Fourier analysis.

Based on results in ergodic theory [8],[18] it is expected that the behavior
of theUk norm is in some sense connected tok− 1 step nilmanifolds. How-
ever to clarify the precise connection (at least in the second author’s interpre-
tation) one needs a generalization ofk-step nilmanifolds that we callk-step
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nilspaces. (Another independent approach to this problem is announced in
[6] which deals with Gowers norms on cyclic groups)

Before giving the precise definition ofk-step nilspaces we give a list of
motivations and reasons to generalize nilmanifolds.

1. The structures which naturally arise in ergodic theory are not nilmani-
folds but inverse limits of them.

2. A k-step nilspace (even if it is a nilmanifold topologically) has an extra
algebraic structure which seems to be needed in Higher orderFourier
analysis.

3. In higher order Fourier analysis it will be convenient to study mor-
phisms between nilmanifolds and nilspaces. It turns out that nilspaces
are more natural for this purpose than nilmanifolds.

4. To study Gowers norms of functions on abelian groups with many
bounded order elements nilmanifolds are not enough.

5. Nilspaces are directly defined through a simple set of axioms. This
helps to separate the algebraic and analytic difficulty in Higher order
Fourier analysis.

6. Gowers norms can be naturally defined for functions on compact nil-
spaces. This means that the notion of Higher order Fourier analysis
naturally extends to them.

7. Related to the so-called limit theory for graphs and hypergraphs, in-
teresting limit notions can be defined for functions on abelian groups.
The limit objects are functions on nilspaces.

The axiom system of nilspaces is a variant of Host-Kra’s axiom system
[9] for parallelepiped structures. Roughly speaking, a nilspace is a structure
in which cubes of every dimension are defined and they behave in a very
similar way as in an abelian group. An abstractn-dimensional cube is the set
{0, 1}n. A cube morphismφ : {0, 1}n → {0, 1}m is a map which extends
to an affine homomorphism (a homomorphism plus a shift) fromZn to Zm.
A nilspace is a setN together with setsCn(N) ⊆ N{0,1}n

of n dimensional
cubesf : {0, 1}n → N for every integern ≥ 0 which satisfy the following
three axioms:

1. (composition): If φ : {0, 1}n → {0, 1}m is a morphism andf ∈
Cm(N) thenφ ◦ f ∈ Cn(N)

2. (ergodicity): C1(N) = N{0,1}.

3. (gluing): Let f : {0, 1}n \ 1n be a map whose restrictions ton −
1 dimensional faces containing0n are all cubes. Thenf extends to
{0, 1}n as an element inCn(N).

We don’t always assume the ergodicity axiom. IfN is not ergodic then
it can be decomposed into a disjoint union of ergodic nilspaces. We say that

3



N is a k-step nilspaceif in the gluing axiom the extension is unique for
n = k+1. It is not hard to see that1-step nilspaces are affine abelian groups
with the usual notion of cubes. A cubef : {0, 1}n → A in an abelian group
A is a map which extends to an affine homomorphism fromZn → A.

If a setN satisfies the first axiom (but not necessarily the others) then we
say thatN is acubespace. A morphism h : N → M between two cube-
spacesN andM is a cube preserving map. We require that for everyf ∈
Cn(N) the compositionf ◦ h is inCn(M). We denote byHom(N,M) the
set of morphisms betweenN andM . In particularCn(N) = Hom({0, 1}n, N).
With this notion we can introduce the categories of cubespaces and nilspaces.

Every morphismφ : {0, 1}n → {0, 1}m induces a map̂φ : Cm(N) →

Cn(N) such thatφ̂(f) = φ ◦ f . We say thatN is a compact nilspace if all
the setsCn(N) are compact, Hausdorff, second countable topological spaces
and the mapŝφ are all continuous. Morphisms between compact nilspaces
are required to be continuous.

The present paper consists of two parts. In the first part we study abstract
nilspaces and in the second part we study compact nilspaces.The main topics
in abstract nilspaces are the following:

1. For every natural numberk and nilspaceN we introduce a factor of
N which is ak-step nilspace. Then we prove basic properties of these
factors.

2. We give a structure theorem fork-step nilspaces in terms of iterated
abelian bundles.

3. We introduce a cohomology theory for extensions of nilspaces.

4. We study a sequence of groupsTransi(N) acting on ak-step nilspace
N . They form a central series in thek-nilpotent groupTrans1(N).

The main topics in compact nilspaces are the following:

1. We generalize the concept of Haar measure fork-step compact nil-
spaces.

2. We prove a rigidity result for morphisms. This means that almost mor-
phisms into finite dimensional nilspaces can be corrected into precise
morphisms.

3. We show that ak-step compact nilspace is the inverse limit of finite
dimensional ones.

4. We show that a finite dimensional compact nilspace consists of con-
nected components that are nilmanifolds. In particular connected finite
dimensional nilspaces are nilmanifolds.
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To complete the picture about nilspaces we put in a chapter about cat-
egory theoretic aspects of nilspaces. This is important forfurther general-
izations in the subject. However proofs in the paper don’t use the category
theoretic terminology.

1.1 The role of nilspaces in Higher order Fourier analysis

This chapter is a short announcement of the upcoming paper [16]. The main
goal in [16] is to give structure theorems for functions on compact abelian
groups in terms of Gowers’s uniformity norms. To be more precise letf :
A → C be a measurable function on the compact abelian groupA such that
|f | ≤ 1. The goal is to decomposef as

f = fs + fe + fr

wherefs is a structured part of bounded complexity,fe is an error with small
L2 norm andfr is quasi random with very smallUk norm. We will refer to
this decomposition as theUk-regularity lemma. (We omit here the precise
statement) Note that the quadratic case (k = 3) was settled for arbitrary finite
abelian groups in [15]. Of course the main question is the following.

What kind of structure is encoded infs?

It will turn out in [16] that fs is the composition of two functionsψ :
A→ N andg : N → C whereN is a compact finite dimensionalk− 1-step
nilspace of bounded complexity,ψ is a nilspace morphism andg is Lipschitz
with bounded constant. (We omit here the definition of the complexity of a
nilspace.)

The proof of the decomposition theorem is based on a decomposition
theorem on ultra product groups. LetA be the ultra product of finite (or more
generally compact) abelian groups. One can introduce a natural measure
space structure onA and aσ-topology (like a topology but only countable
unions of open sets need be open). A topological factor ofA is given by
a surjective continuous mapf : A → T (called factor map) whereT is a
separable compact Hausdorff space. (Such a factor can also be viewed as
an equivalence relation onA whose classes are the fibres off .) Every such
factor inherits a cubespace structure fromA by composing the cubes inA
with the factor mapf . A nilspace factorof A is a topological factor ofA
whose inherited cubespace structure satisfies the nilspaceaxioms.

The non-standardUk-regularity lemma is much simpler and cleaner than
the standard one. It says the following.

Non-standardUk-regularity lemma: Every measurable functionf : A→
C with ‖f‖∞ ≤ ∞ can be (uniquely) decomposed asf = fn + fr where
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‖fr‖Uk
= 0 andfs is Borel measurable in a compactk − 1 step nilspace

factor.

Note thatUk is only a semi-norm onA so it is possible thatfr is not0
but‖fr‖Uk

is 0. The non-standardUk-regularity lemma implies the ordinary
one using the rigidity theorem for morphisms proved in the present paper.
One can give restrictions on the structure of the nilspace factors if the abelian
groups (that we take the ultra product of) are chosen from a special families
(for example exponent2 groups). We don’t discuss the details of this here.

Limits of functions on abelian groups:Quite interestingly the non-standard
Uk-regularity lemma can also be used for a different purpose. For every fixed
natural numberk, one can introduce limit objects for functions on finite (or
compact) abelian groups which are measurable functions on compactk-step
nilspaces. We demonstrate the convergence notion in a simplified version
where the functions are{0, 1} valued. This means that they can be viewed
as subsets in abelian groups. For a subsetS ⊆ A in an abelian groupA we
introduce ak + 1 uniform hypergraph on the vertex setA whose edges are
thek+1 tuples(x1, x2, . . . , xk+1) inAk+1 satisfying

∑k+1
i=1 xi ∈ S. We say

that a sequence of subsets{Si}
∞
i=1 in abelian groups{Ai}

∞
i=1 isk-convergent

if the correspondingk + 1-uniform hypergraphs converge in the sense of
[2]. The non-standardUk+1-regularity lemma implies that the appropriate
limit objects for this convergence notion are measurable functions onk-step
compact nilspaces. Note that as a special case we get limit objects for Cayley
graphs in commutative groups.Limits of Cayley graphs in general (not
necessarily commutative) groups are analyzed in [17]. It isproved that the
limit of Cayley graphs is a Cayley graphon of a compact topological group.

1.2 Nilmanifolds as nilspaces

LetG be an at mostk-nilpotent group. Let{Gi}
k+1
i=1 be a central series with

Gk+1 = {1},G1 = G and[Gi, Gj ] ⊆ Gi+j . We define a cubic structure on
G which depends on the given central series. The set ofn dimensional cubes
f : {0, 1}n → G is the smallest set satisfying the following properties.

1. The constant1 map is a cube,

2. If f : {0, 1}n → G is a cube andg ∈ Gi then the functionf ′ obtained
fromf by multiplying the values on some(n−i)-dimensional face from
the left byg is a cube.

This definition builds up cubes by a generating system. However there is
another way of describing them through equations. For everyn we introduce
an orderinggn : {0, 1}n → {1, 2, . . . , 2n} in the following way. Ifn = 1
theng1(0) = 1, g1(1) = 2. If n > 1 then

gn(a1, a2, . . . , an) = gn−1(a1, a2, . . . , an−1)
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if an = 0 and

gn(a1, a2, . . . , an) = 2n + 1− gn−1(a1, a2, . . . , an−1)

if an = 1. It is clear that (a cyclic version of) this ordering defines aHamil-
tonian cycle of the one dimensional skeleton of{0, 1}n.

Definition 1.2. LetG be a group andf : {0, 1}n → G. We say thatf satisfy
theGray code property if

2n
∏

i=1

f(g−1
n (i))(−1)i = 1.

A function f : {0, 1}n → G is a cube if for everyi ∈ N and i-
dimensional faceF the restriction off to F satisfies the Gray code prop-
erty moduloGi. If i ≥ k + 1 then we defineG1 to be trivial. An easy
induction shows that cubes inG defined as above are symmetric under the
automorphisms of{0, 1}n.

Assume thatG has a transitive action on a setN . Then we say that
f : {0, 1}n → N is a cube iff(v) = xf

′(v) wheref ′ : {0, 1}n → G is a
cube andx ∈ N is a fixed element.

1.3 The category of nilspaces

The definition of nilspace presented in the introduction implicitly makes use
of what we call thecategory of discrete cubes: the category whose objects are
the sets of the form{0, 1}n and whose morphisms{0, 1}m → {0, 1}n are
those functions which are restrictions of some affine homomorphismZm →
Zn. There are two other descriptions of the morphisms of the category which
are easily seen to be equivalent to this description:

1. f : {0, 1}m → {0, 1}n is a morphism of discrete cubes iff it can be
written asf(x1, . . . , xm) = (y1, . . . , yn) where eachyi is either0, 1,
xj or 1− xj for somej (depending oni).

2. We can think of{0, 1}n as the set of all characteristic vectors of sub-
sets of{1, . . . , n}. A functionf : {0, 1}m → {0, 1}n is a morphism
sending(0, . . . , 0) to (0, . . . , 0) iff, regarded as a function from sub-
sets of{1, . . . ,m} to subsets of{1, . . . , n}, it sends disjoint unions to
disjoint unions. A general morphism (one not necessarily sending0 to
0) is of the formf(A) = g(A) ⊕ S whereg is a morphism sending
0 to 0, S is some subset of{1, . . . ,m}, and⊕ denotes the symmetric
difference of sets.

We can rephrase the definition of nilspace in category theoretical terms
using this category of discrete cubes. To begin, the condition that cubes in a
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nilspace be closed under composition with morphisms of discrete cubes says
that given a nilspaceN , the assignment

{0, 1}n 7→ Cn(N) = the set ofn-cubes inN,

is the object part of a contravariant functor from the category Cubes of dis-
crete cubes to the category of sets (on a morphismβ the functor gives the
function of composition withβ). In category theory, contravariant functors
from a categoryC to the category of sets are often calledpresheaves onC.
The collection of all presheaves onC forms a category in which the mor-
phisms are just the natural transformations of functors, and after recasting
nilspaces as presheaves satisfying certain conditions we will indeed organize
them into a category by simply taking all natural transformations between
them as morphisms. From this point of view it also makes senseto talk about
morphisms from arbitrary presheaves onCubes into nilspaces, and we will
occasionally do so.

To say which presheaves onCubes arise from nilspaces, consider an
abstract presheafF : Cubes → Sets. If it did come from a nilspace,
we could recover the set of points asN := F ({0, 1}0). (Well almost: the
definition does not require every point of the underlying setof the nilspace to
actually appear as a vertex in any cube. Of course, those points that are not
vertices of cubes are totally irrelevant and can be ignored,or, say, assumed
to not exist.) Also, given any abstractn-cubec ∈ F ({0, 1}n), we could
recover the function{0, 1}n → N that corresponds toc by using all the2n

morphisms from the0-dimensional cube to then-dimensional one: namely,
if for any p ∈ {0, 1}n, we denote byιp the morphism in the category of
discrete cubes sending{0, 1}0 to p ∈ {0, 1}n, then the cubec corresponds to
the function{0, 1}n → N given byp 7→ F (ιp)(c).

Definition 1.3. We say that a presheafF : Cubes
op → Sets is determined

by its pointsif for anyn, the function

F ({0, 1}n)→
(

F ({0, 1}0)
)2n

whose coordinates are theF (ιp) for p ∈ {0, 1}n is injective.

A morphism between presheaves determined by their points isjust a func-
tion between their point sets that sends cubes to cubes. So these presheaves
are exactly the cubespaces from the introduction.

Remark 1.1. The property of being determined by points is analogous to
(part of) the difference between a simplicial complex and a∆-complex: in a
simplicial complex each simplex is determined by the set of its vertices, while
in a general∆-complex this is not the case, and, for example, two simplices
can share their boundary.

Remark 1.2. Presheaves onCubes are closely related to what are called
cubical setsin the algebraic topology literature (see e.g., the work of Brown
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and Higgins on strictω-groupoids, or the recent book [1]). Our category of
discrete cubes has a subcategoryCubes0 with the same objects but whose
only morphisms are those given by formulas of the form(x1, . . . , xm) 7→
(y1, . . . , yn) where eachyi is either0, 1 or xj for somej depending oni
such that the sequence ofj’s used is strictly increasing. This subcategory is
generated by projections and embeddings of cubes into higher dimensional
ones as faces. A cubical set is precisely a presheaf on this categoryCubes0,
which means that each presheafF onCubes gives rise to a cubical set by
composition:

Cubes
op
0 →֒ Cubes

op F
−→ Sets.

Now we will restate the glueing property from the definition of nilspaces
in a more geometrical language. This will be immediately clear to readers
familiar with either cubical complexes or simplicial sets in algebraic topol-
ogy.

Presheaves on any base category can be thought of in a geometrical way
as some sort of complexes built out of objects of the base category by gluing
along morphisms. So, just like cubical complexes, presheaves onCubes

are geometric objects that are built out of cubes. As a very simple example,
each cube can be regarded as a representable presheaf: then-cube is the con-
travariant functor{0, 1}m 7→ HomCubes({0, 1}m, {0, 1}n). The Yoneda
lemma says that given an arbitrary presheafF on Cubes, the set of mor-
phisms from thisn-cube toF is in bijection withF ({0, 1}n), which is what
we previously called the set ofn-cubes inF .

Now we will define a presheaf that corresponds to acorner of a cube,
i.e., a cube minus one point:{0, 1}n \ {(1, 1, . . . , 1)}. Such an object can
be obtained by glueing togethern different (n − 1)-cubes along(n − 2)
dimensional faces. Categorically, this means then-corner is the colimit of
the relevant diagram of(n − 2)- and(n − 1)-cubes. A simple alternative
explicit description is as follows: the corner as a subset of{0, 1}n is the
union of the images of the face embeddingsαi,n : {0, 1}n−1 → {0, 1}n,
αi,n(x1, . . . , xn−1) = (x1, . . . , xi−1, 0, xi, . . . , xn), so we can define the
n-corner as the presheaf of maps that factor through one of these:

{0, 1}m 7→ {γ : {0, 1}m → {0, 1}n | γ factors through someαi,n}.

One can easily check that this has the desired property that morphisms of
presheaves from then-corner to an arbitrary presheafF are in bijection with
n-tuples(c1, . . . , cn) of (n−1)-cubes ofF (that is, eachci ∈ F ({0, 1}n−1))
that fit together to form a corner, i.e., tuples such thatF (αi,n−1)(cj) =
F (αj+1,n−1)(ci) for all i ≤ j. Also notice that ifF is a presheaf determined
by its points, a morphism from then-corner intoF is simply a function from
{0, 1}n \ {(1, 1, . . . , 1)} to the set of points ofF , such that the restrictions to
all (n− 1)-dimensional faces of the corner are(n− 1)-cubes ofF .

The glueing condition in term of presheaves simply says thatany mor-
phism of presheaves (that is, any natural transformation) from the corner of
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ann-cube to a nilspace, can be extended to a morphism from the whole n-
cube.

Remark 1.3. The glueing property is reminiscent of the Kan condition for
simplicial sets in algebraic topology. For those familiar with cubical sets
it should be pointed out that this extension condition is notthe same as the
condition for a cubical set to be fibrant: that every morphismfrom a cube
without the interior and without one face can be extended to the whole cube.

Finally, note that erodicity is also an extension condition. One can de-
fine a presheaf that corresponds to two disjoint points (namely, this is the
non-erogodic nilspace with two points and only constant maps as cubes).
This embeds into the representable presheaf given by{0, 1}1 and ergodic-
ity simply means that any morphism from the pair of points extends to the
1-dimensional cube.

2 Abstract nilspaces

2.1 Notation and basics

When composing two functionsf andg we will use the notation(f ◦ g)(x)
for g(f(x)).

Let N be a nilspace. For a natural numberk we denote the set ofk-
dimensional cubes inN by Ck(N). In Zk we denote by0k and1k the ev-
erywhere0 and everywhere1 vectors. IfS is a finite set andh is a subset of
S then we denote by{0, 1}Sh the set of vectors supported onh which can be
regarded as the discrete cube of dimension|h| is the obvious way.

Definition 2.1. LetS be a finite set andH be an arbitrary set system inS.
The collection of all cube morphisms

{f : {0, 1}n → {0, 1}Sh | n ∈ N, h ∈ H}

defines a presheaf structure on∪h∈H{0, 1}Sh . Cubic presheaves arising this
way will be calledsimplicial.

Note that without loss of generality we can assume thatH is downwards
closed. This means that ifh ∈ H then every subset ofh is also inH . Such
set systems are called simplicial complexes.

The above construction produces a cubespace for every simplicial com-
plex. It is not quite a functor from simplicial complexes to cubespaces:
any dimension-preserving simplicial map between simplicial complexes pro-
duces a morphism between the corresponding cubespaces, butmaps that
identify two vertices of a single simplex do not induce a morphism.

Lemma 2.1(Simplicial gluing). LetN be a nilspace,S a finite set andP be
a simplicial presheaf corresponding to a set systemH . Then any morphism
f : P → N extends to a morphismf2 : {0, 1}S → N of the full cube
{0, 1}S.
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Proof. We assume thatH is a simplicial complex. IfH is the full complex
of subsets inS then there is nothing to prove. IfH is not the full complex
then there is a seth′ which is not inH but every subset ofh′ is contained
in H . LetH ′ = H ∪ {h′} be a new simplicial complex. The gluing axiom
guarantees that we can extendf to∪h∈H′{0, 1}Sh with the presheaf structure
corresponding toH ′. By iterating this step we can extendf to the full cube.

2.2 Operations with nilspaces

If N1 andN2 are nilspaces then we define theirdirect product as the nilspace
N1 × N2 whose cubes are functionsf : {0, 1}n → N1 × N2 such that the
projectionsf1 andf2 to the direct components are both cubes. (Ergodicity
and the gluing axiom hold automatically forN1 ×N2.

If N is a nilspace then the previous construction yields a nilspace struc-
ture onN × N . However there is another interesting cubic structure on
N ×N and we will refer to it as thearrow space. In this construction a map
f1×f2 : {0, 1}n → N×N is a cube if the functionf ′ : {0, 1}n+1 → N de-
fined byf ′(v, 0) = f1(v), f

′(v, 1) = f2(v) is a cube inN . The arrow space
has fewer cubes than the direct product. The arrow space is not necessarily
ergodic but lemma 2.1 implies that it satisfies the gluing axiom and so all its
ergodic components are nilspaces.

We will also need the following variants of arrow spaces. Thei-th ar-
row space is a (not necessarily ergodic) nilspace onN × N . Let f1, f2 :
{0, 1}n → N be two maps. We denote by(f1, f2)i the mapg : {0, 1}n+i →
N such thatg(v, w) = f1(v) if w ∈ {0, 1}i \ {1i} andg(v, w) = f2(v) if
w = 1i. If f : {0, 1}n → N × N is a single map with componentsf1, f2
then we denote by(f)i the map(f1, f2)i. A mapf : {0, 1}n → N ×N is a
cube in thei-th arrow space if(f)i is a cube inN .

2.3 The 3-cubes

In this section we define a class of cube spaces which will be useful in many
calculations. These will simply ben-cubes of side length two, divided into
unit cubes. (They are called 3-cubes because they have 3 vertices on each
side). We will typically use them to form new cubes in a nilspace by glueing
together other cubes into a 3-cube and taking the outer vertices, as justified
in Lemma 2.2 below.

LetTn = {−1, 0, 1}n. For every vectorv = (v1, v2, . . . , vn) ∈ {−1, 1}n

we define the cube

Ψ(v) =
n
∏

i=1

{0, vi}

in Tn. The cubes of the formΨ(v) span a cubespace structure onTn (this
just means that theN -cubes ofTn are taken to be the maps{0, 1}N → Tn
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that factor through the inclusion of someΨ(v)). Note that in terms of the
direct product introduced above,Tn is just(T1)n.

Let f : {−1, 0, 1} → {0, 1} be a function such thatf(0) = 0. Then
fn : {−1, 0, 1}n→ {0, 1}n is a morphism.

Similarly, let f be the functionf(1) = (1, 0), f(0) = (0, 0), f(−1) =
(0, 1). Thenq = fn is an embedding ofTn into the2n dimensional cube
{0, 1}2n. By abusing the notation we will identifyTn with the subsetq(Tn)
in {0, 1}2n.

Finally, let ω : {0, 1}n → Tn be equal tofn wheref(0) = −1 and
f(1) = 1. SinceTn is a subset of{0, 1}2n we can regardω as a map from
{0, 1}n to {0, 1}2n.

Lemma 2.2. Letm : Tn → N be a morphism into a nilspaceN . Then the
compositionω ◦m is inCn(N).

Proof. It is clear thatTn is simplicial in{0, 1}2n so by lemma 2.1 the map
m extends to{0, 1}2n. On the other handω is a cube morphism of{0, 1}n

into {0, 1}2n.

2.4 Characteristic factors

LetN be a nilspace. A congruence of aN is an equivalence relation∼ onN
such that the cube space onN/ ∼ induced by the mapN → N/ ∼ satisfies
the nilspace axioms. The nilspaceN/ ∼ obtained this way will be called a
factor ofN . In this section we introduce factors of nil-spaces that arecrucial
building blocks of them.

Definition 2.2. Let∼k be the relation defined through the property thatx ∼k

y if and only if there are two cubesc1, c2 ∈ Ck+1(N) such thatc1(1k+1) =
x, c2(1

k+1) = y and c1(v) = c2(v) for every elementv ∈ {0, 1}k+1 \
{1k+1}.

The relation∼k is obviously reflexive and symmetric. The next lemma
will imply transitivity.

Lemma 2.3. Two elementsx, y ∈ N satisfyx ∼k y if and only if there
is a cubec ∈ Ck+1(N) such thatc(1k+1) = y and c(v) = x for all v ∈
{0, 1}k+1 \ {1k+1}.

Proof. Let c1, c2 be two cubes satisfying the condition in definition 2.2. Let
us define the mapφ = fk+1 : Tk+1 → {0, 1}k+1 on the 3-cubeTk+1 where
f(−1) = 1, f(0) = 0, f(1) = 1. We denote byg : Tk+1 → N the function
which is obtained fromφ ◦ c1 by modifying the value on1k+1 from x to y.
The condition onc1 andc2 guarantees thatg is a morphism. Using lemma
2.2 we get thatω ◦ g is inCk+1(N).

Corollary 2.1. The relation∼k is an equivalence relation for everyk ∈ N

and nilspaceN .
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Proof. Assume that inN three elements satisfyx ∼k y andy ∼k z. then
by symmetry and lemma 2.3 we obtain that there are two cubesc1, c2 ∈
Ck+1(N) such thatc1(1k+1) = x, c2(1

k+1) = z andc1(v) = c2(v) = y for
everyv 6= 1k+1. This means thatx ∼k z.

Lemma 2.4. Two elementsx, y ∈ N satisfyx ∼k y if and only if for every
cubec1 ∈ Ck+1(N) with c1(0

k+1) = x the mapc2 : {0, 1}k+1 → N
satisfying

c2(0
k+1) = y and c2(v) = c1(v) ∀ v ∈ {0, 1}

k+1 \ {0k+1}

is inCk+1(N).

Proof. Let φ = fk+1 : Tk+1 → {0, 1}k+1 wheref(−1) = 0, f(0) =
0, f(1) = 1. Let g : Tk+1 → N be the function obtained fromφ ◦ c1 by
modifying the value on(−1)k+1 from x to y. Lemma 2.3 guarantees that
g is a morphism. According to lemma 2.2 the composition ofω andg is in
Ck+1(N). On the other handc2 = ω ◦ g.

Corollary 2.2. For everyk ∈ N and cubec ∈ Ck+1(N) we have that if a
functionc2 : {0, 1}k+1 → N satisfiesc(v) ∼k c2(v) for everyv ∈ {0, 1}k+1

thenc2 ∈ Ck+1(N).

Proof. We get the statement by iterating lemma 2.4. Note that by the symme-
tries of cubes the vector0k+1 can be replaced by any other vector in lemma
2.4.

Corollary 2.3. A cubec ∈ Cn(N/ ∼k) is uniquely determined by the ele-
mentsc(v) wherev ∈ {0, 1}n contains at mostk one’s.

Proof. For n = k + 1 it follows directly from corollary 2.2. Ifn > k +
1 then straightforward induction on the number of one’s inv complete the
proof.

Lemma 2.5. For everyk ∈ N and nilspaceN the equivalence relation∼k

is a congruence.

Proof. Let M = N/ ∼k with the induced cubespace structure. It is clear
thatM satisfies the ergodicity property. We need to check the gluing axiom.
Let f : {0, 1}n \ {1n} →M be a map which is a morphism of the corner of
then dimensional cube to the presheafM . We need to show thatf extends
to the whole cube{0, 1}n as a morphism. LetT be the subset in{0, 1}n

of vectors with at mostk + 1 one’s in the coordinates. Corollary 2.2 shows
that the restriction off to T can be lifted fromM toN as a morphism. Let
f̄ denote a lift. Lemma 2.1 implies that̄f extends to a morphism̄f2 of the
whole cube{0, 1}n to N . It is easy to see that the composition (call itf2)
of f̄2 with the factor mapπ : N → M is equal tof when restricted to
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{0, 1}n \ {1n}. Now corollary 2.3 shows that the restriction off2 to each
face in{0, 1}n of dimensionn − 1 and containing0n is equal tof . This
completes the proof.

Definition 2.3. For a nilspaceN we denote byFk(N) the factorN/ ∼k.
We say thatN is ak-step nilspaceif N = Fk(N).

Another way of formulating the previous definition is thatN is ak-step
nilspace if and only if every morphism of the corner of thek + 1 cube toN
extends in a unique way to a morphism of thek + 1 dimensional cube. In
other words the gluing axiom fork+1 dimensional cubes holds in a stronger
form where uniqueness of the extension is guaranteed. Note that thisunique
closing propertyalso appears in the Host-Kra theory of parallelepiped struc-
tures.

Definition 2.4. We say that a cubespaceP has thelifting property if for
every nilspaceN and natural numberk we have that every morphismφ :
P → Fk(N) has a liftφ′ : P → Fk+1(N) such thatφ = φ′ modulo∼k.

Lemma 2.6. Every simplicial cubespaceP has the lifting property.

Proof. Lemma 2.1 shows that ifφ : P → Fk(N) is a morphism then it
extend to a morphism of the corresponding cube. On the other hand cubes
have the lifting property by the definition of the cubespace structure onFk.

Lemma 2.7. Let N be ak-step nilspace andn ≥ k + 2. A functionc :
{0, 1}n → N is inCn(N) if and only if its restrictions tok+ 1 dimensional
faces with at least one point with0 in the last coordinate are all inCk+1(N).

Proof. Let P be the set of elements in{0, 1}n with at mostk ones. Note
thatP is the union of thek-dimensional faces containing0n. The condition
of the lemma implies thatc restricted to such faces are cubes. Using lemma
2.1 and the fact thatN is k-step we get that there is a unique elementc′ in
Cn(N) whose restriction toP is equal to the restriction ofc toP . We claim
thatc = c′. Let t be the maximal integer such thatc = c′ on every element
v ∈ {0, 1}n with at mostt ones in its coordinates. By contradiction assume
thatt < n. Then there is an elementw ∈ {0, 1}n with t + 1 ones such that
c′(w) 6= c(w). Sincet > k It can be seen thatw is contained in ak + 1
dimensional faceF such that every element inF \ {w} has at mostt ones
and furthermore there is at least one point ifF with 0 in its last coordinates.
Such a face can be found by choosing the lastk+1 elements from the support
of w and then changing those coordinates inw.

We know that the restriction ofc toF is inCk+1(N). Since there is only
one way of completingF \ {w} to a cube the proof is complete.
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2.5 Linear and higher degree abelian groups

We will see that abelian groups appear in the structures of nilspaces in various
ways as building blocks. Every abelian groupA has a natural nilspace struc-
ture that we call “linear”. Cubes inCn(A) are functionsf : {0, 1}n → A
satisfying

f(e1, e2, . . . , en) = a0 +
∑

i=1

eiai (1)

for some elementsa0, a1, . . . , an ∈ A. There is however another way of de-
scribing these functions. Iff satisfies (1) then every morphismφ : {0, 1}2 →
{0, 1}n in Cubes satisfies the property that

f(φ(0, 0))− f(φ(0, 1))− f(φ(1, 0)) + f(φ(1, 1)) = 0

and it is easy to see that it gives an alternative characterization for linear
cubes. The advantage of the second description is that it canbe naturally
generalized. For an arbitrary mapf : {0, 1}n → A to an abelian group let us
introduce the weight off by

w(f) =
∑

v∈{0,1}n

f(v)(−1)h(v) (2)

whereh(v) =
∑n

i=1 vi.

Definition 2.5. For everyk ∈ N and abelian groupA let us define the
nilspaceDk(A) on the point setA in the following way. A mapf : {0, 1}n →
A is in Cn(Dk(A)) if and only if for every morphismφ : {0, 1}k+1 →
{0, 1}n we have thatw(φ ◦ f) = 0. We say thatDk(A) is thek-th degree
structure onA.

To check the gluing axiom inDk(A) is a straightforward calculation.

Lemma 2.8. One step nilspaces are affine abelian groups with the linear
nilspace structure.

Proof. LetN be a one step nilspace. Let us distinguish an arbitrary element
e ∈ N and call it identity. For everyx, y ∈ N we definex+ y as the unique
extension of the morphism defined byf(0, 0) = e, f(1, 0) = x, f(0, 1) = y
(of the corner of the two dimensional cube) to(1, 1). We need to check the
abalian group axioms.

Commutativity of+ follows directly from the symmetry of{0, 1}2 inter-
changing(1, 0) and(0, 1).

If x, y, z ∈ N the we can extend the mapg(0, 0, 0) = e, g(1, 0, 0) =
x, g(0, 1, 0) = y, g(0, 0, 1) = z to the full cube{0, 1}3. Let g2 denote
the extension. The composition ofg2 by the mapsφ1, φ2 : {0, 1}2 →
{0, 1}3 , φ1(a, b) = (a, a, b) andφ2(a, b) = (a, b, b) shows associativity.

If f(0, 0) = x, f(1, 0) = e, f(0, 1) = e then the unique extensiony =
f(1, 1) satisfiesx+ y = e.
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A generalization of the previous lemma will be important.

Definition 2.6. LetN be a nilspace andx ∈ N . Then we define a cube-
space∂x(N) on the point set ofN such thatf : {0, 1}n → N is a cube
in ∂x(N) if and only if the mapf ′ : {0, 1}n+1 → N defined byf ′(v, 0) =
f(v), f ′(v, 1) = x is a cube inN .

It is easy to see from lemma 2.1 that∂x(N) satisfies the gluing axiom
however it is not necessarily ergodic. Nevertheless ifN is ak-step nilspace
then clearly all the ergodic components of∂x(N) arek − 1 step nilspaces.

Lemma 2.9. If a k-step nilspaceN satisfies thatx ∼k−1 y for everyx, y ∈
N thenN is isomorphic toDk(A) for some abelian groupA.

Proof. We use induction onk. Lemma 2.8 shows the statement fork = 1.
Assume thatk ≥ 2 and the statement is already proved fork − 1. Let e be a
fixed element inN . After k − 1 repeated applications ofδe toN we obtain
a 1-step nilspace∂k−1

e N . The condition thatN is a single class of∼k−1

implies by lemma 2.2 that every functionf : {0, 1}k → N is a cube. In
particular∂k−1

e N is ergodic. Lemma 2.8 implies that∂k−1
e N is isomorphic

to an abelian groupA with the linear structure.
Let M be the arrow space overN . Sincek ≥ 2 we have thatM is

ergodic. Cubes of dimensionk + 1 in N are in a one to one correspondence
with cubes of dimensionk inM . We claim that two arrowsx = (x1, x2) and
y = (y1, y2) in M are∼k−1 equivalent if and only ifx1 − x2 = y1 − y2 in
A. First notice thatM is in a single∼k−2 class and so the factorFk−1(M)
satisfies the condition of the lemma withk − 1. Let f : {0, 1}k →M be the
map defined in a way thatf(0k) = x, f(1, 0, 0, . . . , 0) = y andf(v) = e
everywhere else. The induction hypothesis guarantees thatx = y in the
factorFk−1(M) if and only if f is a cube inM . This shows thatx ∼k−1 y
if and only if x1, x2, y1, y2 form a two dimensional cube in∂k−1

e (N) = A.
This proves the claim.

We obtain from the claim that ifc ∈ Ck+1(N) is an arbitrary cube then
if we add the same element ina ∈ A to thec values of two endpoints of an
arbitrary edge in{0, 1}k+1 then the resulting new function is still a cube. By
repeating this operation we can produce a new cubec′ in which all but one of
the vertices are mapped toe. Using that constant functions are all cubes and
the unique closing property we obtain thatc′ has to be the constant function.
In other wordsc can be obtained from the constant function with the inverses
of the previous operations which shows that all the cubes arein Dk(A). The
fact that every2k+1 − 1 points can be completed to a cube shows that the
cubes inN are exactly the cubes inDk(A).

Corollary 2.4. If N is a k-step nilspace then every equivalence class of
∼k−1 is an abelian group with thek-degree structure.
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2.6 Bundle decomposition of nilspaces

We give a structure theorem fork-step nilspaces which follows relatively
easily from the axioms but which is useful as an intermediatestep to prove
deeper structure theorems.

Definition 2.7. LetA be an abelian group. An (abstract)A-bundle over a
setS is a setT with an actionα : A× T → T and a bundle mapπ : T → S
such that

1. the actionα is free i.e. the stabilizer of every element is the trivial
subgroup inA,

2. π gives a bijection between the orbits ofA in T and the elements ofS.

If the spacesA,S, T are topological then we will require thatα is continuous.
A k-fold abelian bundle with structure groupsA1, A2, . . . , Ak is the last
member of a sequenceT0, T1, . . . , Tk of “factors” whereT0 is a one element
set andTi is anAi bundle overTi−1. k-fold abelian bundles come together
with projections (bundle maps)πi,j : Ti → Tj for i ≥ j. By abusing the
notation we use the short hand notationπj for πi,j .

Note that ifT is anA-bundle overS then fibres (preimages of points
underπ) can be regarded as affine versions ofA. We will use the short
hand notationx+ a for α(a, x). There is no distinguished bijection between
the elements of a fibreF andA but there is a well defined difference map
F × F → A which, if x, y ∈ F , is given by the unique element ina ∈ A
satisfyingy + a = x. We simply denote the difference ofx andy by x− y.

Definition 2.8. A degree-k bundleN is ak-fold abelian bundle with struc-
ture groupsA1, A2, . . . , Ak and factors
T0, T1, . . . , Tk = N such thatN is a cubespace with the following property.
For every0 ≤ i ≤ k, n ∈ N andc ∈ Cn(Ti+1) we have that

{c2|c2 ∈ C
n(Ti+1) , c ◦ πi = c2 ◦ πi} = {c+ c3|c3 ∈ C

n(Di+1(Ai+1))}

whereCn(Ti) = πi(C
n(N)).

Theorem 1 (Bundle decomposition). A cubespaceN is a degree-k bundle
if and only ifN is a k-step nilspace. FurthermoreFi(N) is equal toTi for
every1 ≤ i ≤ k.

Proof. First we show that ifN is a degree-k bundle then it is ak-step nil-
space. It is clear thatN satisfies the ergodicity axiom. It remains to show
the gluing axiom. We use induction oni to prove it inTi. If i = 0 then the
statement is trivial.

Assume that we have gluing inTi. Let f : {0, 1}n \ {1n} → Ti+1 be a
morphism of the corner of then-dimensional cube. The mapf ◦πi has an ex-
tensionf2 : {0, 1}n → Ti to the full cube. SinceCn(Ti) = πi(C

n(N)) we
have thatf2 can be lifted (with respect toπi) to a morphismf3 : {0, 1}n →

17



Ti+1. Let us considerf4 = f −f3 on{0, 1}n \{1n}. It follows by definition
thatf4 is a morphism of the corner toDi+1(Ai+1) and so it can be extended
to a morphismf5 : {0, 1}n → Di+1(Ai+1). Now it is clear thatf3 + f5 is
an extension off to the full cube. The definition of degree-i bundles implies
thatFi(N) = Ti.

We prove the other direction by induction onk. The stepk = 0 is trivial.
Assume that it holds fork − 1 andN is ak-step nilspace. By induction we
have thek − 1 degree bundle structure onFk−1(N).

LetM = {(x, y)|x, y ∈ N, x ∼k−1 y} ⊂ N×N . Note thatF×F ⊂M
holds for every classF of ∼k−1. We introduce an equivalence relation∼ on
M . Let F1, F2 be two∼k−1 classes of ak-step nilspaceN . If x1, x2 ∈
F1 andy1, y2 ∈ F2 then we say that(x1, x2) ∼ (y1, y2) if (x1, y1) ∼k−1

(x2, y2) in the arrow spaceN ′ of N . Note thatN ′ is not necessarily ergodic
but it will not cause any problem.

By lemma 2.9 we get that ifF1 = F2 then(x1, x2) ∼ (y1, y2) if and
only if x2 − x1 = y2 − y1. In other words, inside one class of∼k−1 the∼
classes of vectors are naturally parametrized by the elements of the abelian
group constructed in lemma 2.9.

The unique closing property implies that for everyx1, x2 ∈ F1 andy1 ∈
N there is a uniquey2 such that(x1, x2) ∼ (y1, y2). This creates a bijection
φ between∼ classes insideF1 × F1 and∼ classes insideF2 × F2. We
show that this map gives an isomorphism between the corresponding abelian
groups. The definition of∼ shows that if(x1, x2) ∼ (y1, y2) and(x2, x3) ∼
(y2, y3) then (x1, x3) ∼ (y1, y3). Inside one fibre the class of(x1, x3) is
the sum of the classes of(x1, x2) and(x2, x3). It follows thatφ preserves
addition in both directions and so it is a group isomorphism.

Let us denote byA the unique abelian group formed by the∼ classes in
F × F for each∼k−1 classF . The groupA acts on each∼k−1 class and
so on the whole spaceN . We denote this action by simple addition. This
action satisfies that ifx ∈ F1, y ∈ F2 the(x, x + a) ∼ (y, y + a) for every
a ∈ A. It follows that if c : {0, 1}k+1 → N is any cube anda ∈ A then
by applying the action ofa to the two endpoint of an arbitrary edge inc we
get a cube. Assume now that two cubesc1 andc2 in Ck+1(N) satisfy that
c1 ∼k−1 c2. Then by repeating the previous operations we can create a new
cubec′2 from c2 that differs fromc1 at most at one vertex. Using the unique
closing property this implies thatc′2 = c1 andc2 − c1 ∈ Dk(A).

An interesting consequence of theorem 1 is that in ak-step nilspaceN
the∼k−1 classes are all isomorphic abelian groups withk-degree structures
and there is a distinguished set of affine isomorphisms between any two of
them. LetF1 andF2 be∼k−1 classes and let us fix elementsx ∈ F1 and
y ∈ F2. Then the mapφ(x+a) = y+a , a ∈ Ak defines an affine morphism
betweenF1 andF2. Such maps will be calledlocal translations. The next
characterization of local translations follows directly from theorem 1.
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Lemma 2.10.LetN be ak-step nilspace. Let us fix two∼k−1 classesF1, F2

and two elementsx ∈ F1, y ∈ F2. For everyz ∈ F1 we denote byφx,y(z)
the unique closure of the cornerc : {0, 1}k+1 \ {1k+1} → N defined by
c(v, 0) = x if v 6= (1k, 0), c(1k, 0) = z andc(v, 1) = y if v ∈ {0, 1}k\{1k}.
Then the mapφx,y is the local translation corresponding tox andy.

2.7 Sub-bundles and bundle morphisms

Definition 2.9. Let Tk be a k-fold abelian bundle with structure groups
A1, A2, . . . , Ak, factorsT0, T1, . . . , Tk and projectionsπ1, π2, . . . , πk. We
define the notion of asub-bundleofTk with structure groupsA′

1 ≤ A1, A
′
2 ≤

A2, . . . , A
′
k ≤ Ak and factorsT ′

0 = T0, T
′
1 ≤ T1, . . . , T

′
k ≤ Tk. If k = 0

thenT ′
0 = T0 and both are equal to a one point space. For a generalk we

have the condition thatT ′
k−1 = πk−1(T

′
k) is already a sub-bundle and for

everyx ∈ T ′
k we have that

{a|a ∈ Ak, a+ x ∈ T ′
k} = A′

k.

In particular if k = 1 then a sub-bundle is just a coset ofA′
1.

An important example for sub-bundles is the following. LetP = {0, 1}n

be a cube andN be ak-step nilspace. Let us consider the natural embedding
Hom(P,N) into the direct powerNP . This means that every homomor-
phismφ : P → N is represented by the vector whose component at coordi-
natep ∈ P is φ(p). According to theorem 1,Hom(P,N) is a sub-bundle in
NP with structure groupsHom(P,Di(Ai)).

Definition 2.10. Let T = Tk+1 andT ′ = T ′
k+1 be twok-fold abelian bun-

dles with structure groups{Ai}ki=1,{A′
i}

k
i=1 and factors{Ti}ki=0,{T ′

i}
k
i=0.

We define the notion of abundle morphism φ : T → T ′ with structure
morphisms{αi : Ai → A′

i} by the next two axioms.

1. If 1 ≤ i ≤ k we haveπi(x) = πi(y) thenπi(ψ(x)) = πi(ψ(y)). In
other wordsψ induces well defined mapsψi : Ti → T ′

i

2. ψi(x+ a) = ψi(x) + αk(a) wherex ∈ Ti, 1 ≤ i ≤ k anda ∈ Ak.

We say thatψ is totally surjective if all the structure morphisms are surjec-
tive.

Lemma 2.11. Let ψ : T → T ′ be a totally surjective bundle morphism
between twok-fold bundles. Then

1. For everyt ∈ T ′ andi ≤ k we have thatψ−1
i (πi(t)) = πi(ψ

−1(t))

2. For everyt ∈ T ′ we have thatψ−1(t) is a sub-bundle inT with struc-
ture groups{ker(αi)}ki=1.

Proof. Let us start with the first statement. We do downwards induction oni.
Casei = k is trivial. Assume that we have the statement fori+ 1. It is clear
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thatπi(ψ−1(t)) ⊂ ψ−1
i (πi(t)) so we have to prove the other containment. If

x ∈ Ti is an element withψi(x) = πi(t) then for an arbitrary lifty ∈ Ti+1

with πi(y) = x we have thatψi+1(y) = πi+1(t) + a′ for somea′ ∈ A′
i+1.

Using total surjectivity, there is an elementa ∈ Ai+1 with αi+1(a) = a′ and
soψi+1(y−a) = πi+1(t). By induction we have thaty−a ∈ πi+1(ψ

−1(t))
and sox = πi(y − a) ∈ πi(ψ−1(t)).

We prove that second statement by induction onk. Assume that it is true
for k−1. By the first statement we have thatψ−1

k−1(πk−1(t)) = πk−1(ψ
−1(t))

and soπk−1(ψ
−1(t)) is a sub-bundle inTk−1. If x ∈ ψ−1(t) thenx + a ∈

ψ−1(t) for a ∈ Ak if and only if αk(a) = 0. This means thatψ−1(t) is a
sub-bundle ofT and the kernel ofαk is thek-th structure group.

Lemma 2.12. A morphismψ between twok-step nilspacesN andN ′ is a
bundle morphisms between the correspondingk-degree bundlesT andT ′.

Proof. Lemma 2.3 shows that ifx ∼i y thenψ(x) ∼i ψ(y). This verifies
the first axiom.

First we prove the second axiom when the nil-spaces are of theform
Di(Ai) andDi(A

′
i). The abelian group structure ofAi andA′

i can be re-
covered by applying∂i−1

x to the cubic structure with some fixed elementx
in Ai or A′

i. It is clear thatψi preserves this structure and soψi has to be
an affine homomorphism between the two abelian groups which means that
ψi(x+ a) = ψi(x) + α(a) whereα is a homomorphism.

Now letF be a∼i−1 class inTi. ThenF = D(Ai) and by the first part of
the proof we have thatψi restricted toF satisfiesψi(x+a) = ψi(x)+αF (a)
wherex ∈ F, a ∈ Ak andαF : Ai → A′

i is a group homomorphism.
It remains to show that we have the same group homomorphismαF cor-

responding to each∼i−1 class. This follows from the fact that the relation∼
defined in the proof of 1 is preserved underψi because it is defined through
cubes.

Definition 2.11. A morphismψ : N1 → N2 between two nilspaces will be
calledfibre surjective if for everyn ∈ N the image of a∼n class inN1 is a
∼n class inN2.

The next lemma follows immediately from lemma 2.12

Lemma 2.13.A fiber surjective map between twok-step nilspaces is a totally
surjective bundle morphism between the correspondingk-fold bundles.

We will need the next lemma.

Lemma 2.14. Let φ : N → N ′ be a fibre surjective morphism between
two k-step nilspaces. Then every cubec ∈ Cn(N ′) can be lifted to a cube
c′ ∈ Cn(N1) such thatc′ ◦ φ = c.

Proof. The proof is an induction onk. If k = 0 then there is nothing to
prove. Assume that we have the statement fork − 1. The mapφ induces a
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mapφ′ fromFk−1(N) toFk−1(N
′). This means (using the lifting property

of cubes) that there is a cubec2 ∈ Cn(N) such thatc2 ◦ φ ∼k−1 c and so
c3 = c2 ◦ φ − c is in Cn(D(A′

k)). Now it is enough to find a liftc4 of c3
under the surjective homomorphismαk : Ak → A′

k because thenc2 − c4 is
a lift of c.

the existence ofc4 follows by first considering an arbitrary lift of ak-
dimensional corner ofc3 and then by extending it (uniquely) to ann-dimensional
cube.

The previous lemma together with lemma 2.1 implies the next corollary.

Corollary 2.5. Letφ : N → N ′ be a fibre surjective morphism between two
k-step nilspaces. Then every morphismsm : P → N ′ of a simplicial cube
space can be lifted as a morphismm′ : P → N withm′ ◦ φ = m.

An important example of a fiber surjective map is the following. LetN
be ak-step nilspace with structure groupsA1, A2, . . . , Ak and letB ⊆ Ak be
a subgroup ofA. We introduce a nilspace denoted byN/B in the following
way. Let us say that two elementsx, y ∈ N satisfyx ∼B y if x ∼k−1 y
andx− y ∈ B. The elements ofN/B are the equivalence classes of∼B. It
follows from theorem 1 thatN/B is a factor ofN and the projectionN →
N/B is fibre surjective.

2.8 Restricted morphisms

Definition 2.12. Let P2 ⊂ P be a subset of the cubespaceP and letf :
P2 → N be an arbitrary function. We define therestricted homomorphism
setHomf (P,N) as the collection of those homomorphisms whose restric-
tions toP2 is equal tof .

Note that the restricted homomorphism sets might be empty.

Lemma 2.15. LetC1, C2 be two elements inCubes and letφ : C1 → C2

be an injective morphism. Then there is an endomorphismψ : C2 → φ(C1)
such thatφ ◦ ψ = φ. If f : C1 → P is any morphism to a cubespaceP then
there is a morphismm : C2 → P such thatf = φ ◦m.

Proof. Assume thatC1 = {0, 1}a andC2 = {0, 1}b. The morphismφ is of
the formφ(x1, x2, . . . , xa) = (y1, y2, . . . , yb) where eachyi is equal to one
of xj , 1−xj, 0, 1 for some1 ≤ j ≤ a. Now letV1, V2, . . . , Va,W0,W1 be the
partition of[b] defined in a way thatj ∈ Vi if yj = xi or yj = 1−xi, j ∈W0

if yj = 0 andj ∈W1 if yj = 1. We define a further partitionVi = V 0
i ∪ V

1
i

such thatj ∈ V 0
i if and only if yj = xi. Let us choose a representative

system{ti ∈ Vi}ai=1 and assume thatti ∈ V
ei
i for somee ∈ {0, 1}. Now we

defineψ in the following way. The valueq = ψj(z1, z2, . . . , zb) satisfies

1. q = 0 if zj ∈W0

2. q = 1 if zj ∈W1
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3. q = zti if j ∈ V ei
i

4. q = 1− zti if j ∈ V 1−ei
i .

It can be seen easily thatψ satisfies the requirement.
The second statement follows from the first one. Letf ′ : φ(C1) → P

be defined asφ−1 ◦ f . Letm = ψ ◦ f ′. Then it is clear thatm satisfies the
requirement.

Lemma 2.16. LetC1 andC2 be as in lemma 2.15 and let us identifyC1 with
φ(C1). LetN be ak-step nilspace andf : C1 → N be a morphism. Then
Homf (C2, N) is a sub-bundle ofNC2 .

Proof. We proceed by induction onk. There is nothing to prove fork = 0.
Assume that the statement if true fork−1. We have thatH = Homf◦πk−1

(C2, N)
is a sub-bundle ofFk−1(N)C2 . First we show that every elementh in H can
be lifted to an elementm in Homf (C2, N). The morphismh is a cube in
Fk−1(N) so it can be lifted to a cubeh′ : C2 → N . We have thatf − h′

onC1 is a morphism ofC1 into Dk(Ak). Then by lemma 2.15 we get that
f − h′ can be extended to a morphismm′ : C2 → Dk(Ak). It is clear now
thatm = m′ + h′ is inHomf (C2, N).

A function g : C2 → N is a lift of h to a morphism inHomf (C2, N)
if it differs from m by a morphism inH2 = Homz(C2,Dk(Ak)) where
z : C1 → Dk(Ak) is the function mapping every element into to0. It is clear
thatH2 is an abelian group.

Lemma 2.17. Let P = {0, 1}n be a cube andP2 be a subcube. Letψ :
N → N ′ be a fibre surjective morphism between twok-step nilspaces. Then

1. Hom(P,N) is a sub-bundle in the direct powerNP with structure
groupsHom(P,Di(Ai))

2. ψP : Hom(P,N) → Hom(P,N ′) is a totally surjective bundle mor-
phism with structure morphisms

αP
i : Hom(P,Di(Ai))→ Hom(P,Di(A

′
i))

3. The preimage oft ∈ Hom(P,N ′) under(ψP )−1 is a bundle with struc-
ture groupsHom(P,Di(ker(αi))).

4. Lett ∈ Hom(P,N ′) and lett2 ∈ Hom(P2, N
′) be its restriction toP2.

Then the projectionπP2
from (ψP )−1(t) to (ψP2)−1(t2) is a totally

surjective bundle morphism.

Proof. We prove the first statement by induction onk. For k = 0 it is
trivial. If we know the statement fork − 1 then we have by the lifting
property of cubes thatHom(P,Fk−1(N)) = πk−1(Hom(P,N)) and so
we have thatπk−1(Hom(P,N)) is a sub-bundle ofFk−1(N)P . Let ψ ∈
Hom(P,Fk−1(N)). If ψ′ is any lift of ψ to N then by theorem 1 the
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other preimages ofψ are exactly those that differ fromψ′ by an element
in Hom(P,Dk(Ak)), which is clearly a subgroup inAP

k .
For the second statement we check the two axioms of bundle morphisms.

The first axiom follows from the fact (use lemma 2.3) that the mapψP pre-
serves the relation∼i. Let c ∈ Hom(P,Fi(N)). It is clear that the structure
morphisms are given byαP

i on Hom(P,Di(Ai)) but we have to show that
they map surjectively toHom(P,Di(A

′
i)). This follows by taking an arbi-

trary preimage of ani-dimensional full corner ofP underα−1
i and then by

extending it in a unique way to a full morphism ofP .
The third statement follows directly from lemma 2.11.
In the fourth statement the structural maps are computed as

Hom(P,Di(ker(αi)))→ Hom(P2,D(ker(αi))).

It follows from lemma 2.15 that these are surjective maps.

Lemma 2.18. Let

P = {0, 1}2n, P2 = {(0, 1), (1, 0)}n, P3 = {(0, 0), (1, 0)}n,

andu = (1, 0)n = P3 ∩ P2. If f : P2 → N is a morphism into ak-step
nilspaceN then the projectionHomf (P,N)→ Homf |u(P3, N) is a totally
surjective bundle morphism.

Proof. Lemma 2.16 shows thatHomf (P,N) andHomf |u(P3, N) are sub-
bundles in the spacesNP andNP3 . The structure groups areHomz1(P,Di(Ai))
andHomz2(P3,Di(Ai)) wherez1 is the0 map onP2 andz2 is the0 map
on u. We have to show that the natural projection between the structure
groups is surjective. Similarly to the proof of lemma 2.3 we consider the
mapφ = fn : Tn → {0, 1}n on the 3-cubeTn ⊂ P so thatf(−1) =
1, f(0) = 0, f(1) = 1. By identifying{0, 1}n ⊂ Tn with P3 we get that any
morphismg : P3 → Di(Ai) with g(u) = 0 can be lifted to the three cube
Tn asg2 = φ ◦ g. It is clear thatg2 restricted toP2 is the constant0 func-
tion. Then lemma 2.1 says that we can further extendg2 toP as a morphism
g3 : P → N . We have thatg3|P2

is the0 map. This proves the surjectivity in
question.

2.9 Extensions and cohomology

Definition 2.13. Let N be an arbitrary nilspace. A degreek-extension of
N is an abelian bundleM overN which is a cube space with the following
properties.

1. For everyn ∈ N and c ∈ Cn(N) there isc′ ∈ Cn(N) such that
π(c′) = c,

2. If c1 ∈ Cn(M) and c2 : {0, 1}n → M with π(c1) = π(c2) then
c2 ∈ Cn(M) if and only ifc1 − c2 ∈ Cn(Dk(A)).
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The mapπ is the projection fromM toN . The extensionM is called a split
extension if there is a cube preserving morphismm : N → M such that
m ◦ π is the identity map ofN .

A motivation to study such extensions is that we can obtain everyk-step
nilspace from a trivial nilspace byk consecutive extensions of increasing
degree. In the rest of the chapter we assume thatM is ak-degree extension
ofN and that∼ is the equivalence relation whose classes are the fibres ofπ.

The main idea of describing extensions in the following. Letus choose a
representative systemS ⊂ M for the∼ classes and letr : M → S be the
function such thatr(x) is the representative of the class containingx. Then
we define the functionf : M → A by f(x) = x − r(x). For an arbitrary
cubec ∈ Ck+1(M) we define its weight̺ (c) as the weight (see (2)) of the
functionc ◦ f .

We have from the definition 2.13 that̺(c) is determined byc ◦ π. In
other words̺ can be defined as a function̺: Ck+1(N) → A. Two natural
questions arise.

Which functions̺ : Ck+1(N) → A arise from somek-degree extension of
N byA?

What happens to̺ if we change the representative systemS?

The answer to the second question is quite easy. LetB(N,A) denote
the set of functionsh : Ck+1(N) → A such that there is some function
f : N → A with h(c) = w(c◦f). The elements ofB(N,A) form an abelian
group with respect to point wise addition. It is clear that ifwe modifyS then
the new function̺ 2 differs from the original by an element inB(N,A).

To answer the first question we need to understand the properties of
weight functions arising from extensions. We define a subgroup Hp,q of
AHom(C1,C2) whereC1 = {0, 1}p andC2 = {0, 1}q. A mapm : Hom(C1, C2)→
A is in Hp,q if and only if there is a functionf : C2 → A such that
m(φ) = w(φ ◦ f).

It is clear from the definition of̺ and the lifting property of cubes that if
c ∈ Cn(N) is an arbitrary cube then the mapmc : Hom({0, 1}k+1, {0, 1}n)→
A defined bymc(φ) = ̺(φ ◦ c) is an element inHk+1,n. We define (degree
k) cocycles as functions̺ : Ck+1(N) → A satisfying this property. Let
Y (N,A) denote the set of degree-k cocycles. It is clear from the definition
that they form an abelian group and thatB(N,A) ⊂ Y (N,A). The coho-
mology groupH(N,A) is defined as the factor groupY (N,A)/B(N,A).

Our goal is to show that every element inH(N,A) represents an exten-
sion. Let̺ be a cocycle inY (N,A). We define a cubspace structure on the
point setM = N × A in the following way. A mapc : {0, 1}n → M is a
cube if its projection toN is a cube and for every morphismφ : {0, 1}k+1 →
{0, 1}n we have thatw(φ ◦ c ◦ πA) = ̺(φ ◦ c ◦ πN ). It is clear that it creates
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a cubespace structure onM . Simple calculation show that the gluing axiom
is also true.

Now we give another description of the groupY (N,A) in terms of finitely
many equations.

Definition 2.14. A functiong : Cn(N) → A is said to be automorphism
consistent if it satisfies the next condition. Ifc : {0, 1}n → N is in Cn(N)
andφ : {0, 1}n → {0, 1}n is an automorphism theng(φ ◦ c) = g(c)(−1)q

whereq is the number of1’s in φ(0n)

Definition 2.15. A function̺ : Ck+1(N)→ A is a cocycle if it satisfies the
next three axioms.

1. ̺ is automorphism consistent

2. For every pair of equivalent cubesc1, c2 ∈ Ck+1(N) let us define
̺′(c1c2) = ̺(c1)− ̺(c2). Then̺′ : Ck+2(N) → A is automorphism
consistent.

3. If c1, c2, c3 ∈ Ck(N) are three equivalent cubes then̺(c1c2)+̺(c2c3) =
̺(c1c3).

2.10 Translations

For an arbitrary subsetF in {0, 1}n and mapα : N → N we define the map
αF from Cn(N) to N{0,1}n

such thatαF (c)(v) = α(c(v)) if v ∈ F and
αF (c)(v) = c(v) if v /∈ F .

Definition 2.16. Let N be a nilspace. A mapα : N → N is called a
translation of highti if for every natural numbern ≥ i, n − i dimensional
faceF ⊆ {0, 1}n andc ∈ Cn(N) the mapαF (c) is in Cn(N). We denote
the set of highti translations byTransi(N). We will use the short hand
notationTrans(N) for Trans1(N).

It is clear from this definition that

Trans1(N) ⊇ Trans2(N) ⊇ Trans3(N) ⊇ . . . .

Lemma 2.19. A mapα : N → N is in Transi(N) if and only if the map
h : N → N × N defined byh(n) = (n, α(n)) is a morphism into thei-th
arrow space.

Proof. It is clear thatα ∈ Transi(N) implies thath is a morphism. For the
other direction assume thath is a morphism. Letc ∈ Cn(N) be such that
n ≥ i. LetF ⊂ {0, 1}n be then − i dimensional face with0’s in the lasti
coordinates. Using the symmetries of cubes it is enough to show that for this
particular faceαF (c) ∈ Cn(N).

LetQ = {0, 1}n−i×{−1, 0, 1}i = {0, 1}n−i×Ti, letf1 be the identity
on{0, 1} andf2 be the function withf2(−1) = 1, f2(0) = 0, f2(1) = 0. Let
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f = fn−i
1 ×f i

2. The functionh = f ◦c is a morphism fromQ toN . Leth′ be
the function obtained fromh by applyingα to the values on{0, 1}n−i × 1i.

It is easy to see from our assumption thath′ is also a morphism toN . On
the other hand by lemma 2.1 the restriction ofh′ to {0, 1}n−i × {−1, 1}i is
a morphism toN . This restriction is equal toαF (c).

Note that definition 2.16 implies that translations preserve cubes. Recall
that two cubes inCn(N) are called equivalent if they are two opposite faces
of a cube inCn+1(N). It is clear that a mapα is a translation if and only if
α(c) is equivalent withc for every cubec ∈ Cn(N). The next lemma shows
a strengthening of this fact fork-step nilspaces.

Lemma 2.20. LetN be ak-step nilspace. An arbitrary mapα : N → N is
a inTransi(N) if and only if for everyc ∈ Ck(N) we have that(c, α(c))i ∈
Ck+i(N).

Proof. Let c ∈ Cn(N) be an arbitrary cube and letc′ = (c, α(c))i. By
lemma 2.19 it is enough to prove thatc′ ∈ Cn+i(N). formed byc and
α(c) as two faces. Using lemma 2.7 it is enough to show thatc′ restricted
to k + 1 dimensional faces in{0, 1}n with at least one point with0 in the
last coordinate are cubes. This follows immediately from the condition of
the lemma.

Lemma 2.21. LetN be ak-step nilspace. Then translations restricted to
∼k−1 classes are local translations.

Proof. It follows from lemma 2.3 that ifx ∼k−1 y thenα(x) ∼k−1 α(y).
Lemma 2.10 shows that if the∼k−1 classes ofx andα(x) areF1 andF2

thenα(x + a) = α(x) + a for an arbitrary elementa in the structure group
Ak.

Lemma 2.22. If N is ak-step nilspace thenTrans(N) is a group.

Proof. By induction onk and using lemma 2.21 we get that translations are
invertible transformations. We need to show that the inverse of a translation
α is again a translation. We go by induction onk. Assume that we have
the statement fork − 1. Then in particular we have that the image of a
k dimensional cubec underα−1 is a cube modulo∼k−1. This means by
lemma 2.2 thatα−1(c) is also inCk(N). Sinceα(α−1(c)) = c we obtain
that(α−1(c), c) ∈ Ck+1(N). By lemma 2.20 applied withi = 1 the proof
is complete.
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2.11 Translation bundles

LetN be ak-step nilspace and letα be an element inTransi(Fk−1(N)). We
say thatα can be lifted toTransi(N) if there is an elementα′ ∈ Transi(N)
such thatπk−1(α

′(n)) = α(πk−1(n)) holds for everyn ∈ N . Recall that
πk−1 is the projection toFk−1(N). Our goal is to understand when canα be
lifted this way. We introduce a nilspace whose algebraic properties decide if
there is such a lift or not.

LetT = T (α,N, i) be the set of pairs(x, y) ∈ N2 whereα(πk−1(x)) =
πk−1(y). We interpretT as a subset of thei-th arrow space overN . It is easy
to see that ifk ≥ i+1 thenT is an ergodic nilspace with the inherited cubic
structure.

We defineT ∗ asFk−1(T ). We will use the next two algebraic properties
of T ∗.

1. The groupAk ×Ak acts on the spaceT by

(x, y) 7→ (x+ a1, y + a2).

This action induces an action ofAk onT ∗. Fora1, a2 ∈ Ak we have
that (x + a1, y + a2) ∼k−1 (x, y) if and only if a1 = a2. It follows
that the elements ofT ∗ represent local translationsφ : F1 → F2 where
F1, F2 are∼k−1 classes inN with α(F1) = F2.

2. The map(x, y) 7→ x creates a mapT → N . It induces a mapγ :
T ∗ → Fk−1(N).

Combining these two facts one can see easily thatT ∗ is a degreek − i
extension ofFk−1(N) byAk.

Proposition 2.1. LetN be ak-step nilspace andα ∈ Transi(Fk−1(N)).
If T ∗ = T ∗(α,N, i) is a split extension thenα lifts to an elementβ ∈
Transi(N).

Proof. Let γ′ : Fk−1(N) → T ∗ be a morphism such thatγ′ ◦ γ is the
identity map. The elementγ′(πk−1(x)) in T ∗ represents a local translation
from the∼k−1 classF1 of x to the classα(F1). Let β(x) denote the image
of x under this local translation. We claim that the mapβ is in Transi(N).
Let h : N → N × N be the map defined byh(n) = (n, β(n)). According
to lemma 2.20 it is enough to show that for everyc ∈ Ck(N) we have that
c ◦ h is a cube in thei-th arrow space onN ×N . Sinceγ′ is a morphism we
have thatγ′(πk−1(c)) is inCk(T ∗). By lemma 2.2 we obtain that any lift of
γ(πk−1(c)) to T is inCk(T ). The pairs{(c(v), β(c(v)))|v ∈ {0, 1}k} form
such a lift. This shows thath ◦ c in a cube inT .

The condition of lemma 2.1 holds forα if and only if T0(α,N) is a
split extension. A way of checking the condition is to show that the cocycle
describingT0(α,N) as an extension ofFk−1 byAk is a coboundary.

27



2.12 Nilpotency

LetN be ak-step nilspace. In this part we investigate the properties of the
groupsTransi(N).

Lemma 2.23. We have that[Transi(N),Transj(N)] ⊆ Transi+j(N).

Proof. Let F be a face in{0, 1}n of codimensioni + j. ThenF = F1 ∩ F2

whereF1 is a face of codimensioni andF2 is a face of codimensionj.
Assume thatα1 ∈ Transi(N) andα2 ∈ Transj(N). Then[αF1

1 , αF2

2 ] =
[α1, α2]

F . This implies that ifc ∈ Cn(N) then[α1, α2]
F (c) ∈ Cn(N).

Corollary 2.6. The groupTrans(N) is k-nilpotent and{Transi(N)}k+1
i=1 is

a central series in it.

Lemma 2.24. if k ≥ i then the action ofAk is in Transi(N).

Proof. It follows directly from theorem 1.

Definition 2.17. We say that two cubesc1, c2 ∈ Cn(N) are translation
equivalent ifc2 can be obtained fromc1 be a sequence applications of oper-
ationsαF whereα ∈ Transi(N) andF is a face in{0, 1}n of codimension
i. Note that the numberi can be different in the above operations. A cube is
called translation cube if it is translation equivalent with a constant cube.

3 Compact nilspaces

In this part of the paper we study compact topological versions of nilspaces.

Definition 3.1. A nilspace is called compact if all the setsCn(N) are sec-
ond countable Hausdorff topological spaces and the mapsφ̂ : Cm(N) →
Cn(N) (defined in the introduction) are continuous for everyn,m ∈ N and
morphismφ : {0, 1}n → {0, 1}m.

An important consequence of compactness is thatFk(N) is compact for
everyk ∈ N . Furthermore all the abelian groups occurring in theorem 1 are
compact abelian groups.

3.1 Haar measure on abelian bundles and nilspaces

Compactk-step nilspaces are generalizations of compact abelian groups. It
will be important to generalize the normalized Haar measureto them. Recall
that the normalized Haar measure is a shift invariant Borel probability mea-
sure. Such measures always exist on compact groups and they are unique.

First we define the Haar measure for compact abelian bundles.Let T be
anA bundle over a setS and actionα : A×T → T . Assume thatT ,S andA
are compact Hausdorff spaces,A is a topological group andα is continuous.
Assume thatS has a Borel probability measureµS . Then we introduce the
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extensionµ of µS as the unique Borel probability measure onT which isA
invariant. The measureµ can be defined through the property that

µ(H) =

∫

s∈S

µA(π
−1
S (s) ∩H) dµ (3)

whereH is a Borel set ofT andπ is the projection toS.
We define the Haar measure on a compactk-fold abelian bundle itera-

tively. If it is already defined fork− 1 fold bundles then we use (3) to extend
it from the factorTk−1 to Tk. We use theorem 1 to define (normalized) Haar
measures fork-step nilspaces.

By abusing the notation we will always denote the Haar measure byµ.
Since we never define two different measure on one structure it will not cause
any problem.

The following fact is well known for compact abelian groups.

Lemma 3.1. Surjective continuous (affine) homomorphisms between com-
pact abelian groups are measure preserving.

We will need a generalization of this fact fork-fold compact abelian bun-
dles.

Lemma 3.2. Let φ : T → T ′ be a totally surjective continuous map be-
tween two compactk-fold abelian bundles. Thenφ preserves the Haar mea-
sure. This means that for an arbitrary Borel setH ⊂ T ′ we haveµ(H) =
µ(φ−1(H)).

Proof. The proof is an induction using lemma 3.1. The mapφ induces a map
φ′ fromTk−1 to T ′

k−1. If we know the statement fork− 1 thenφ′ is measure
preserving. On the other hand it is measure preserving on thefibres so the
integral in (3) is preserved.

The next lemma follow directly form lemma 3.2 and lemma 2.12

Lemma 3.3. Continuous fibre surjective morphisms betweenk-step nilspaces
are measure preserving.

3.2 Fibre bundles

In this part we studyA bundles whereA is a compact abelian group of finite
dimension. We say thatA is of finite rank if the dual group̂A is finitely
generated. It is well known thatA is of finite rank if and only if it is finite
dimensional. Finite rank compact abelian groups are directproducts circles
(R/Z) and finite cyclic groups. Their dual groups are direct products of
cyclic groups. The main result in this chapter is the following lemma.

Lemma 3.4. Let C be a compact second-countable Hausdorff topological
space which is anA bundle for some finite rank compact abelian group.
Then the bundle is locally trivial.

29



Proof. SinceA is of finite rank the dual group̂A is the direct product of
finitely many, sayn, cyclic group. Let us pick generatorsχ1, χ2, . . . , χn

one for each cyclic component. Note that the mapτ : A → Cn defined by
τi(a) = χi(a) defines an isomorphism betweenA and a subgroup ofQn

whereQ is the unit circle (with multiplication) in the complex plane. If the
dual group is torsion free thenτ(A) = Qn.

For every1 ≤ i ≤ nwe introduce the averaging operatorAi on the space
of continuous functions onC by

Ai(f)(x) =

∫

a∈A

χi(a)f(x+ a) dµ.

It is easy to see that the continuity off implies thatAi(f) is continuous. It
is also clear that

Ai(f)(x + a) = Ai(f)(x)χi(a) (4)

holds for everyx ∈ X, a ∈ A.

Claim:If {fi}ni=1is a system of continuous functions onC such thatAi(fi)(y) 6=
0 for every1 ≤ i ≤ n for somey ∈ C theny has an open neighborhoodU
such thatU is the union ofA orbits and the bundle restricted toU is trivial.

Let U1 = ∩ni=1{x|Ai(fi)(x) 6= 0}. It is clear thatU1 is an open set
containingy which is, by (4), the union ofA orbits. Let us introduce the map
φ : C → Qn defined byφi(x) = Ai(fi)(x)/|Ai(fi)(x)| onU1.

First note that if all the charactersχi are of infinite order thenφ ◦ τ−1

proves the triviality of the fibration restricted toU2.
If χi is of finite order for somei then the image ofφ does not coincide

with τ(A) and so for everyA orbitx+A inC we will need a third map which
creates an affine isomorphism betweenφ(x+A) andτ(A). Furthermore we
need to choose these maps in a continuous way. Note thatφ(x+A) is always
of the formwτ(A) wherew ∈ Qn. Our goal is to choose aw ∈ Qn with
wφ(x + A) = τ(A) continuously for everyA orbit in a small neighborhood
of y.

Let I ⊆ [n] be the set of indicesi for whichχi is of finite order and letφI
be the composition ofφ with the projectionQ[n] → QI . For everyx ∈ U1

the imageφI(x+A) is (affine) isomorphic to the torsion part of̂A. For every
ǫ we can choose a neighborhoodUǫ of y insideU1 such that for everyx ∈ Uǫ

the Hausdorff distance betweenφI(y + A) andφI(x + A) is at mostǫ. If ǫ
is smaller than half of the minimal distance insideφI(y + A) then for every
x ∈ Uǫ there is a unique elementvx ∈ QI (depending only on the orbit ofx
such thatφI(x)v is the nearest element inφI(y +A) from φI(x). It is clear
thatvx depends continuously on the orbit ofx. Let v′x be the element inQn

whose coordinates inI are given byvx and coordinates outsideI are all1’s.
Now the mapx 7→ τ−1(v′xφ(x)) proves the triviality of the fibration onUǫ.

Now we can finish the proof of the lemma. It is enough to find continuous
functions{fi}ni=1 from C to C such that property in the claim holds. Let
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us take a separating family of functions{fi}i∈I onC. Then the functions
f ′
i : A → C defined byf ′

i(a) = fi(y + a) also form a separating family on
A. According to the Stone-Weierstrass theorem, for everyχ ∈ Â there is an
elementg in the function algebra generated by{f ′

i}i∈I such that‖χ−g‖∞ <
1. This means that(g, χ) 6= 0. We can use the same polynomial which
producesg for the functions{fi}i∈I and obtain a continuous functionh on
C with the property thath(y + a) = g(a) for everya ∈ A. It is clear now
that the integral

∫

A
χ(a)h(y + a) dµ is not zero. This completes the proof.

3.3 Finite rank nilspaces and averaging

Let N be a compactk-step nilspace. We have from theorem 1 thatN is a
degreek-bundle with structure groupsA1, A2, . . . , Ak. The compactness of
N implies that the structure groups are compact abelian groups. We define
the rankrk(N) by

rk(N) =
k

∑

i=1

rk(Âi)

whereÂi is the Pontrjagin dual ofAi andrk(Âi) is the minimal number of
generators of̂Ai. According to lemma 3.4 we have that finite rank nilspaces
are iterated locally trivial fibrations of finite dimensional compact abelian
groups. Topologically, they are finite dimensional manifolds.

Finite rank abelian groups are direct products of finite dimensional tori’s
and finite abelian groups. There is a natural way of metrizingthem. For
two elementsx, y ∈ Rn/Zn = Tn we define their distanced2(x, y) as the
minimal possible Euclidean distance between a preimage ofx and a preimage
of y under the mapRn → R

n/Zn. If the abelian group is not connected then
points in different connected components have infinite distance.

Let X1 andX2 be two Borel random variables taking values in a finite
rank compact abelian groupA. In general there is no natural way of defining
their expected values. However if they take values in small diameter sets in
A then there is a canonical way of defining their expected valueand it will
satisfyE(X1 +X2) = E(X1) + E(X2).

Let a ∈ Tn be an element andBr(a) be the open ball of radiusr around
a. Let a′ ∈ R

n be an arbitrary preimage ofa under the homomorphism
Rn → Tn. If a Borel random variableX takes all its values inB1/4(a) then
there is a unique way of liftingX to a random variableX ′ onRn in a way
that the values are closer than1/4 to a′. We defineE(X) as the image of
E(X ′) under the mapRn → Tn. It is easy to see thatE(X) does not depend
on the choice ofa. If m random variables take their values in sets of diameter
at most1/5n then the additivity of the expected value is guaranteed.

The next lemma is an important application of averaging.
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Lemma 3.5. LetN be l-step nilspace andA be a finite rank abelian group.
Then there is anǫ such that every Borel measurable cocycleσ : Ck+1(N)→
A of degreek with d2(σ(c), 0) ≤ ǫ for everyc ∈ Ck+1(M) is a coboundary.

Proof. We defineg : N → A by

g(m) = Ec∈Homf ({0,1}k+1,N)σ(c)

wheref maps the point1k+1 tom. The expected value makes sense because
σ is always close to0 and by lemma 2.16 the setHomf ({0, 1}k+1, N) is a

sub-bundle inN{0,1}k+1

so the Haar measure gives a probability space.
We claim thatσ is a coboundary corresponding to the functiong. Let

c ∈ Ck+1(N) be an arbitrary element. Let us use the notation of lemma 2.18.
for an arbitrary morphismγ : P → N andv ∈ {−1, 1}k+1 let us denote by
γv the restriction ofγ to the cubeΨk+1(v). Observe that ifγ|P2

= c then

σ(c) =
∑

v∈{0,1}k+1

σ(γv)(−1)
h(v) (5)

whereh(v) =
∑

vi. By averaging the equation over the setHomc(P,N)
and using lemma 2.18 we obtain the claim.

3.4 The Inverse limit theorem

Theorem 2 (Inverse limit theorem). Everyk-step compact nilspace is an
inverse limit of finite rank nilspaces. The maps used in the inverse system are
all fiber surjective morphisms.

This whole chapter deals with the proof of this statement.
We prove the theorem by induction onk. If k = 0 then there is nothing

to prove. Assume that it is true fork − 1. LetN be ak-step nilspace with
structure groupsA1, A2, . . . , Ak. By inductionM = Fk−1(N) is the inverse
limit of a systemM1 ← M2 ← . . . where the maps are all fiber surjective
morphisms. Let us denote byτi the projection toMi and letπ be the projec-
tionN →M . LetQi denote the collection of open sets of the formτ−1

i (U)
whereU is open inMi. SinceM is a compact Hausdorff space, its topology
is generated by the system{Qi}∞i=1.

SinceAk is a compact abelian group we have thatAk is the inverse limit
of finite rank compact abelian groups. This implies that there is a descending
chainAk = B0 > B1 > . . . of subgroups with trivial intersection such that
each factorAk/Bi is of finite rank. The nilspaceN is the inverse limit of the
nilspacesN/Bi and all the mapsN → N/Bi are fibre surjective. It follows
that it is enough to prove the theorem for the special case when A = Ak is
already of finite rank.

From theorem 3.4 we have thatN as anA-bundle is locally trivial. Letd
be a metrization ofN . For an arbitrary epsilon and every pointp ∈M we can
choose an open neighborhoodUp of p with the following three properties.
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1. there is a continuous cross sectionSp : Up → N aboveUp

2. Sp(Up) has diameter at mostǫ

3. Up ∈ Qt(p) for somet(p) ∈ N.

It is clear that we can guarantee the first two properties. Thelast property
follows from the fact that the topology onM is generated by the topologies
onMi.

The compactness ofM implies that there are finitely many pointsp1, p2, . . . , pn
such that{Upi

}ni=1 is a covering system ofM . Let t = max{t(pi)}ni=1. We
have that every set in{Upi

}ni=1 is inQt.
Now we can create a Borel measurable cross sectionS : M → N with

the following properties.

1. S is continuous on every preimageτ−1
t (v) wherev ∈M

2. The diameter ofS(τ−1
t (v)) is at mostǫ for everyv ∈M .

This can be constructed by dividingM into the atoms of the Boolean
algebra generated by{Upi

}ni=1 and then using one type of cross section for
each atom. The cross sectionS generates a cocycle̺: Ck+1(M) → A on
M .

If ǫ is small enough than we can guarantee that for any two cubesc1, c2 ∈
Ck+1(M) with c1 ◦ τt = c2 ◦ τt we have

d2(̺(c1)− ̺(c2)) ≤ ǫ2. (6)

LetP = {0, 1}k+1. We have by lemma 2.17 that the mapβ : Hom(P,M)→
Hom(P,Mt) given by the restriction ofτPt to Hom(P,M) is totally surjec-
tive and preimages of elements inHom(P,Mt) arek − 1-fold sub-bundles
of Hom(P,M). We define the function̺′ : Ck+1(M)→ A by

̺′(c) = Ec′∈β−1(β(c))(̺(c
′)).

It makes sense to use the expected value because (6) implies that{̺(c′)|c′ ∈
β−1(β(c))} has small diameter ifǫ2 is small enough. Note that we compute
the expected value according to the Haar measure onβ−1(β(c)).

We claim that̺ ′ is a cocycle onM . This follows basically from the fact
that the cocycle axioms are all linear equations on cubes of dimensionk + 1
andk+ 2 and expected value is additive. However we need to use the fourth
point of lemma 2.17 to connect the probability spaces ofk + 2 dimensional
cubes andk + 1 dimensional cubes.

Now we have that̺ ′ is a cocycle and so̺′′ = ̺′ − ̺ is also a cocycle.
We have by (6) thatd2(̺′′(c), 0) ≤ ǫ2 holds for everyc ∈ Ck+1(M). By
lemma 3.5 we get that̺′′ is a coboundary.

Since the difference of̺ and̺′ is a coboundary corresponding to a func-
tion g we have that by addingg to our cross sectionS we get a new cross
sectionS′ such that the cocycle corresponding toS′ is equal to̺ ′. The way
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we producedS′ (see the proof of lemma 3.5) guarantees that it is continuous
on the preimages of points inMt underτt. Let us define the mapq : N → A
by q(x) = x − S′(π(x)). We say thatx ∼q y for two elementsx, y ∈ N if
τt(x) = τt(y) andq(x) = q(y). It is now easy to see that∼q creates a factor
which is isomorphic to the extension ofMn with the cocycle̺ ′. (Note that
̺′ can be interpreted as a cocycle onMt.)

It is also clear that factoring by∼q provides a fibre surjective morphism
of N to a finite rank nilspace. By repeating the argument for some infinite
increasing sequence oft’s the proof is complete.

3.5 Rigidity of morphisms

Let N andM be compactk-step nilspaces and letd be a metric onM
(metrizing its topology). We say that a mapφ : N → M is an ǫ-almost
morphism if for an arbitraryc ∈ Ck+1(N) there isc′ ∈ Ck+1(N) such that
d(c ◦ φ, c′) ≤ ǫ point wise.

An ǫ modification of a mapφ : N → M is another mapφ′ satisfying
d(φ(x), φ′(x)) ≤ ǫ for everyx ∈ N .

Theorem 3. For every finite rankk-step nilspaceM with metricd there is
a functionf : R+ → R+ with limx→0 f(x) = 0 and ǫ0 > 0 such that if
φ : N → M is a Borel ǫ-almost morphism withǫ < ǫ0 from a compact
k-step nilspaceN toM then it can bef(ǫ)-modified to a morphismφ′.

In the rest of this chapter we prove this theorem.
We go by induction onk. Fork = 0 there is nothing to prove. Assume

that we have the statement fork− 1. The metricd induces another metricd′

onFk−1(M) such that

d′(x′, y′) = min{d(x, y)|x, y ∈M, πk−1(x) = x′, πk−1(y) = y′}.

The assumption thatφ is anǫ-morphism trivially implies thatφ ◦ πk−1

is anǫ-morphism intoFk−1(M). By induction we canf ′(ǫ)-modify φ′ to
get a morphismφ2 : N → Fk−1(M). It is easy to see that there is a Borel
measurable lift ofφ2 to φ3 : N → M which is an at mostǫ2 = f ′(ǫ) + 2ǫ
almost-morphism.

Now we introduce an averaging process to get a functionφ4 in the follow-
ing way. LetP2 = {0, 1}k+1\{1k+1} be the corner of thek+1 dimensional
cubeP . Using corollary 2.2 and the fact thatφ2 is a morphism we get thatφ3
takesk-dimensional cubes inN into k-dimensional cubes inM . This means
that for every morphismγ : P → N the compositionγ|P2

◦φ3 is a morphism
of the cornerP2. For a morphismγ : P → N We denote byQ(γ) ∈ M the
unique completion ofγ|P2

◦ φ3 in M .
Now we define

φ4(x) = Eγ∈Homf (P,N)(Q(γ))
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wheref maps the point1k+1 to x. The averaging makes sense because all
the elementsQ(γ) are in the same fibre. Ifǫ2 is small enough then we can
average. It is easy to see thatφ4 is continuous. It remains to show thatφ4 is
a morphism.

According to lemma 2.7 we need to show thatk + 1 dimensional cubes
map to cubes underφ4. Letc ∈ Ck+1(N). LetTk+1 be the3-cube embedded
into B = {0, 1}2k+2. Let B2 = ω({0, 1}k+1) andB3 = Tk+1 \ B2. By
abusing the notation the cubec can be interpreted as a functionc : B2 → N .
For every elementκ ∈ Homc(B,N) we denote byQ(κ) ∈ Ck+1(M) the
cube obtained by first taking the unique extension ofκ|B3

◦φ3 to a morphism
B →M and then restricting it toB2. Now

c2 = Eκ∈Homc(B,N)Q(κ)

makes sense ifǫ4 is small enough and by theorem 1 it will be a cube. On the
other hand By lemma 2.18 we obtain thatc2 = c ◦ φ4.

3.6 Nilspaces as nilmanifolds

LetN be a compactk-step nilspace. By abusing the notation we denote by
Trans(N) the set of translations of which are continuous functions fromN
to N . A simple induction onk together with lemma 2.21 shows that every
element ofTrans(N) is measure preserving.

Let d be a metrization of the topology onN . This induces a metrict on
Trans(N) defined by

t(g, h) = max
x∈N

d(g(x), h(x)).

It is easy to see thatTrans(N) is a Polish group with this metrization. Simi-
larly we will denote byTransi(N) the set of continuous translations of hight
i.

From now on we assume thatN is a finite rankk-step nilspace. Our goal
is to show thatTrans(N) is ak-nilpotent Lie group which acts transitively
on the connected components ofN .

From lemma 2.21 we obtain that∼k−1 classes are imprimitivity do-
mains ofTrans(N). This means that the action on∼k−1 classes induces
a homomorphismh : Trans(N) → Trans(Fk−1(N)). It is clear that
h(Transi(N)) ⊆ Transi(Fk−1(N)). LetM = Fk−1(N) and let us denote
the version of thet metric onM by t′.

Lemma 3.6. Let i be a natural number. There is a positive numberǫ >
0 such that ifα ∈ Transi(M) satisfiest′(α, 1) ≤ ǫ then there isβ ∈
Transi(N) with h(β) = α.

Proof. The translation bundleT ∗ = T ∗(α,N, i) is a k − i degree exten-
sion ofM by Ak. Our goal is to show ifǫ is small enough then the cocycle
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describing the extension is a coboundary. Ifǫ is small enough then we can
choose a Borel representative systemS for the fibres of the mapT ∗ → M
such that(x, y) ∈ T represents an element inS thend(x, y) ≤ ǫ2. A stan-
dard compactness argument shows that ifǫ2 is small enough then the cocycle
corresponding toS is also small. Then lemma 3.5 and lemma 2.1 finish the
proof.

Lemma 3.7. Assume thati > k. Then

ker(h) ∩ Transi(N) = hom(M,Dk−i(Ak)).

Proof. The elements ofker(h) are those translations which stabilize every
∼k−1 class inN . It follows that if α ∈ ker(h) then the mapα′ : x 7→
α(x)−x can be viewed as a map fromM toAk. Lemma 2.20 implies thatα′

arises this way if it is a homomorphism ofM toDk−1(Ak). It is easy to see
that if in additionα′ ∈ Transi(N) then it is a morphism toDk−i(Ak).

Lemma 3.8. Let k, r ≥ 1 be two natural numbers andA,B two compact
abelian groups. Assume thatB is finite dimensional. Then there is a con-
stant ǫ = ǫ(r, B) > 0 such that ifφ ∈ Hom(Dk(A),Dr(B)) satisfies
d(φ(x), φ(y)) ≤ ǫ for everyx, y ∈ A thenφ is a constant function.

Proof. Using thatHom(Dk(A),Dr(B)) ⊆ Hom(D1(A),Dr(B)) we can
assume thatk = 1. Letφ be an arbitrary non-constant morphism fromD1(A)
toDr(B).

For anyt ∈ A and functionf : A → B we denote by∆tf the function
x→ f(x)−f(x+t). With this notation we have that iff ∈ Hom(D1(A),Di(B))
then∆tf ∈ Hom(D1(A),Di−1(B)). for every t ∈ A. It follows that
∆t1,t2,...,trφ is constant for everyr-tuple of elementst1, t2, . . . , tr in A.
We obtain that there is a numberi < r and elementst1, t2, . . . , ti ∈ A
such thatφ′ = ∆t1,t2,...,tiφ is non-constant but∆tφ

′ is constant for every
t ∈ A. It follows thatφ′ is a non-constant affine group homomorphism from
A to B. In particular there is a constantc depending only onB such that
there arex, y ∈ A with d(φ′(x), φ′(y)) ≥ c. We get that if the variation
maxx,y d(φ(x), φ(y)) is too small this is impossible. In other words there
is a non-zero lower bound (depending only onB andr) for the variation of
φ.

Corollary 3.1. Let r ≥ 1 be a natural numbers andB a compact finite
dimensional abelian groups. LetN be a k-step compact nilspace. Then
there is a constantǫ = ǫ(r, B) > 0 such that ifφ ∈ Hom(N,Dr(B))
satisfiesd(φ(x), φ(y)) ≤ ǫ for everyx, y ∈ N thenφ is a constant function.

Proof. Assume thatd(φ(x), φ(y)) < ǫ for everyx, y ∈ N whereǫ = ǫ(r, B)
is the constant from lemma 3.8. We prove by induction onk thatφ is con-
stant.
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If k = 1 thenN is abelian and lemma 3.8 finishes the proof. Assume that
the statement holds fork − 1. We get from lemma 3.8 thatφ is constant on
the∼k−1 classes ofN . This means thatφ can be regarded as a function on
Fk−1(N). Then our assumption finishes the proof.

Lemma 3.9. The groupker(h) is a Lie group.

Proof. Let x ∈ N be an arbitrary element and letF be the stabilizer ofx
in ker(h). Then by lemma 3.7 we obtain thatker(h) = F × Ak. It follows
from corollary 3.1 thatF is discrete and sinceAk is a Lie-group the proof is
complete.

Theorem 4. Let i be a natural number. Then the following statements hold.

1. Transi(N) andTransi(N)0 are Lie groups,

2. h(Transi(N)0) = Transi(M)0.

Proof. We prove the statements by induction onk. If k = 1 thenN is an
abelian Lie-group and all statements are clear. Assume thatthe statements
hold fork − 1. In particular we have thatTransi(M) is a Lie-group.

First we show that

Transi(M)0 ⊆ h(Transi(N)) (7)

To see this we use thatTransi(M) is a Lie group and so every element
α ∈ Transi(M)0 is connected with the unit element with a continuous path
p : [0, 1] → Transi(M) with p(0) = 1 andp(1) = α. Let n ∈ N be
sufficiently big and letαi = p((i − 1)/n)−1p(i/n). Thenα =

∏n
i=1 αi.

Lemma 3.6 implies that ifn is big enough then for everyαi there isβi ∈
Transi(N) with h(βi) = αi. Letβ =

∏n
i=1 βi. We have thath(β) = α.

The see the first statement we observe that (7) implies thath(Transi(N))
is a Lie-group. It follows from lemma 3.9 thatTransi(N) is an extension of
a Lie-group with a Lie-group. SinceTransi(N) is a Polish group we get that
it is a Lie-group.

Now we show the second statement. Sinceh is continuous we have that
h(Transi(N)0) = h(Transi(N))0. Equation (7) implies thatTransi(M)0 ⊆
h(Transi(N))0 and soTransi(M)0 ⊆ h(Transi(N)0). The other contain-
ment is trivial.

Corollary 3.2. The actionTrans(N)0 is transitive on the connected compo-
nents ofN .

Proof. By inductionTrans(M)0 acts transitively on the connected compo-
nents ofM and furthermoreAk ⊆ Trans(N). By theorem 4Trans(M)0 =
h(Trans(N)0). It follows that the groupT generated byAk andTrans(N)0

is transitive on the connected components ofN . SinceA0
k is a finite index

subgroup inAk we have thatTrans(N)0 is of finite index inT . This is
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only possible ifTrans(N)0 is already transitive on the connected compo-
nents.

Definition 3.2. A k-step nilspace is calledtorsion free if all the structure
groupsAi have torsion free dual groups.

Note that a compact finite dimensional abelian groupA has torsion free
dual group if and only ifA is isomorphic to(R/Z)n for some natural number
n.

Theorem 5. If N is finite rank torsion freek-step nilspace thenN is a nil-
manifold with structure corresponding to the central series{Transi(N)0}ki=1

in Trans(N)0.

Proof. We prove the statement by induction onk. If k = 1 thenN is
an abelian group and the statement is trivial. Assume that itis true for
k − 1. Let x ∈ N be any fixed point. From theorem 4 and our induc-
tion hypothesis it follows that for every cubec ∈ Cn(N) there is a cube
c′ ∈ Cn(N) such thatc′ is translation equivalent with the constantx cube and
πk−1(c) = πk−1(c

′). It follows from theorem 1 thatc− c′ ∈ Cn(Dk(Ak)).
SinceAk ⊂ Transk(N) it is easy to thatc is translation equivalent withc′

with translations fromAk.
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