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SNOQIT I: THE Λ[G]-MODULES OF IWASAWA

THEORY

PREDA MIHĂILESCU

Abstract. For Λ = Zp[[T ]], the ring of formal power series in one
variable, the structure of the finitely generated Λ - torsion modules
is a main concern of Iwasawa theory. In this first part of Snoqit1

we investigate some topics related to the representation of these
Λ-modules as direct sums of certain elementary Λ - submodules,
and the growth of the intermediate levels of modules which are
projective limits.
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1. Introduction

Let p be an odd prime and Λ = Zp[[T ]] be the ring of formal power se-
ries in the independent variable T . Then Λ is a local ring with maximal
ideal M = (p, T ). The maximal ideal verifies the topological condition
∩nM

n = {0}, which allows one to induce M - adic completion on Λ -
modules. Therefore all the Λ-modules considered here will be assumed
to be complete in the M - adic topology [5], Chapter 5, §11.
In number theory, one considers extensions K∞/K of finite extensions

K/Q, such that Gal(K∞/K) ∼= Zp and K∞ = ∪n≥0Kn, [Kn : Kn−1] =
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2 PREDA MIHĂILESCU

p,K0 = K. If An are the p-parts of the class groups of the intermediate
fields Kn, the fundamental Λ-module of Iwasawa theory if A = lim

←−n
An.

Due to the intimate relation between Λ-modules and the structure
of some important groups related to Zp - extensions of number fields,
such as A, the study of Λ-modules takes an important role in Iwasawa’s
seminal papers, especially [2, 3]. In [2], Iwasawa proved that the mod-
ule A has a fundamental property – see property F below – which is
essentially Hilbert’s Theorem 90 for Λ-module, with an additionally
case related to ramification of the primes above p. The Leitmotiv of
this paper is to show that property F is a distinctive property for the Λ-
modules of number theory, which endows them with strong additional
structure, compared to the arbitrary Λ-modules, which was considered
so far as “Iwasawa”-modules, thus in a certain sense the natural objects
of Iwasawa theory.
One often encounters Λ-free modules in Iwasawa theory, and their

quotients may have the structure of arbitrary Λ-modules. The title “Λ-
modules of Iwasawa theory” therefore has some ambiguity: our position
is that the specific properties of the fundamental module A are relevant
for Iwasawa theory. This leads to our interest in studying modules
with property F; we uncover very strong structural consequences of
this property, such as the fact that they decompose in direct sums of f -
primary parts, with f irreducible distinguished polynomials. Moreover,
their minimal polynomial is squarefree.
In the rest of this introduction we review some classical facts about

general Λ-modules and then introduce the notation used in this paper.
In the second Chapter we define our Λ-modules of interest. These
are all projective limits with respect to families of maps which behave
like norms in galois groups of extensions of Iwasawa towers K∞/K;
we thus consider modules M = lim

←−n
Mn, with Mn abelian p-groups

endowed with an action of Γ. In these modules, we introduce the
Property F and, after giving some definitions and examples, deduce the
main consequences of this property on the growth of the intermediate
level modules Mn, in the case when |Mn| < ∞. These consequences
are derived from the fundamental proposition 3, which generalizes a
result of Fukuda for the module A of Iwasawa theory. Based on this
result, some considerations of linear algebra imply the conditions of
asymptotic growth of our modules.
In the third Chapter we investigate submodules of Λ-modules and

questions related to their decomposition in direct sums. The modules
here do not need to satisfy property F. It is in the fourth chapter that
we consider the impact of property F on decompositions of Λ-modules.
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The general setting of this paper is axiomatic, but the examples focus
on class field theory related to Iwasawa theory. The fundamental result
of Iwasawa which proves that the modules A = lim←−n

An – or, likewise,

the galois groups Xn = Gal(Hn/Kn) with their projective limit X =
Gal(H/K∞) – has property F was derived using class field and Kummer
theory, and the proof appears to encrypt quite precisely the property F
for maximal p-abelian unramified extensions of the intermediate fields
of the cyclotomic Zp-extension K∞/K. The same proof is encountered
in text books like [6], [5], and we do not know about the existence of
some alternative, module theoretic approach. While the property itself
can be retained in a simple axiom, it is an important open question, to
find out other examples of modules with property F, and possibly some
general conditions under which a submodule of a free Λ-module has this
property. As we shall see, the property implies some kind of completion
of the given module, and fixes its structure together with the one of
its submodules. In Appendix A we give, for the sake of completeness,
a generalization of Iwasawa’s proof to the case of submodules M ⊂ A
which have a direct complement in A. This proof illustrates the method
of Iwasawa in our terminology; the result follows however directly from
Iwasawa’s result on A, using some simple algebraic arguments given
Chapter 4.

1.1. Classical theory of Λ-modules reviewed. The prime ideals
of Λ are generated by p and the irreducible distinguished polynomials
f(T ) ∈ Zp[T ]; we recall that f is distinguished if f(T ) = T k+

∑k−1
i=0 aiT

i

with ai ∈ pZp[T ]. The Weierstrass preparation Theorem says that for
each x ∈ Λ \ {0} there is a k ≥ 0 and a distinguished polynomial
f(T ) ∈ Zp[T ], together with an unit u ∈ Λ such that

g(T ) = pkf(T ) · u(T ).

If f, g ∈ Zp[T ] are two prime distinguished polynomials which are co-
prime to each other in Qp[T ], then the ideal (f, g) ⊂ Λ has finite index,
but is in general not the trivial ideal [6], Lemma 13.7. As a conse-
quence, the notion of pseudoisomorphism arises as a practical notion
for comparing structures of Λ-modules. Two Λ-modules X, Y are said
to be pseudoisomorphic (one writes: X ∼ Y ) if there is an exact se-
quence

0→ K1 → X → Y → K2 → 0,

in which the kernels and cokernels K1, K2 are finite. In particular, for
f, g prime as above, we have that

Λ/(f)⊕ Λ/(g) ∼ Λ/(fg),(1)
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but one never has isomorphism ([6], Lemma 13.8). The module X is
Noetherian iff X/MX is finite, that is, iff it is finitely generated as a
Λ-module. Iwasawa defines [3], §1.2 elementary Λ-modules by

E(e0; p
e1
1 , . . . , pess ) = Λe0 ⊕

s⊕

i=1

Λ/peii ,

where ei ≥ 0 and pi are prime ideals of height one in Λ. As a conse-
quence of the above, he deduces that every Noetherian Λ -module X
is pseudoisomorphic to some elementary Λ - module, thus

Lemma 1. If X is a Noetherian Λ-module, then there is a collection of
s (not necessarily distinct) prime ideals pi ⊂ Λ of height one together
with s+ 1 integers e0; e1, . . . , es ≥ 0 such that

X ∼ E(e0; p
e1
1 , . . . , pess )(2)

For a proof, see [3], §1.2. In view of (1), one sees that the primary
parts in (2) can be combined – or possibly decomposed – up to pseudoi-
somorphism. One may thus generalize elementary modules by allowing
also products of prime powers: an elementary module is then described
by the exponents e0, e1, . . . , es′ together with the distinguished polyno-
mials fi(T ):

E ′(e0; f
e1
1 , . . . , f

es′
s′ ) = Λe0 ⊕

s′⊕

i=1

Λ/f ei
i .(3)

Remark 1. Due to the phenomenon described in (1), one cannot expect
in general to obtain precise descriptions of submodules of Λ-modules
up to isomorphisms; therefore, the notion of pseudoisomorphism has
imposed itself since the beginning of this theory on the study of arbi-
trary Λ-modules. However, modules that are complete in the sense of
Property F are direct sums of submodules with minimal polynomials
f ∈ Zp[T ] which are distinguished and irreducible.
The consequences of Property F derived in this paper will be used

in Snoqit II for the study of Kummer radicals and in particular the
Iwasawa bilinear space. This is a subspace A(S) ⊂ A which acts both as
radical and as galois group in a subextension of the Hilbert class field;
it is the obstruction module to the Greenberg conjecture.

The module Λ can be represented in various ways as a projective
limit. If one considers (see [3], §1.3) a sequence of elements 0 6= πn ∈ Λ
with π0 ∈M and πn+1 ∈ πnM, then ∩nπnΛ = 0 and Λ = lim←−n

Λ/(πnΛ).
If X is a Noetherian Λ - torsion module, one can always choose the
πn to be coprime to primes occurring in the representation (2) of X ;
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by defining Xn = X/πnX , we obtain natural maps Xn → Xm for
n > m with respect to which X = lim

←−n
Xn. In Section 3 we show

that the polynomials ωn = (T + 1)p
n

− 1 and the related prime poly-
nomials νn,n+1 = ωn+1/ωn are related to a useful additional property
of Λ-modules, which is encountered in number theory and governs the
asymptotic growth of the finite level submodules of projective limits.

1.1.1. Notation. If G is a group, which is an module over the ring R
and S ⊂ G is a finite or infinite set, we shall often use the notation 〈S〉R
for denoting the R - submodule spanned by the set S. The subexponent
of a finite abelian p - group X is

sexp(X) = min{ord(x) : x ∈ X \ pX}.

The Zp - torsion of a Λ module M is M † and the maximal finite sub-
module of M is M◦.
In Iwasawa theory, we consider an odd prime p and extensions K/K∞

which contain the p-th roots of unity, together with their cyclotomic
Zp-extension K∞ = ∪nKn,K = K1. We let k be the least integer such
that µpk+1 6⊂ K.

The units of Kn are denoted En = (O(Kn))
× and the p-units – i.e.

the smallest ring contained in Kn, in which all the primes above p are
invertible – are E ′

n ⊃ En. The local -units (of interest in our context) are
defined by Un = O (Kn ⊗Q Qp)

×. The maximal p-abelian unramified
extension of Kn is Hn and H = ∪nHn. The p-parts of the class groups
of Kn are An, being isomorphic to Xn = Gal(Hn/Kn) via the global
Artin map ϕ, which extends to infinity under projective limits to a map
ϕ : A→ X . The maximal subfield H′

n ⊂ H which splits all the primes
above p has galois group isomorphic to A′

n, the p-parts of the class
groups of the p units E ′

n ⊂ En; we have H′ ⊂ H and A′ := lim←−n
A′

n.
Moreover, if Bn ⊂ An is the subgroup spanned by the classes of powers
of ramified primes above p and B = lim←−n

Bn, then

ϕ(Bn) = Gal(Hn/H
′
n), ϕ(B) = Gal(H/H′),(4)

A′
n
∼= An/Bn A′ ∼= A/B.(5)

We use Lang’s notation Ω with various indices for large extensions
of K∞, with galois groups that contain non trivial free Λ-submodules.
In particular Ω is the maximal p - abelian p - ramified extension of

K∞; its most important subfields are ΩE = ∪nKn[E
1/pn

n ] and ΩE′ =
∪nK∞[(E ′

n)
1/pn ], with E ′

n ⊃ En the p - units of Kn. The maximal p -
ramified p - abelian extension of Kn is Ωn ⊂ Ω; it contains K∞. The

extensions ΩE,n = Kn[E
1/pn

n ],ΩE′,n = Kn[(E
′
n)

1/pn ]. We write HE =
H ∩ ΩE and HE′ = H ∩ ΩE′. If F ⊂ Ω is a galois extension of K which
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is not completely unramified, then the finite level subextensions are
induced by Ω via Fn = Ωn ∩ F. Note that Ωn ⊃ K∞ since K∞/Kn is
p-abelian and p-ramified, while Hn ∩Kn+1 = Kn, due to the fact that
Hn is unramified.
The base fieldK contains the p-th root of unity, so there is a maximal

integer, which will be denoted by k ≥ 1 such that ζpk ∈ K. We shall
use from classical Iwasawa theory the following standard polynomials:

ωn = (T + 1)p
n−k

− 1 ∈ Zp[T ], n ≥ k,

νm,n = ωm/ωn ∈ Zp[T ], m > n ≥ k,(6)

ωn = ωk and νm,n = νm,k for 0 ≤ n < k.

We assume for simplicity that k = 1, in order to simplify notations.
This assumption is somewhat restrictive, since K may not split into
linear disjoint extensions, one of which is B/Q, the cyclotomic Zp-
extension. In Snoqit II, we shall introduce more precise notations
which take this fact into consideration. The assumption is sufficient
though for illustrating the main picture. Note that both ωn and νm,n

are distinguished polynomials and we may choose πn = ωn in order to
organize Λ as a projective limit, as described above.

2. Property F and IW modules

In this section Λ = Zp[[Γ]] ∼= Zp[[T ]] and τ is a topological generator
of Γ, while T = τ − 1. The ring Λ is local and its maximal ideal is
M = (p, T ). We shall also assume that Λ is endowed with an involution
∗ : Λ→ Λ given by τ ∗ = (p+ 1− τ)τ−1, the Iwasawa involution.
We consider additively written Λ-modules1 which are projective lim-

its M = lim←−n
Mn, and the projections πn : M → Mn are defined by

two sequences of maps Nm,n : Mm → Mn and ιn,m : Mn → Mm, called
norms and lifts, such that

Nn+1,n†ιn,n+1 = p : Mn →Mn, and, possibly(7)

ιn,n+1†Nn+1,n = νn+1,n : Mn+1 →(8)

We assume that all maps Nn+1.n are surjective, but ιn,n+1 need not
always be injective. For m > n ≥ 0, the maps Nm,n, ιn,m are defined
by iteration. The property (8) is not required in general and we give
below conditions under which it necessarily holds. The limit M =
lim
←−n

Mn is taken with respect to Mm,n. Injective limits are related to
examples from traditional approaches to Kummer theory, which will

1We keep additive notation for simplicity in the axiomatic approach, but the con-
crete modules from Iwasawa theory, which are endowed with natural multiplicative
structures, will be written accordingly in a multiplicative notation
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not be pursued here: we shall not consider injective limits here. If
Vn ⊂ Mn are a family of submodules, we define V = lim

←−n
Vn and

N∞,n(V ) = ∩m>nNm,n(Vm) The norm from infinity is identical with
the projection of M onto the n-th level:

N∞,n(M) = Mn = πn(M).

In particular, the intermediate levels of M can be recovered by means
of the norms or projections. The elements of M are x = (xn)n∈N ∈ M
with xn ∈Mn; they will also be referred to as norm coherent sequences,
and a sequence of modules (Vn)n∈N with Vn ⊂ Mn and Nm,n(Vm) = Vn

is a norm coherent sequence of submodules.
If f ∈ Zp[T ] is a distinguished polynomial, we define the f -primary

part A(f) of M and its socle A[f ] by

M(f) = {x ∈M : ∃n ∈ N, fnA = 0} ⊂M,(9)

M [f ] = {x ∈M : fx = 0} ⊂M.(10)

Then M(f) = ∪∞n=1M [fn]. The union is infinite when M is, for in-
stance, a Λ-free module, but in the most cases of interest it will be in
fact finite.
Finally, we define for n ≥ 0 the fundamental submodules

Yn = Yn(M) = Ker (N∞,n : M → Mn) ⊂M.(11)

2.1. Definition of Property F. With this prerequisites, we define
the property F as follows:

Definition 1. 1. Let M = lim
←−n

Mn with Mn a norm coherent se-
quence of Λ-modules. Suppose that there is a submodule T =
T (M) ⊂ M [T ] which is Zp-free and such that the following
conditions hold:

Y1(M)/TM ∼= T (M)(12)

Ym(T ) = νm,n(Yn(T )),(13)

Ym(M) = νm,n(Yn(M)).(14)

Then M has Property F and the submodule T (M) is called the
ramification of M . In particular, M is unramified iff Y0(M) =
TM ; this can happen also when M [T ] is infinite.

2. A sequence a = (an)n∈N ∈ M is called floating of level n1 > 1,
if a 6∈ MM but for n1 > 1 we have an = 0, ∀n < n0 and
an0 6= 0. We denote by F(M) ⊂ M the Λ-module generated by
all floating elements.
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3. We introduce the following nominations for various types of Λ-
modules which posses property F: a PIW a is a module M =
lim←−n

Mn with property F. If in addition ιn,n+1 are injective for
all n ≥ n0, the module is an injective PIW or an IW-module.
Finally, if M is an IW which is free as a Zp-module and all
Mn are finite and of uniformly bounded p-rank, then M is a
Weierstrass modules. Thus Weierstrass modules are infinite Λ-
torsion modules with λ 6= 0 and µ = 0 and such that the lift
maps are asymptotically injective; in addition, they have prop-
erty F. A Zp-torsion IW module is called a µ-type IW, of MIW.

Remark 2. 1. We have already mentioned that Iwasawa proved
in [2] that A = lim←−n

An, with An the p-parts of class groups in
a Zp-cyclotomic towers in which all primes above p are totally
ramified, enjoy Property F – see for instance [6], Lemma 13.15.
In this relevant context, the module

T (A) ∼= Gal(((Ω1 ·K∞) ∩H)/(H1 ·K∞)),

and it is spanned by the decomposition group of primes which
are inert in the Hilbert class field. Thus T (A) ∼ B. This
explains the choice of the term ramification for T . It follows in
particular that A is unramified iff [(Ω1 · K∞) ∩ H : K∞] < ∞.
We shall prove later the deeper result that A[T ] is finite.

2. For unramified modulesM , the property F is equivalent to Hilbert
90 for M . Furtwängler has proved in the first decade of the
20-th century the fact that Hilbert 90 holds for the class groups
in cyclic subfields of Hilbert class fields. Using Chevalley’s gen-
eralization of Furtwängler’s results (see [5], Chapter 13, Lemma
4.1) one may obtain an alternative proof of Iwasawa’s result.

3. In connection with Kummer theory, one can define the duals of
PIW modules, which will be projective with respect to the dual
norms N∗

m,n. The property F is then conserved by duality, with
respect to the action of Λ twisted by the Iwasawa convolution.

A useful consequence of the property F is

Lemma 2. Let Mn be a coherent sequence of Noetherian Λ-modules
with the F-property and F(M) ⊂ M be the module of the floating
elements. Then

F(M) 6= ∅ ⇔ Y0(T (M)) 6⊂MM.

Proof. Let a = (an)n∈N ∈ M be a floating element of level 0. There
is a surjective homomorphism of Zp-modules t : M → T (M) and
M = Ker (t) ⊕ T , thus a = au + at with au ∈ Ker (t), at ∈ T . From
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(12) we gather that Y0(M) = TM+Y0(T ) and therefore a ∈ F∩Y0(M)
is floating of level 0 iff at ∈ Y0(T ) and at 6∈MM . Indeed, TM ⊂MM
and since a 6∈ MM , it follows that at 6∈ MM . This completes the
proof. We see that the existence of floating elements is controlled by
ramification and in particular, unramified modules have no floating
elements. �

We give some examples of projective limits and property F, which are
related to the setting of cyclotomic Zp-extensions, with the notations
introduced above.

Example 1. 1. Let A = lim←−n
An. Then A is a PIW-module of

finite type and A− is an IW-module; it is the direct sum of a
Weierstrass and a MIW-module, while for µ− = 0 it is a pure
Weierstrass module.

If the primes above p are not split in K/K+, then A− is a
torsionfree IW-module. For plus parts, A+ is PIW but in gen-
eral not IW, since it may contain finite torsion submodules. A
conjecture of Greenberg implies that A+ contains no IW - sub-
module.

2. Let Kn = Q[ζpn], the pn-th cyclotomic extensions and Un be
like above. Let ek ∈ Zp[Gal(K1/Q)] be an orthogonal idem-
potent with odd index and ξn ∈ ekUn be such that [ekU

−
n :

ξΛn ] = 1; then ekΩ is naturally defined as the fixed field of the
(1− ek)Gal(Ω/K∞). By class field theory,

D := Gal((ekΩ)/(ekH)) ∼= ekU∞
∼= Λ,

the isomorphism being induced by the Artin map ϕ. Consider fi-
nally f(T ) ∈ Zp[T ], any distinguished polynomial; then f(T )D ⊂
D is a compact subgroup, with quotient D/(fD) ∼= Λ/(f). Let
Ω̃f = (ekΩ)

fD be the fixed field of this compact subgroup and

Ω̃f,n ⊂ Ω̃f be the maximal subextensions which contain Kn

but not Kn+1, and are galois over Q. By construction, Mn =
Gal(Ω̃f ;n/Kn) are a coherent sequence of Λ-modules with char-
acteristic polynomials f(T ) – for n sufficiently large. This ex-
ample indicates that one encounters Λ-modules with arbitrary
characteristic polynomials. We shall see later, that these mod-
ules cannot be IW modules.

3. Let L ⊂ H be a galois extension of K with group Z = Gal(L/K∞)
and suppose that Z is a PIW. Let pm(n) = exp(Zn) and Bn ⊂

K×
∞ be groups with K∞·Ln = K∞[B

1/pm(n)

n ]. We let R(Ln/Kn) =

K×
∞〈B

1/pm(n)

n 〉Z/K
×
∞; these radicals will be investigated in Snoqit
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II, when we discuss Kummer theory. There is a twisted action
of Λ on R(Ln/Kn) which induce a projective limit R(L/K∞)
with respect to the twisted norms N∗

m,n. Then R(L/K∞) is also
a PIW with respect to this action of Λ.

2.2. Growth of IW-modules. Our investigation of IW modules fo-
cuses on the transitions Mn →Mn+1 and the growth from one module
to the other. For this we define

Definition 2. Let (Mn)n∈N be a norm coherent sequence of Λ modules,
such that M = lim←−n

Mn is an unramified Weierstrass module. The n -

transition is the module Cn = Mn+1/ιn,n+1(Mn).

The n - transition is anRn-module, with Rn = Z/(pN ·Z)[ωn]]/(ωn+1)-
module, for a pN ≥ exp(Mn+1). The ring Rn is local with maximal ideal
(ωn), so its annihilator is generated by a power of T . For the inves-
tigation of transitions, we shall consider in particular the case when
a = (an)n∈N ∈ X \MX for an unramified Weierstrass module X and
Mn = Λan. In this case, the annihilator

C⊤
n = {x ∈ Rn : xCn = 0} = ω(k(n)

n Rn,

for k(n) ≥ 1, which is an invariant of the transition. According to its
size we distinguish several cases of growth:

Definition 3. Let Cn and k(n) we like above. The exponent k(n) ∈ N

is called the growth factor of the transition Cn. The transition Cn is
called

1. Stable, if k(n) = 1,
2. Semistable, if k(n) < p− 1,
3. Tame, if k(n) ≤ p− 1 and
4. Wild, if k(n) > p− 1.

A module M is stable, semistable or tame if there is an n0 depending
only on M such that for all Λa ⊂ M , with a = (an)n∈N ∈ M \MM ,
all of its transitions Cn, n ≥ n0 have this property.

The following lemma generalizes the Theorem 1 of Fukuda in [1],
showing that transitions tend to stabilize, under mild assumptions on
M . The proof of Fukuda was made for the full class groups A(K) and
uses Iwasawa’s result mentioned above. We show here that the proof
only requires Property F.

Lemma 3. Let (Mn)n∈N be a norm coherent sequence such that M =
lim
←−n

Mn is a PIW with finite p - rank (so M/pM is finite). Then there
is an n0 > 0 such that for all n ≥ n0 the following hold:

1. If |Mn| = |Mn+1|, then Mm = Mn for all m > n ≥ 0.
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2. If p-rk(Mn) = p-rk(Mn+1) then there is a constant R with
p-rk(Mm) = p-rk(Mn) = R for all m > n ≥ 0; furthermore
there is a constant λ(M) ≤ R such that |Mn+1|− |Mn| = pλ for
all n sufficiently large.

Proof. Consider Yn(M) = Ker (N∞,n : M → Mn); by Property F
(14), we have Yn(M) = νm,0Y0(M). We assume without restriction of
generality that 0 is the least integer n for which |Mn| = |Mn+1|, for
point 1., respectively p-rk(Mn) = p-rk(Mn+1), for point 2. From the
choice of Yn, we have a commutative diagram in which Mn → M0 is
induced by the map Nn,0 while the horizontal isomorphism are deduced
from the definition of Yn.

Mn
∼= M/νn,0Y

↓ ↓
M0

∼= M/Y.
(15)

For the first point we assume |M1| = |M0|. Then M1 → M0 is an
isomorphism; therefore ν1,0Y = Y . Since M = (p, T ) ⊂ Λ is the
unique maximal ideal and ν1,0 ∈ M, and since Y is finitely generated
over Λ, it follows from Nakayama’s lemma that Y = 0. Consequently,
M ∼= M0 is finite and Mn

∼= M0
∼= M for all n ≥ 0. This proves the

assertion 1.
Suppose now that p-rkM1 = p-rkM0. Then M1/pM1

∼= M0/pM0 and
thus M/(ν1,0Y + pM) ∼= M/(Y + pM) and ν1,0Y + pM = Y + pM .
Letting Z = (Y + pM)/pM , we have

ν1,0Z = (ν1,0Y + pM)/pM = (Y + pM)/pM = Z.

By Nakayama’s lemma, we conclude that Z = 0 and Y ⊂ pM . There-
fore,

p-rk(Mn) = p-rk(M/νn,0Y ) = p-rk(M/(νn,0Y + pM))

= p-rk(M/pM) = Zp-rk(M), for all n ≥ 0.

By Iwasawa’s formula, for n sufficiently large we have

|Mn| = pµp
n+λn+ν ,

and since the rank stabilizes, we see that µ(M) = 0 and |Mn+1|−|Mn| =
pλ. This proves assertion 2. �

Let M be an IW-module. Since M † is a Zp - torsion module its
exponent is finite, say q = pm. Then M † = Ker (pm : M → M) is
a canonical submodule. Let M◦ ⊆ M † be the maximal submodule of
finite rank. This is also a canonical module, defined as the Λ - span of
all the elements x ∈M \MM , such that Λx is finite.
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In view of the Lemma 3, beyond a fixed n, we have |M◦
m| = |M

◦
n|, m >

n. Let M (µ) = M †/M◦ and M (λ) = M/M †. Then M (λ) the Lemma
implies that M (λ) is a Weierstrass module. Having split IW-modules
in this way, the Lemma 3 suggests the following

Definition 4. Let M be a PIW-module of finite p - rank. The minimal
integer n0 = n0(M) such that

1. The sizes |M◦
n| = |M

◦
n0
| for all n > n0,

2. The ranks p-rk(M
(λ)
n ) = p-rk(M

(λ)
n0 for all n > n0,

is called the stabilization index of M . The module M is called stable,
if n0(M) = 0.

Next we give an elementary, technical lemma which will allow us to
draw additional information from Lemma 3;

Lemma 4. Let A and B be finitely generated abelian p−groups denoted
additively, with subexponents sexp(A), sexp(B) ≥ p2 and let N : B →
A, ι : A→ B two Zp - linear maps such that:

1. N is surjective;
2. The p−ranks of A and B are both equal to r and |B|/|A| = pr.
3. N(ι(a)) = pa, ∀a ∈ A and ι is rank preserving, so p-rk(ι(A)) =

p-rk(A);

Then ι is injective, ι(A) = pB and ord(x) = p · ord(Nx) for all x ∈ B.

Proof. We start by noting that for any finite abelian p - group A of
p - rank r and any pair αi, βi; i = 1, 2, . . . , r of minimal systems of
generators there is a matrix E ∈ Mat(r,Zp) which is invertible over Zp,
such that

~β = E~α.(16)

This can be verified either by tensoring with Qp, or directly by extend-
ing the map αi 7→ βi linearly to A and, since (βi)

r
i=1 is also a minimal

system of generators, deducing that the map is invertible, thus regular.
It represents a unimodular change of base in the vector space A⊗Zp

Qp.
The maps ι and N induce maps

ι : A/pA→ B/pB, N : B/pB → A/pA.

From 1, we see N is surjective and since, by 2., it is a map between
finite sets of the same cardinality, it is actually an isomorphism. But
3. implies that N†ι : A/pA→ A/pA is the trivial map and since N is
an isomorphism, ι must be the trivial map, hence ι(A) ⊂ pB.
Assume now that ι is rank preserving and let bi, i = 1, 2, . . . , r be

a minimal set of generators of B: thus the images bi of bi in B/pB
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form an Fp - base of this algebra. Let ai = N(bi); since p-rk(B/pB) =
p-rk(A/pA), the set (ai)i also forms a minimal set of generators for A.
We claim that |B/ι(A)| = pr.
Pending the proof of this equality, we show that ι(A) = pB and ι is

injective. Indeed, we have the equality of p- ranks:

|B/pB| = |A/pA| = |B/ι(A)| = pr,

implying that |pB| = |ι(A)|; since ι(A) ⊂ pB and the p - ranks are
equal, the two groups are equal, which is the first claim. The second
claim will be proved after showing that |B/ι(A)| = pr. Since |B|/|A| =
pr, it follows that |A| = |ι(A)|, so ι is injective.
Let S(X) denote the socle of the finite abelian p - group X . There is

the obvious inclusion S(ι(A)) ⊂ S(B) ⊂ B and since ι is rank preserv-
ing, p-rk(A) = p-rk(S(A)) = p-rk(B) = p-rk(S(B)) = p-rk(S(ι(A))),
thus S(B) = S(ι(A)). Let (ai)

r
i=1 be a minimal set of generators for

A and a′i = ι(ai) ∈ B, i = 1, 2, . . . , r; the (a′i)
r
i=1 form a minimal set of

generators for ι(A) ⊂ B. We choose in B two systems of generators in
relation to a′i and the matrix E will map these systems according to
(16).
First, let bi ∈ B be such that peibi = a′i and ei > 0 is maximal among

all possible choices of bi. From the equality of socles and p - ranks, one
verifies that the set (bi)

r
i=1 spans B as a Zp-module; moreover, ι(A) ⊂

pB implies ei ≥ 1. On the other hand, the norm being surjective,
there is a minimal set of generators b′i ∈ B, i = 1, 2, . . . , r such that
N(b′i) = ai. Since bi, b

′
i span the same finite Zp-module B, (16) in which

~α = ~b and ~β = ~b′ defines a matrix with ~b = E · ~b′. On the other hand,

ι(~a) = ~a′ = Diag(pei)~b = Diag(peii )E ·
~b′,

The linear map N : B → A acts component-wise on vectors ~x ∈ Br.
Therefore,

N~b = ~Nbi = N(E~b′) = N

(
(
∏

j

b′
∑

j ei,j
j )ri=1

)

=

(
∏

j

(Nb′j)
∑

j ei,j

)r

i=1

=

(
∏

j

(aj)
∑

j ei,j

)r

i=1

= E(~a).
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Using the fact that the subexponent is not p, we obtain thus two ex-
pressions for N~a′ as follows:

~Na′ = p~a = pI · ~a

= N
(
Diag(pei)~b

)
= Diag(pei) ·N(~b) = Diag(pei) · E~a, so

~a = Diag(pei−1) · E~a

The aj form a minimal system of generators and E is regular over Zp;

therefore ~(α) := (αj)
r
j=1 = E~a is also minimal system of generators of

A and the last identity above becomes

~a = Diag(pei−1) · ~α.

If ei > 1 for some i ≤ r, then the right hand side is not a generating
system of A while the left side is: it follows that ei = 1 for all i.
Therefore |B/ι(A)| = pR and we have shown above that this implies
the injectivity of ι.
Finally, let x ∈ B and q = ord(Nx) ≥ p. Then qN(x) = 1 = N(qx),

and since qx ∈ ι(A), it follows that N(qx) = pqx = 1 and thus pq
annihilates x. Conversely, if ord(x) = pq, then pqx = 1 = N(qx) =
qN(x), and ord(Nx) = q. Thus ord(x) = p · ord(Nx) for all x ∈ B
with ord(x) > p. If ord(x) = p, then x ∈ S(B) = S(ι(A) ⊂ ι(A) and
Nx = px = 1, so the last claim holds in general. �

This small exercise in linear algebra avoids a deeper investigation
of M as a sum of irreducible Λ-modules, and the afferent pseudo-
isomorphisms which may arise. Of course one may identify the modules
A,B in the Lemma with subsequent levels in an IW-module.

Proposition 1. Let M be a Zp - torsion free Noetherian Λ - module
of finite p-rank with property F and n0 ∈ N be the bound proved in
Lemma 3, such that for all n ≥ n0 and for all submodules A ⊂ M
we have p-rk(An) = Zp-rk(A) = λ(A). Then for all n ≥ n0 and all
x ∈Mn+1, the lifts ιn,n+1 are injective, so M is Weierstrass. Moreover
and the following hold:

px = ι(Nn+1,n(x)), ι(Mn) = pMn+1,

ωnx ∈ ιn,n+1(Mn[p])(17)

In particular, for n > n0, the transitions Cn(M) are stable and

νn+1,n(an+1) = pan+1 = ιn,n+1(an).(18)

Proof. Since M has property F, has finite p - rank and has no Zp -
torsion, the second point in Lemma 3 holds, thus |Mn| > |Mn+1| for
an n0 ∈ N. We let thus from now on n > n0. Since M is torsion
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free, we may also assume also that sexp(An) > p. It follows then form
Lemma 4 that the lift maps are injective, so M is Weierstrass. We
use the notations from this Lemma and let ι = ιn,n+1, N = Nn+1,n and
N ′ = νn+1,n.
For proving (18), thus px = ι(N(x)) = N ′(x), we consider the devel-

opment t := ωn = (T + 1)p
n

− 1 and

N ′ = p+ t · v = p + t(

(
p

2

)
+ tw)), v, w ∈ Z[t],

as follows from the Newton development of N ′ = (t+1)p−1
t

. By defini-
tion, t annihilates Mn and a fortiori ι(Mn) ⊂ Mn+1; therefore, for arbi-
trary x ∈ Mn+1 we have (pt)x = t(px) = tι(x1) = 0, where the existence
of x1 in px = ι(x1), x1 ∈Mn follows from Lemma 4. Since ι is injective
and thus rank preserving, we deduce that tx ∈ Mn+1[p] = ι(Mn[p]),
which is the first claim in (17). Then

t2x = t · (tx) = tx2 = 0, since x2 = tx ∈ ι(Mn).

Using t2x = ptx = 0, the above development for N ′ plainly yields
N ′x = px, as claimed. Injectivity of the lift map then leads to (17).
Indeed, for a = (an)n∈N and n > n0 we have

ord(an) = ord(ιn+1,n(an)) = ord(ιn+1,n†Nn+1,n(an+1))

= ord(νn+1,nan+1) = ord(pan+1) = ord(an+1)/p.

This completes the proof. �

As a consequence, we have

Corollary 1. Let M be a Weierstrass module, let n0 = n0(M) be its
stabilization index and consider x = (xn)n∈N ∈M \M◦. Then there is
a constant z(x) ∈ Z such that ord(xn) = pmax(0,n+1+z(x)) for all n > n0.
Furthermore, for n > n0 the cyclic composition rules are

Nn+1,n†ιn,n+1 = p : Mn →Mn and

ιn,n+1†Nn+1,n = p : Mn+1 →Mn+1.

Proof. Let n > n0 be such that x 6∈ Yn, so xn 6= 0. Then we define
z(x) = ord(xn) − (n + 1). By Proposition 1, it follows that z(x) has
the desired properties, and in particular it does not depend on n. The
first composition rule belongs to the definition of coherent sequences;
the second is new and follows from (18). �

Definition 5. Let M be a PIW module and z : M → Z ∪ {−∞}
be defined by z(x) = −∞ if x ∈ M †, while for x ∈ M \ M †, the
value is defined by the previous corollary. We define the order of M by
z(M) = max{z(x) : x ∈M}.
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Note that since z(x) ≤ exp(Mn0) − (n + 1) for all x ∈ M , the
order z(M) is an integer. Furthermore, one verifies that z verifies the
ultrametric inequality z(xy) ≤ max(z(x), z(y)) for x, y ∈M .
Finally, we consider the semistable transitions:

Lemma 5. Let M be an IW module, a ∈M \MM and An = Λan. If
Cn = (An+1)/(ι(An)) is a semistable transition, then pAn+1 = ι(An).
Moreover, pan+1 = νn+1,nan+1 = vιn,n+1(an), for v ∈ R×

n .

Proof. From the definition,

νn+1,n =
(ωn + 1)p − 1

ωn
= p ·

(
1 +

p− 1

2
ωn + . . .+ ωp−2

n )

)
+ ωp−1

n .

Since Cn is semistable, it follows in particular that ωp−1
n an+1 = 0 and

thus

ι(an) = νn+1,n(an+1) = (up)an+1, u ∈ R×
n .

But then u−1ι(an) = pan+1, which readily implies that pAn+1 = ι(An);
the last claim follows with v = u−1. Note that we do not need injec-
tivity of the lift map for this proof. �

We have the following consequence:

Corollary 2. Let M be a semistable PIW-module. Then for all n ≥ n0

and all a ∈M we have

ιn,n+1(Λan) = Λpan+1,(19)

pan+1 = ιn,n+1van, v ∈ Λ×.

If additionally ιn,n+1 is injective for the transitions C(Λan), then ord(an) =
pn−n0 · ord(an0).

Proof. This is a direct consequence of Lemma 5. �

Iwasawa’s theory of Λ-modules holds in particular for IW - modules
and the constants λ(M), µ(M), ν(M) and the characteristic polyno-
mial fM(T ) ∈ Zp[T ] are well defined for Λ - torsion IW modules. We
shall show in Chapter 4, that the class groups of Iwasawa theory enjoy
property F.

2.3. Classification of PIW-modules. The various types of PIW
modules are related by:

Proposition 2. Any PIW-module A is the direct sum A = W⊕M⊕F ,
with W an asymptotic Weierstrass module, M a finite sum of modules
of µ - type and F finite. Moreover, A† = M ⊕ F .
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Proof. The statement is evident. By definition A†, which is a canonic
module, has a direct complement which must be Weierstrass. More-
over, the finite Zp - torsion F := A◦ ⊂ A† is also canonic and it has
a direct complement in A† which is a sum of Zp - torsion cyclic mod-
ules, none of which is finite. It must thus by a sum of modules of µ -
type. �

3. Coalescence and decompositions of Λ modules

In this section we let M = lim←−n
Mn be an arbitrary Λ-module which

is projective limit of a norm coherent sequence of modules Mn; more-
over, we assume that M is free as a Zp-module and has finite Zp-rank.
Property F will in particular not be required. We assume that there
is a finite group ∆ which acts on M and endows it with a structure
of Λ[∆]-module. We shall consider therefore M as an R-module where
R ∈ {Zp,Λ,Λ[∆]}. In all of these three cases, we consider submod-
ules A ⊂ M with respect to the existence of direct complements, the
possibility of taking “roots” in R and the R - completeness of A. We
define

Definition 6. Let M be like above and A ⊂M be a Λ-submodule. Let
R ∈ {Zp,Λ,Λ[∆]. We say that A is

N. R - Complementable, iff there is an R-submodule B ⊂M such
that M = A⊕B. Note that A is always a Λ-module, but B need
not be one, if R = Zp.

C. R-coalescence closed, if for all a ∈ A and b ∈M such that there
exist x, y ∈ R with ax+ by = 0, it follows that there is a b′ ∈ A
with by = b′y. In general, we say that two elements u, v ∈ M
are R-coalescent if there are x, y ∈ R such that ux+ vy = 0.

M. R-maximal, if for all a ∈ A, b ∈ M with a = bx for an x ∈ R,
it follows that there is a b′ ∈ A with b′x = a.

We give a simple example which will motivate the notion of coales-
cence and show its relation with pseudoisomorphisms.

Example 2. Let K = Q[ζp] be the p-th cyclotomic extension, suppose
that A = A− and there are two orthogonal idempotents εi, εj ∈ Zp[∆]
with εiA 6= 0 6= εjA. Moreover, we assume that λ(A) = 2 and the
minimal polynomials are fi = T − up, fj = T − vp with u, v ∈ Z \ pZ.
Let a, b ∈ A generate εiA and εjA, respectively and c = a · b. Since a
and b are separated by the action of Zp[∆] - and not of Λ - it follows that
A0 = 〈a0, b0〉Zp

and since fian = 0 for all n and n = 0 in particular,
it follows that (T − up)a0 = pa0 = 1, so ord(a0) = p and the same
holds for b0. However, (Λc)0 ⊂ A0 is a one dimensional Fp - space,
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and thus Λc ∼ A but we cannot have isomorphism. The same holds for
c′ = a − b, for instance, and thus Λc ∼ Λc′; one can verify even that
pc ∈ Λc′ and pc′ ∈ Λc and A = Λc+Λc′. The relation between c and c′

is a symmetric one, but we also have pa ∈ Λc while there is no p - power
such that pnc ∈ Λa, the Zp - ranks being different: the relation between
a and c is thus an asymmetric one, although Λa+Λc = Λc′ +Λc = A.

In view of simplifying the consequences of pseudoisomorphisms, it is
interesting to merge all submodules that are mutually pseudoisomor-
phic, by defining an equivalence. This is the purpose of the notion
of coalescence. Maximality implies that one can take R-roots within
the submodule A, and complementability is related to direct sum de-
compositions. The main result of this section is that the three notions
coincide:

Proposition 3. Let M = lim←−n
Mn be like above and A ⊂ M be a Λ-

submodule. Let R ∈ {Zp,Λ,Zp[Λ]} be a ring. If R = Λ[∆], we assume
that A is also a Λ[∆]-module. Then

(i) The module A is R-coalescently closed iff it is R-maximal.
(ii) If A is complementable, then A is coalescence closed.
(iii) Suppose that A is coalescence closed and for each prime distin-

guished polynomial f ∈ Zp[T ], if M(f)∩A 6= 0, then M(f) ⊂ A.
Then A is R-complementable.

Proof. Since maximality is the special case of coalescence in which x =
1, coalescence closed modules are R-maximal. Conversely, if A is R-
maximal and a ∈ A, b ∈ M with xa = yb for x, y ∈ R, then xa ∈ A
since A is an R-module, and since it is R-maximal, it follows that
xa = yb′ for an b′ ∈ Y . Thus A is coalescence closed. This proves (i).
Suppose that A is R-complementable; let B ⊂ M be an R-module

with M = A ⊕ B. Let a ∈ A, c ∈ M with ax + cy = 0 for x, y ∈ R.
We may decompose a = (a1, 0), c = (c1, c2) according to the direct sum
M = A⊕B; then we deduce in particular that 0x+c2y = 0 and letting
c′ = (c1, 0) we have cy = c′y, while c′ ∈ A. Thus A is coalescence
complete and (ii) holds.
Suppose now that A is coalescence closed and the premise of (iii)

holds. We consider the three cases for R independently. Since A is
R-maximal, it is in particular Zp-maximal, so it is Zp-complementable,
which proves the claim for R = Zp.
Let thus R 6= Zp. For V ⊆ M an R-module we define the R-radical of

V in M by W = {a ∈M : ∃x ∈ R with ax ∈ V } ⊂M . Then one veri-
fies thatW is anR-module. Let nowM = {a1, a2, . . . , as; as+1, . . . , ar} ⊂
M be a minimal set of generators of M as an R-module, the first s of
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which are a minimal set of generators for A. One can construct such
generators using the Nakayama lemma and the structure of M/(MM)
of an Fp, resp. Fp[∆]-module, according to the cases R = Λ and
R = Λ[∆]. We let then B = 〈as+1, as+2, . . . , as〉R ⊂M , so A+B = M
by definition. Let now V = A ∩ B and W ⊂ M be the R-radical of
V . Since A is R-maximal, it follows that W ⊂ A: indeed, for w ∈ W
there is an x ∈ R such that v = xw ∈ A ∩ B ⊂ A, and maximality
implies that there is a w′ ∈ A with xw′ = v and thus x(w − w′) = 0.
Let x = F · G be a decomposition with F |fA(T ) and (G, fA(T )) = 1,
where fA(T ) ∈ Zp[T ] is the minimal polynomial of A. Since w′ ∈ A
and (G, fA) = 1) it follows that Gw′ ∈ A: indeed, there is a linear
combination ufA + vG = pNu′, u′ ∈ Λ×, (v, fA) = (u,G) = 1 and thus

pNw′u′ = ufAw
′ + vGw′ = vGw′ ∈ A′,

and thus vGw′ ∈ A. But (v, fA) = 1 implies that Gw′ ∈ A. Let
w1 = Gw ∈ W and w′

1 = Gw′ ∈ W ∩ A. Then F (w1 − w′
1) = 0, so

w1−w′
1 ∈ A, since A∩M(f) 6= 0 implies M(f) ⊂ A for all f |fA. Then

w1 = w′
1 + (w1 − w′

1) ∈ A. Finally, since (G, fA) = 1 if follows also
that w ∈ A, thus W ⊂ A as claimed. On the other hand, W ∩ B is a
Λ-module containing the submodule V = A ∩ B. Since W ∩ B = 0 it
follows that V = 0, so A is complementable. For R = Zp[∆] the proof
of (iii) is similar. Instead the minimal sets of generators for A and M
are this time induced by minimal sets of generators for A/(M∩A) and
M/M as Fp[∆]-modules. �

4. The decomposition of Weierstrass modules

In this section the module M will be an unramified Weierstrass mod-
ule. It enjoys thus in particular the properties of the modules of the
previous section. Conversely, not all Zp-free Λ-torsion modules enjoy
property F: it suffices to consider A = pnM ⊂ M for M an unram-
ified Weierstrass module and n > exp(M1). Then Y1(A) = A and
property F would imply Y1(A) = T (A) = A, so A ∈ MA and A = 0
by Nakayama’s Lemma. Therefore, we shall consider Zp-coalescently
closed submodules of M , thus submodules A = A(c) ⊂ M , where the
Zp hull is defined by

A(c) = {x ∈ M : pnx ∈ A for n ≥ 0}.

The coalescent closed modules are Zp-complementable by Proposition
3.
The main fact of this section settles the question of ramification:
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Proposition 4. Let M be a Weierstrass module. Then M(T ) =
M [T ] = T (M) and M [T ] is Λ-complementable.

Proof. Since M is Weierstrass, it has finite Zp-rank and there is a T -
exponent k = expT (M) = min{k : T kM(T ) = 0}. Suppose that k > 1;
then there is an a ∈M(T )\MM such that T k−1a 6= 0. Let q = ord(a1)
and b = qa ∈ Y1(M) ∩M(T ). From the property F of M we deduce
that there are y ∈M, t ∈ T (M) ⊂M [T ] with Ty + t = b. Then

T k+1y = T k+1y + T kt = T kb = T kqa = 0,

and thus y ∈M(T ). The choice of k < 1 implies then

T ky = T ky + T k−1t = T k−1b = T k−1qa = 0,

and since M is Zp-torsion free, it follows that T k−1a = 0 in contradic-
tion with the choice of a. We must thus have k = 1, so M(T ) = M [T ].
Suppose now that T (M) 6= M [T ] and let a ∈ M [T ] \ T (M) and
b = ord(a1) · a ∈ Y1(M). Like before, b = Ty + t and Tb = T 2y = 0
and thus y ∈M [T ], and the previous equation yield

ord(a1)a = b = Ty + t = t ∈ T (M).

Thus b ∈ T (M) and since this module is coalescence closed, it follows
that a ∈ T (M), which completes the proof of the first statement.
Let W = TM ⊂ Y1(M). This is a Λ-submodule and property F

implies that W + M [T ] = M . Moreover, W ∩ M [T ] = 0, since the
T - exponent of M(T ) is one. Let W ′ = W (c) ⊂ M . We claim that
M = W ′⊕M [T ] and W ′ is a Λ-module. It is a Zp-module by definition
and it has a Λ-submodule W of finite index. Then pnW ′ ⊂ W and

if W
′
⊃ W ′ is the Λ-closure of W ′, then the Λ-closure of pnW ′ is

pnW ′ = pnW
′
⊂ W , so pnW

′
⊂ W . Since W ′ is Zp-coalescence closed,

it follows by comparing Zp-ranks, that W
′ = W

′
, so W ′ is a Λ-module.

Let I = W ′ ∩M [T ]. Then pnI ⊂ (pnW ′) ∩M [T ] ⊂ W ∩M [T ] = 0.
The module M being Zp-free, it follows that I = 0, which completes
the proof. �

This elementary computation in Weierstrass modules implies that
(A′)−[T ] = 0 in CM fields, a fact which was conjected by Gross in
1983. We shall give more details on this conjecture, together with an
alternative proof, in Snoqit III.
Since the T -part of M is a direct term, we may assume from now

on that M is a Weierstrass module which is free of T -parts and in
particular of ramification. In particular Yn(M) = ωnM for all n ≥ 1.
Since M(T ) = 0, a fortiori M(ωn) = 0, so the map M → ωnM is
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an isomorphism of Λ-modules. The following lemma describes a large
class of submodules of M with property F:

Lemma 6. Let M be a Weierstrass module with M(T ) = 0 and A ⊂ M
be a Λ-module which is Zp-coalescence closed. Then A has property
F. In particular, if f ∈ Zp[T ] is a polynomial dividing the minimal
polynomial fM(T ), then M(f) and M [f ] have property F.

Proof. Let Y1(A) = A ∩ Y1(M). It suffices to show that Y1(A) = TA.
SinceM(T ) = 0, the condition is equivalent to property F. Let a ∈ A\A
and q = ord(a1), b = qa ∈ Y1(A); thus b = Ty, y ∈ M . If fa(T ) is the
minimal polynomial of a, then fa(T ) = pn + Th(T ) for an n > 0 and
h(T ) ∈ Zp[T ], and thus pna = −Th(T )a ∈ Y1(A), so q|pn. Suppose
that pn = qr: then rb = T (ry) ∈ TA and since the map M → Y1(M) is
injective, it follows that ry ∈ A. The module A is coalescence closed,
so we must also have y ∈ A. Finally, Y1(A) is spanned, by Nakayama’s
lemma by elements like b, so we conclude that Y1(A) = TA, as claimed.
If f |fM(T ), then M(f) and M [f ] are by definition coalescent closed:

indeed if qx ∈M(f), then fkqx = 0 for k ≥ 1 and since M is Zp-torsion
free, fkx = 0, so x ∈M(f) and M(f) is coalescence closed. For M [f ],
the proof is the same, choosing k = 1. �

If M =
⊕s

i=1Mi is a Weierstrass module that decomposes in a direct
sum of Λ-modules, then it follows from the definition that all Mi have
property F: indeed, Y1(Mi) = TM ∩ Mi = TMi, and thus Mi has
property F (we already know that T (M) is a direct term, so we assumed
it vanishes. We deduce in the Appendix below the same fact following
Iwasawa’s proof in [2].

5. Appendix: Property F for class groups

In this section we let K be a galois number field that contains the
p-th roots of unity and Kn, An,Bn, etc. have the usual signification
and A = lim

←−n
An. We assume that the primes above p are totally

ramified in K∞/K. Let H/K∞ be the maximal unramified abelian p -
extension and X = ϕ(A) = Gal(H/K∞), with ϕ the Artin symbol.
The purpose of this chapter is to prove that Property F is enjoyed

by all coalescence closed submodules of A. For A itself, this fact was
proved in 1959 by Iwasawa, the proof is found in all text books on
cyclotomy (see references below) and it uses class field theory. Although
the statement has module-theoretic flavor, even for the simple case of
A, no proof is known, which relays only on module theoretic facts. A
deeper reason for this fact may stem from the use of Kummer duality,
which involves pairs of isomorphic Λ-modules.
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We fix K∞ ⊆ M ⊆ H, an infinite extension which is galois over K,
and let for all n ≥ 0, the field Mn = M∩Hn be the largest subextension
of M which intersects K∞ in Kn. Let X = Gal(M/K∞) and G =
Gal(M/K), Gn = Gal(M/Kn). The following classical computation
yields the commutator G′ (see [6], Lemma 13.14):

Lemma 7. Notations being like above, G′ = TX and G′
n = ωnX.

Proof. Wemay lift Γ toG for instance by identifying this group with the
inertia group I(℘) of a prime ℘ ⊂ K above p which ramifies completely
in K∞/K. Since M/K∞ is unramified, it follows indeed that I(℘) ∼= Γ
and we let σ ∈ I(℘) be a topological generator mapping to τ ∈ Γ.
Then we assume that Γ acts on X via σ, so zσ = σzσ−1 for z ∈ X .
Since G = ΓX , we may represent arbitrary elements of G via this
decomposition; let thus

a = αx, b = βy, α, β ∈ Γ, x, y ∈ X.

Then, using the fact that Γ and thus I are abelian groups, and so is X

[a, b] = aba−1b−1 = αxβyx−1α−1y−1β−1 = xααβyx−1α−1y−1β−1

= xα(yx−1)αβαβα−1y−1β−1 = xα(yx−1)αββy−1β−1

= xα(yx−1)αβ(y−1)β

= (xα)1−β · (yβ)α−1.

After this cataract of algebraic transformations, we brought the com-
mutator in a simple form, that allows to apply the structure of Λ.
For this we note that, since σ is a topological generator, an arbi-
trary element w ∈ I(℘) is of the form w = σc, c ∈ Zp. We lift T
to σ − 1 ∈ Zp[I(℘)]; since ∩nT

nΛ = 0, we have

1− w = 1− (T + 1)c = 1− (1 + T ·
∞∑

n=1

(
c

n

)
T n−1) ∈ TZp[I(℘)].

Since we defined the action of τ on X via σ, it follows that (xα)1−β ·
(yβ)α−1 ∈ TX . But X is closed, and thus TX is closed too, so it
follows that TX ⊃ G′. On the other hand, by choosing β = 1, α = σ
in the above, we find that yT ∈ G′ for any y ∈ X and thus TX ⊂ G′.
Consequently, TX = G′. The proof for G′

n follows by replacing τ with

τ p
n−k

, Γ by Γpn−k

, etc. �

In view of the previous lemma, we may define Ln = MωnX ; since
ωnX = G′

n is the closure of the commutator of Gn, it follows that Ln

is the maximal subextension of M which is abelian over Kn.
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Next we consider ramification and investigate the group fixing the
maximal subextension of Ln which is also unramified over Kn, that is,
by definition, Mn.
Let Ω(K) be the product of all Zp extensions of K and HM =

Ω(K) ∩ M. Then HM/K is an abelian extension with galois group
∆ →֒ A, which is annihilated by T . Therefore ∆ →֒ A[T ]; let s denote
the number of conjugate primes above p in K. We shall assume for
simplicity that A[ωn] = A[T ]; this can be achieved under eventual shift
of the base field K.

Lemma 8. Notations being like above, let Wn = Gal(M/Ln) ⊂ X
and Mn = K∞ · Mn. There is a submodule Z0 ⊂ A[T ] such that
Gal(L0/M0) ∼= Z0. Letting Zn = νn,0Z0, we have for all n ≥ k

that Gal(Ln/Mn) ∼= Zn. Moreover, if Yn = ωnX · Zn, and Xn =
Gal(Mn/Kn) = Gal(Mn/K∞), then

X/Yn = Xn, and Yn = νn,0Y0, ∀n ≥ k.(20)

Proof. We follow here Washington’s presentation of Iwasawa’s proof
in op.cit, pp 278-279. Let ℘i, i = 1, 2, . . . , s be the conjugate primes
above p in K and ℘̃ be a prime of M lying above ℘ = ℘1. If I ⊂ G
is its inertia group, then I ∩X = 1 since M/K∞ is unramified. Total
ramification of K∞/K at ℘ implies that the map I →֒ G/X = Γ is also
surjective; it is thus bijective. Therefore G = (νI)X = X(νI) for all
ν ∈ C := Gal(K/Q)/D(℘), the set of coset representatives mapping
℘ to the various ℘i. Choose σ(ν) ∈ νI mapping to τ , so σ(ν) is a
topological generator of I; since νI ⊂ XI, there is an aν ∈ X such
that σ(ν) = aν · σ, σ = σ(1). Let

Z0 = 〈aν : ν ∈ C \ {1}〉Zp
and Zn = 〈νn,0aν : ν ∈ C \ {1}〉Zp

.

Since the primes of K are totally ramified, IT = 1 and aTν = 1, so
Z0 ⊂ ϕ(A[T ]). By definition of the Zp - span, it is a compact subgroup

of X . We prove now that νn,0aν = ap
n−k

ν ; from the definition, νn,0 =
τp

n−k
−1

τ−1
= pn−k +O(T ), and since aTν = 1, the claim follows.

The extension L0 is the maximal abelian extension of K0 in M0, and
M0 is the maximal unramified abelian subextension. It is thus fixed
by the closure Z ′

0 = 〈I(ν℘) : ν ∈ C〉Zp
of the group generated by

the inertia of all the ramified primes above p, so M0 = L
Z′
0

0 . We may
identify a lift of Γ to G with I(℘) ⊂ G, so Z ′

0 = Γ ·Z0 and we find that

M0 = L
Z0

0 , as claimed. The proof for Zn is similar.
Since Xn = Gal(Mn/Kn) = Gal(Mn/K∞) and by combining the

previous result with the one of Lemma 7 we find that the closure Yn =
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ωnZn ⊂ X is the group fixing Mn, it follows by galois theory that

Xn = Gal(Mn/K∞) = Gal(M/K∞)/Gal(M/Mn) ∼= X/Yn.

Since G′
n = ωnX = νn,0(TX) = νn,0G

′ and Zn = νn,0Z0, as we have
shown above, it follows also that Yn = νn,0Y0. This completes the proof
of (20) and the lemma. �

Note that the above result, applied to M = H readily implies that
A ∼= Gal(H/K∞ has the property F. Moreover, ifH′ ⊂ H is the maximal
subextension that splits all the primes above p, then (20) implies that
A′ has also the property F.
We have defined Z0 with respect to an arbitrary choice of ℘, but:

Lemma 9. LetM ⊂ H be a galois extension of K with X = Gal(M/K∞).
Then there is a canonic subgroup Z0(M) ⊂ A[T ], such that Yn(M) =
Ker (N∞,n : X → Xn) = ωnX · Z0(M).

Proof. The existence of Z0 was proved in the Lemma 8. We show now
that this module is in fact canonic. We defined σ(ν) ∈ I(ν℘) ⊂ G as
topological generators of these inertia groups and let aν = a(1, ν) ∈ X
relate the different inertias by σ(ν) = a(1, ν)σ(1). More generally we
let a(µ, ν) ∈ X be such that σ(ν) = a(µ, ν)σ(µ). The module Z0 ⊂ X
is the Zp span of the a(1, ν). In order to show that it does not depend
on the choice of ℘, we show that

Z0 = 〈a(µ, ν) : µ, ν ∈ C〉Zp
⊂ X.(21)

We have

a(1, ν)σ(1) = σ(ν) = a(µ, ν)σ(µ) = a(µ, ν)a(1, µ)σ(1), thus

0 = (a(1, ν)− a(µ, ν)a(1, µ))σ(1).

We have shown that σ(1) is a lift of τ , so the second identity above
implies that τ (a(1, ν)− a(µ, ν)a(1, µ)) = 0. This leads to a(1, ν) =
a(µ, ν)a(1, µ), hence a(µ, ν) ∈ Z0 and (21) is true.

�

With this we may define H̃ = HZ0 ⊆ H′, which is a canonic subfield
of H′, the maximal class field which splits all the primes above p. Let

X = Gal(H̃/K∞). Then Yn = Yn(H̃) = Ker (N∞,n : X → Xn) has the

simple expression Yn = ωnX and H̃ was constructed to be the maximal
subfield with this property.

The question whether H̃ = H′ or there is actual inclusion is in-
timately related to a conjecture of Gross which shall be treated in
SNOQIT II. The conjecture implies that the two fields are equal.
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We shall now apply (20) in order to prove, more generally, that an
arbitrary Λ - submodule M ⊂ A has the property F.

Proposition 5. Notations being like above, let M ⊂ A be a Λ-maximal
Λ-submodule and Yn(M) = Ker (N∞,nM → Mn). Then there is a
submodule Z0(M) ⊂ M ∩ A[T ] such that

Y0(M) = (TM) · Z0(M), and Yn(M) = νn,0Y0(M)(22)

Moreover, Mn
∼= M/Yn(M) for all n ≥ k.

Proof. Let X = Gal(H/K∞) ∼= A. Since M ⊂ X is a Λ-module and X
is abelian, it is a compact normal subgroup, and the fixed field M =
Hϕ(M) is abelian over K∞; let its group be Q = Gal(M/K∞) ∼= X/M .

The extension M/K is galois: let G = Gal(H/K) = Γ̃⋉X , where Γ̃ ∼= Γ
is a lift determined by the inertia group of some prime, like before, and
its topological generator is denoted by σ. Since M is a Λ-module, we
have σM = M and for arbitrary a = αx ∈ G,α ∈ Γ̃, x ∈ X andm ∈M
we have am = αxm = αmx, since X is abelian. Moreover, since M
is a Λ-module, αm = m′ ∈ M and we conclude that GM = MG, so
M ⊂ G is normal and compact therefore M/K is galois and Q is a

Λ-module.
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We can thus apply Lemma 8 to the groups A and A/M , thus to the
extensions M and H. Let Yn, Zn be defined by the lemma with respect
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to X and Ỹn, Z̃n correspond to Q. We have thus by Lemma 8

An
∼= Gal(Hn/K∞) ∼= A/Yn,

Qn
∼= Gal(Mn/K∞) ∼= Q/Ỹn.

We see from the field diagram, that Ỹn, Yn appear as natural groups,
to which the Lemma 8 can be applied. There is no maximal abelian ex-
tension fixed by Yn(M) occurring in this diagram; therefore the Lemma
cannot be applied directly. However, we claim that Yn(M) ∼= Yn/Ỹn,
which reduces the claim (5) to the previous lemma.
For proving this claim, we note that Yn(M) ⊂ Yn, as the kernel

of the norm N∞,0 on the subgroup M ⊂ X , so there is a surjective
projection Yn → Yn(M). Furthermore, if NQ = (N∞,0 : X → Xn)|Q
then Ỹn = Ker (NQ), so the lift of NQ back to X induces an injective

map Ỹn → Yn. We can then apply the 3 × 3 Lemma [4], Chapter II,
Lemma 5.1 to the following diagram:

1

��

1

��

1

��

1 // Ỹn
//

��

Yn
//

��

Yn(M) //

��

1

1 // Q //

��

X //

��

M //

��

1

1 // Qn
//

��

Xn
//

��

Mn
//

��

1

1 1 1

(23)

in which the second and third rows are split, as a consequence of M
being Λ - maximal. We deduce that the sequence

1→ Ỹn → Yn → Yn(M)→ 1(24)

is exact. Let Z0, Z̃0 be defined by Lemma 8 with respect to X , re-

spectively Q. Then Z̃0 = Gal(M/(M ∩ H̃)) and the group fixing M is
Z ′

0 = Z0 ∩M , so there is an exact sequence

1→ Z̃0 → Z → Z ′
0 → 1.

We assume M ∩ A[T ] is maximal in the sense that if a ∈ A(T ) and
pma ∈ M ∩ A[T ] for an m ≥ 0, then a ∈ M ∩ A[T ], a property to
which we shall refer here as p − T - maximal ; then Z0 = Z̃0 · Z

′
0 as a

direct product. Indeed, it follows from p−T - maximality, that for each
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maximal cyclic submodule Z ⊂ Z0, finite or infinite, if Z ∩ Z ′
0 6= {1},

then Z ⊂ Z ′
0, which implies the claim. We have seen that Γ ∼= I(℘)

so Z0
∼= Gal(Ω(K)I(℘)/K0), while Z̃ ′

0
∼= Gal((Ω(K) ∩M)I(℘)/K0). The

maximality property of M † ∩ A[T ] implies that Z ′
0 is a direct term in

Z0, which confirms the claim.
Let Y ′

0 = TM · Z ′
0. Since 1 → TQ → TX → TM → 1 is exact,

combining with the previous sequence, we find an exact sequence

1→ νn,0Ỹ0 → νn,0Y0 → νn,0Y
′
0 → 1.

But we know already that Ỹn = νn,0Ỹ0 and Yn = νn,0Y0 by Lemma 8, so
by comparing the last sequence with (24), we find Yn(M) = νn,0Y

′
0 =

νn,0(TM) · Z ′
0. This completes the proof for the p− T maximal case.

For the general case we see that we only need a local modification in
the intersection M ∩A[T ]. We let the p− T - hull M ⊃M be defined
as the smallest p− T - maximal submodule A ⊃M ⊃M , so

a ∈M ⇔ a ∈M or ap
m

∈M ∩ A[T ].

The previous proof implies that M verifies (22). Let Z0(M) = ⊕iZpbi
and qi = pei be the principal divisor factors for the decomposition of
Z0(M) as a submodule:

Z0(M) = ⊕iZpb
qi
i .

Then brii ∈ Zn(M) iff bqirii ∈ Zn(M), and since Zn(M) = νn,0Z0(M) we
conclude that Zn(M) = νn,0(M) too, which completes the proof. �

We can apply this Proposition to various canonic submodules such
as A†, A◦, A+, A−, etc.
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E-mail address, P. Mihăilescu: preda@uni-math.gwdg.de



ar
X

iv
:1

00
9.

37
29

v1
  [

m
at

h.
N

T
] 

 2
0 

Se
p 

20
10

Contents

1. Introduction 2
1.1. Notation and Facts from Snoqit I 2
1.2. Plan of the paper 5
1.3. List of symbols 8
2. Kummer theory of extensions with Λ - modules as galois

groups 10
2.1. On p-units 10
2.2. Co-galois radicals and their projective limits 11
3. Ray class fields, shifted radicals and Iwasawa’s linear space 15
3.1. Ray class fields 15
3.2. Property F 16
3.3. Radical shifts 18
3.4. The T and T ∗ parts and their conjectures 21
3.5. The Iwasawa linear space 26
4. Thaine shifts and the Greenberg Conjecture 29
5. Appendix A: Finiteness of B+ 33
5.1. Group rings and units 33
5.2. Units 35
5.3. The hypothesis of infinite B 37
5.4. Proof of the Theorem 4 38
6. Appendix B: Units in CM fields 38
6.1. Order reversal in Kummer extensions 39
6.2. Global and local units and related fields 40
6.3. The p - ramified extensions of the minus part 43
6.4. An alternative approach for the conjecture of Gross 46
7. Appendix C: Radicals from A− 47
8. Appendix D: On Leopoldt’s Conjecture 51
References 53

SNOQIT II: UNITS AND KUMMER THEORY IN
IWASAWA EXTENSIONS

Date: Version 1.00 September 21, 2010.
Key words and phrases. 11R23 Iwasawa Theory, 11R27 Units.

1

http://arxiv.org/abs/1009.3729v1


2

PREDA MIHĂILESCU

Abstract. This is the second part of Snoqit, a series of papers
that draw upon discussions and “Seminar Notes on Open Ques-
tions in Iwasawa Theory”, held in 2007/2008 together with Samuel
J. Patterson. The paper is concerned with Kummer pairings and
units. Using the information on growth of IW modules from Snoqit
I we develop projective-projective pairings for general base fields.
The central results of the paper are related to the Iwasawa lin-
ear space. We give an explicite construction of this space and,
based of its properties prove three major conjectures, of Green-
berg, Leopoldt and Gross-Kuz’min. All the three conjectures are
proved in the context of CM extensions, but the methods extend
to arbitrary fields, using arguments from [8].

1. Introduction

The Λ - modules of this second part of Snoqit1 are directly related
to the Iwasawa theory of cyclotomic Zp - extensions. We shall always
consider finite galois extensions K/Q as base fields, and these will con-
tain the p-th roots of unity. The purpose of this section is to base the
Kummer theory on a projective - projective pairing and to derive some
usual properties of this pairing. A parallel object of the paper are sys-
tems of global and local units. This requires an alternative definition
of Kummer radicals, which is used by algebrists in other contexts, and
which leads in a natural way to projective systems of radicals.

1.1. Notation and Facts from Snoqit I. Some usual notations have
been already introduced in Snoqit I. We shall deal with more fields
and extensions in this section, and mention that the notation chosen
is closer to the one of Lang in [9], and thus in many points different
from the one used by Iwasawa in [5]. As a rule, Kn ⊃ K are the
intermediate fields of the cyclotomic Zp-tower of K and K∞ = ∪nKn.
For n sufficiently large, Kn contains the pn-th but not the pn+1-th
roots of unity. More precisely, there is a k > 0 such that K contains
the pk-th but not the pk+1-th roots of unity, and we shall write K =
K0 = K1 = . . . = Kk. Since the extensions K/Q are in general not

1Snoqit stands for Seminar Notes on Open Questions in Iwasawa Theory. The
papers cover a series of results the emerged from the discussions in a series of
seminars held together with Samuel J. Patterson and V. Vuletescu in 2007/2008
and will appear as a self contained contribution in the Proceedings of the Jubilaeum
Conference in honor of Paddy’s 60-th anniversary
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abelian, they may be non trivial extensions of the pk-th cyclotomic
extension of Q, so we cannot require K = K1 6= K2.
The p-parts of the class groups of O(Kn) respectively the ideal class

groups of the p-integers of Kn are An, A
′
n and Bn ⊂ An is the subgroup

generated by all classes of An which contain a product of ramified
primes above p. These primes are by definition totally ramified above
K and the norms Nm,n := NKm,Kn

are all surjective.
Let Kn = Kn ⊗Q Qp and the local units Un = (O(Kn))

×; then Kn is
dense in Kn in the product topology and Kn/Qp is a galois algebra with
group containing ∆n = Gal(Kn/Q). The diagonal embedding Kn →֒ K
will be denoted by ιK or even ι, where it can be distinguished in the
context from the ideal lift maps ιn,m : An → Am.
We let ℘ ⊂ K be a prime above p, ∆ = Gal(K/Q) and C = ∆/D(℘)

a set of coset representatives of the decomposition group D(℘) ⊂ ∆ of
℘. The primes above p in K are then P = {ν℘ : ν ∈ C} and we assume
that they are totally ramified in K∞/K. We denote by ℘n the prime of
Kn above ℘ and Pn = {ν℘n : ν ∈ C}. Then

Un =
∏

ν∈C

U(Kn,ν℘n
),

is the product of the units in the completions of Kn at the primes in
Pn. The completion of the diagonal embedding En →֒ Un is denoted by
En. The subgroups U (1)(Kn,ν℘n

) ⊂ U(Kn,ν℘n
) have the usual meaning

and we let

U (1)
n =

∏

ν∈C

U (1)(Kn,ν℘n
),

U ′
n = {u ∈ (U (1)

n )+ : NKn/Q(u) = 1;

the second definition holds only for CM extensions K.
The Leopoldt defect of Kn is

D(Kn) = Z-rk(En)− Zp-rk(En),

and the sequence D(Kn) is increasing and has a constant upper bound
[12], Lemma 13.22. We may thus assume that D(Kn) = D(K) for all
n ≥ k.
As a general rule, we use multiplicative notation for Λ-modules which

arise from a multiplicative context, such as galois groups and class
groups. The additive notation is kept for abstract Λ-modules. If X a

is Zp-module, we write X̃ = X⊗Zp
Qp; the embedding X →֒ X̃ is given

by x→ x⊗ 1.
Ad-hoc extensions of K∞, with groups which are Λ-torsion modules

(or smaller) will be denoted by F,L,M, while H/K∞ is the maximal
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unramified p - abelian extension of K∞. We use Lang’s notation Ω with
various indices for large extensions of K∞, with groups that contain
non trivial free Λ-submodules. In particular Ω is the maximal p -
abelian p - ramified extension of K∞; its most important subfields are

ΩE = ∪nKn[E
1/pn

n ] and ΩE′ = ∪nK∞[(E ′
n)

1/pn], with E ′
n ⊃ En the p -

units of Kn. The maximal p - ramified p - abelian extension of Kn is
Ωn ⊂ Ω; it contains K∞. If K∞ ⊂ F ⊂ Ω is an extension with F/K
galois, then Fn = F∩Ωn, so K∞ ⊂ Fn. Also, the λ-part of F is defined
by

Fλ = FGal(F/K∞)† ,

the fixed field of the Zp-torsion Gal(F/K∞)† of the galois field. If
X = Gal(F/K∞) is a Λ-torsion module, then Gal(Fλ/K∞) is a finitely
generated Zp- free Λ-module. If we also have F ⊂ H, we let Fn = Hn∩F:
in this case ramification allows to define Fn/Kn as an extension such
that Kn+1 6⊂ Fn. Suppose that X ′ ⊂ Gal(H/K∞) is the fixing group of
F, and Gal(H/K∞)/X ′ is p-coalescence closed, in the sense of Snoqit
I. Then X has property F, so it is a Weierstrass module.
It will be useful in some cases to consider subextensions of Kn which

are Kummer. If K∞ ⊂ F ⊂ Ω is galois over K, we write Fn ⊂ Fn for the
maximal abelian Kummer extension of Kn contained in Fn: it contains
ζp2n but notK∞. In particular, ΩE,n = Kn[E

1/pn

n ],ΩE′,n = Kn[(E
′
n)

1/pn].
We write HE = H ∩ΩE and H′ ⊂ H is the maximal subextension of H
which splits all the primes above p; the notations Hn,H

′
n,HE,n are the

natural.
We recall from Snoqit I, that IW modules, which model the proper-

ties of the Λ-modules encountered in Iwasawa theory, have the property
F. All IW modules M are projective limits of norm coherent sequences
Mn of finite or infinite abelian p-groups; we do not consider injective
limits. The Weierstrass modules are Λ-torsion, Zp-torsion free modules
with property F. If M is an additively written Λ-torsion module and
f a distinguished polynomial dividing the minimal polynomial fM(T ),
we defined in Snoqit I the f -part and the f -socle by

M(f) = {x ∈M : ∃n > 0 such that fnx = 0}

M [f ] = {x ∈M : fx = 0}.

These are p-coalescence closed submodule of M . An important prop-
erty of Weierstrass modules M , which was proved in Snoqit I, is

Fact 1.

M(T ) = M [T ], Y1(M) = TM ⊕M [T ],(1)
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where Y1(M) = Ker (N∞,1 : M →M1) ⊂ M is the kernel of the norm
from infinity. Moreover, there is a canonic complement M ′ ⊂ M with
M = M ′ ⊕M [T ].

Iwasawa proved that A = proj limnAn has property F - it is to date
the only relevant maximal IW module that we know. It follows from a
lemma proved in Snoqit I, that all submodules M ′ ⊂ M which are p-
coalescence closed, i.e. x ∈M, pnx ∈M ′ ⇒ x ∈M ′, also have property
F.
A further property of Weierstrass modules M = lim

←−n
Mn is that for

n sufficiently large and m > n, the lift maps ιn,m : Mn →Mm (see also

Snoqit I) are all injective and if a = (al)l∈N ∈M , then ap
m−n

m = ιn,m(an).
As a consequence, if all the Mn are finite, then there is a constant
z = z(M) such that ord(am) ≤ pm+z for am ∈ Mm. In general, if M
i s simply an IW module – so it may contain Zp-torsion submodules.
There is a constant n0 = n0(K) such that various useful facts occur,
such as

1. For all Weierstrass submodules M ′ ⊂M , the p-ranks of M ′
n are

stable for n ≥ n0 and for all a ∈ A \MA we have a0 6= 1 (there
are no floating classes).

2. For all finite submodules M ′′ ⊂ M , the exponents of Mn are
stable for n ≥ n0 and M ′′

n
∼= M ′′

n0
as finite abelian p-groups, for

n ≥ n0.
3. For all a = (an)n∈N ∈M such that Λa is a pure µ-module2, the

maps ιn,m : Λan → Λam are injective and exp(Λan) = exp(Λa)
for all m > n ≥ n0.

4. The Leopoldt defect D(K) is stable for all n ≥ 0.

We shall choose K such that n = n0 and let k ≥ 1 be the largest
integer such that ζpk ∈ K. Thus K0 = K1 = . . . = Kk 6= Kk+1. These
reviews the most important results from Snoqit I, that we shall use in
this paper.

1.2. Plan of the paper. The results of this paper can be shown to
hold for arbitrary galois extensions of Q, which contain the p-th roots
of unity. The base extensions K will thus be galois extensions of Q
which contain the p-th roots of unity, and k is the least integer such
that ζpk ∈ K, so K1 = K2 = . . . = Kk. We assume that K enjoys the
properties 1.-4. listed above.
For proving the deeper theorems in this general setting, we need

an apparatus based on Leopoldt involutions and Λ[∆]-modules, which
replaces the action of complex conjugation in ordinary CM fields. This

2We defined Λ-cyclic µ-modules as modules Λa ∼= Λ/(ps) for s ≥ 1.
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is developed in [8] and will be integrated in a subsequent paper. Here
we chose to develop the general results for arbitrary galois extensions,
but restrict for the proof of the main conjectures, to CM fields.
The Chapter 2 is a brief introduction containing for future reference

some results in arbitrary galois extensions K as above, and which do not
explicitly require complex conjugation. In this section we develop the
Kummer theory of cogalois radicals and projective-projective pairings.
A short section is related to the extension ΩE′/ΩE .
The Chapter 3 is dedicated to the construction of the Iwasawa linear

space. The methods and most of the results are inspired from Iwasawa’s
seminal work [5] and in particular from his construction of the skew
symmetric pairing on the Iwasawa linear space, which turned out to
be the obstruction space to Greenberg’s conjecture. In §3.1 we review
elements of Takagi theory which play an important role in the sequel,
and in §3.2 we show that the module Gal(Ω/ΩE′) has property F and
contains an important factor X which is a Weierstrass module: this
factor is the starting point for the construction of Iwasawa’s linear
space. As a consequence of property F we have a simple structure for
the T and T ∗ parts of A, namely: A(T ∗) = A[T ∗], A(T ) = A[T ] and,
moreover, A[T ] ∼ B⊕A′[T ], so A′[T ]∩B is at most finite. The original
Conjecture of Gross is then consequence of the elementary Lemma 7.
We consider here however the generalized Conjecture of Kuz’min and
Gross, which states that A′[T ] is finite. In section §3.3 we introduce a
simplification of the construction of Iwasawa, which consists in shifting
the canonical subextensions of Ω/ΩE′ to non canonical extensions of
K∞, by means of their radicals. This method allows to recover the
same results in a more transparent way, in small extensions of K∞ or
HE′ = H ∩ ΩE′ .
The Section §3.4 is dedicated to the T and T ∗ parts of Gal(Ω/ΩE′).

The fundamental Lemma 5 implies that the Conjectures of Leopoldt
and of Gross-Kuz’min are in fact equivalent and indicates the way for a
proof of both conjectures, which is given at the end of this section. The
proof can be considered as fixing an error in the proof of Proposition
5 of [8], by adding the information provided from the new Lemma 5.
The proof of this Lemma uses Takagi Theory and is not explicitly
contained in [5], although it may be understood as a consequence of
Iwasawa’s Lemma 14, which will be commented in more detail in the
paper. Finally, in §3.5 we construct that Iwasawa linear space A(S)

for the F -part of A, where F is the largest divisor of the minimal
polynomial of A, which is coprime to T and T ∗. We also prove the



SNOQIT II 7

following important consequence:

A(S) 6= {1} ⇒ Gal(HE′/K∞) = Gal(HE/K∞)†,(2)

thus HE′/K∞ has finite exponent, if A(S) 6= 1.
In Chapter 4 we use the ideas introduced by Thaine in the proof of his

celebrated theorem [11] and give a proof of Greenberg’s conjecture for
CM extensions. Starting from a CM extension K in which A(S) 6= {1},
we choose a ∈ (A(S))− \ Ap and a totally split prime Q ∈ an. Using
Thaine’s ideas, this gives raises to a cyclotomic extension F/K with
its own Iwasawa tower Fm = F · Km. We choose [Fn : Kn] = ord(an)
and let R ⊂ Fm be the ramified prime above Q. Since there is no
capitulation in minus parts, ord(R) = (ord(an))

2. However, locally,
if (α) = Q(1−)ord(an) is such that α ∈ Un(K)ord(an) – as predicted by

Proposition 4 – then αOFn = Rord(an)2 , but the local order does not
grow. We can now choose a lift b = (bm)m∈N ∈ A−(F) with bn = [R] and
NF/K(b) = a. We show that b 6∈ A(S)(F), while A(S)(F) 6= {1}, which
contradicts Theorem 2. An alternative proof raises a contradiction to
some additional facts proved in Proposition 4, in Appendix C. Thus,
the Thaine shift reveals an instability of the Iwasawa linear space under
shifting to ramified cyclotomic extensions, and it follows that this space
must be trivial as predicted by the Greenberg conjecture. The same
ideas yields an alternative proof for the Conjecture of Leopoldt.
The major results of this paper end here and the reader interested

in a quick entry to the understanding of these proofs may concentrate
on Chapters 3 and 4 and the references given there. For the sake of
completeness, we have left a series of partial results, which had been
proved using elementary methods prior to the completion of §3. These
are included in the Appendices A-D. In Appendix A we give a self-
contained proof of the fact that B+ is finite in CM extensions, a fact
which follows from Leopoldt’s conjecture.
In Appendix B we prove a useful result on order reversal in Kummer

extensions with galois groups which are elementary parts of Λ-modules.
Together with elementary consequences of class fields theory, this leads
to an independent proof of the classical Conjecture of Gross. In Ap-
pendix C we develop a detailed understanding of the radical shifts for
minus parts B ⊂ A−: in this case the shifts can be defined canonically
over K∞ and the results in §3 and §4 can be followed in a detailed man-
ner. The main Proposition 4 of this appendix is used for an alternative
proof of the Greenberg Conjecture in §4. Finally, Appendix D gives
some consequences for the Leopoldt conjecture which depend only on
the material developed in the previous appendices.
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1.3. List of symbols. The general notations from Iwasawa theory
which we use here are:

p A rational prime,
X† The Zp - torsion of the abelian group X ,
X◦ The maximal finite submodule of the Λ-module X ,
ζpn Primitive pn-th roots of unity with ζppn = ζpn−1 for all n > 0.,
µpn {ζkpn, k ∈ N},
K A galois extension of Q containing the pk-th roots of unity
K∞,Kn ∈ The cyclotomic Z− p - extension of K, resp. its n-th intermediate field,
∆ Gal(K/Q),
s The number of primes above p in K,
Γ Gal(K∞/K) = Zpτ, τ a topological generator of Γ

Γ̃ The universal lift of Γ to Gal(Ω/K∞ (§3.2)
T τ − 1,
∗ Iwasawa’s involution on Λ induced by T ∗ = (pk+1 − T )/(T + 1),
Λ Zp[[T ]], Λn = Λ/(ωnΛ),

ωn (T + 1)p
n−(k+1)

− 1, (K×
n )

ωn = {1},
Nm,n NKm/Kn

= NKm/Kn
; Nn = NKn/K,

En = O(Kn),
E ′

n = The p-units of Kn ⊃ En,
Kn = Kn ⊗Q Qp, ιK : Kn →֒ Kn,
Un = O(Kn),
An = A(Kn) The p - part of the ideal class group of Kn,
A lim←−An,
ιn,m : An → Am : The ideal lift map ,
A′

n = A′(Kn) The p - part of the ideal class group of the p - integers of Kn,
A′ = lim←−A′

n,
D(K) = Z-rk(En)− Zp-rk(ιK(En)) = The Leopoldt defect of the field K ,
B = 〈{b = (bn)n∈N ∈ A : bn = [℘n], ℘n ⊃ (p)}〉Zp

,
Ω = The maximal p - abelian p - ramified extension of K∞,

Ω′
n = The fixed subfield of Γ̃n ⊂ Γ̃,

ΩE ∪∞n=0Kn[E(Kn)
1/pn] = K∞[E1/p∞ ],

ΩE′ ∪∞n=0Kn[E
′(Kn)

1/pn ] = K∞[E ′1/p
∞

],
H The maximal p - abelian unramified extension of K∞.

The use of ι both for the diagonal embedding and the ideal lift map is
redundant, but confusion is avoided not only by using explicite, differ-
ent indices, but mostly by the scarce use of the embeddings of Kn in
Kn or the individual completions at primes above p. If X is a Zp-free,
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finitely generated Λ-torsion module and f ∈ Zp[T ], we let

X [f ] = {x ∈ X : fx = 0},

X(f) = {x ∈ X : fnx = 0, n ≥ 1} ⊇ X [f ]

For X a Noetherian Λ-module, we let Xλ = X/X†. In terms of exten-
sions, if K∞ ⊂ L ⊂ M ⊂ Ω are such that L,M are galois over K and
X = Gal(M/L) is a Noetherian Λ-module, then

Mλ = MGal(M/L)† = MX†

, Gal(Mλ/L) ∼= Xλ.

This is a general construction for removing µ-parts without using the
assumption that µ = 0 in our modules. Some notations in Takagi
theory, used in §3 are:

T
(N)
n = The p - part of the ray class field of Kn to the ray (pN),

T(N) = ∪nT
(N)
n ⊂ Ω,

Tn = ∪NT
(N)
n = Ωn,

X
(N)
n = Gal(T

(N)
n /Kn),

X(N) = Gal(T(N)/K∞),
X = Gal(Ω/ΩE′),
Xλ = Gal(Ωλ/ΩE′) ∼= X/X†,

Except for the groups introduced above, we do not use special no-
tations for galois groups. We use intensively auxiliary constructions
on infinite extensions, which consist in taking intersections and fixed
subfields. These constructions are mainly related to subfields of Ω and
H. Accordingly, the letters Ω and H endowed with various indices of
exponents describe p-abelian extensions of K∞ which are p-ramified
or unramified. The use of this indices and exponents is consistent and
made explicite in the context. The symbols F,L,M are used for ad-hoc
extensions and their signification is scope - dependent.
Note that the maximal p-abelian extension of Kn is Ωn ⊃ K∞, while

Ω′
n ⊂ Ωn intersects K∞ in Kn. For arbitrary F ⊂ Ω, we let then

Fn = F ∩ Ωn and F′
n = F ∩ Ω′

n. Since the universal lift is only defined
in §3, the convention above is not used in §2. We sometimes write
E(K),Ω(K) for E1,Ω1, stressing the relation of these groups and fields
with the ground field K.
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2. Kummer theory of extensions with Λ - modules as

galois groups

Let K be as above and n0 = n0(K) be defined with respect to the
IW module A = lim←−n

An; we assume also that n0 ≥ exp(A†), the Zp-
torsion submodule of A. Let K∞ ⊂ F ⊂ Ω be a galois extension of K,
with F = ∪∞n=1Fn, with Fn,Fn defined above; unlike Fn, the extension
Fn/Kn is in general not a galois extension of K. It is usual to define
a Kummer radical of Fn as the maximal multiplicative subgroup with
K×

n ⊃ rad(Fn/Kn) ⊃ (K×
n )

pn such that Fn = Kn[rad(Fn/Kn)
1/pn ]. By

definition, (Fn)n∈N and (Fn)n∈N are injective sequences.
We shall denote Kummer pairings of an abelian extension M/L of

exponent N , with ζN ∈ L, by 〈., .〉M/L, leaving the indication of the
extension out, when it is obvious from the context. In an injective
sequence of fields, we write 〈., .〉n = 〈., .〉Fn/Kn

, and N = pn in this case.

The pairing is given by: 〈σ, b〉M/L = σ(b1/N )/b1/N .
We recall that the pairing is non degenerate and it verifies the fun-

damental reflection identity, which is a consequence of the galois co-
variance of Kummer pairings:

〈αx, ν〉M/L = 〈α, νχ(x)x−1

〉M/L, ∀x ∈ Gal(L/K),(3)

where χ : Gal(L/Q) → Z/(q · Z) is the cyclotomic character. The
relation extends to the Leopoldt reflection involution ∗ : Zp[∆] →
Zp[∆],

θ =
∑

σ∈∆

aσσ 7→ θ∗ =
∑

σ∈∆

aσ−1 · χ−1(σ)σ.(4)

If M is a Λ[∆]-module, we denote by M• the module on which the
action of Λ[∆] is twisted by the Leopoldt involution, thus,

(λ, x) ∈ (Λ[∆],M) 7→ λ∗x.

Classically (e.g. [9], p 151), the Kummer pairings are defined at infin-
ity by taking projective limits on the galois groups, but injective limits
on the radicals. This way, useful isomorphisms are lost, as we shall see
below when discussing the radicals built from ideal classes. Therefore
we shall give a definition of radicals which allows also projective limits.

2.1. On p-units. Let a = (an)n∈N ∈ A be a sequence of finite order pm.
Then for all n ≥ m and all A ∈ an we have Apm = (α) for an α ∈ K×

n .
Moreover, for N > n sufficiently large, the ideal A is principal in KN , so
AO(KN ) = (β) and comparing principal ideals we find that α = eβpm

for an unit e ∈ EN . The extension Ln = Kn[α
1/pm] is p-ramified by

construction and KN · Ln = KN [e
1/pm ] ⊂ ΩE .
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Let HE′ = H ∩ ΩE′ ⊇ HE . We let e′ ∈ En be a p-unit, so e′ =

e ·
∏

ν∈C(νπn)
j(ν), with e ∈ En and (πn) = ℘

ord(℘n)
n a generator of the

principal ideal ℘
ord(℘n)
n ; recall that there are s primes above p in K

and they are totally ramified in K∞/K. We denoted by C a set of
coset representatives of ∆/D(℘), for ℘ one of these primes; the prime
℘n ⊂ Kn is the ramified prime above ℘. Let s′ < s = ess. p-rk(B),
b = (bn)n∈N ∈ B with bn = [℘n] and C ′ ⊂ C a subset of cardinality s′

such that

B′ = 〈{νb : ν ∈ C ′}〉Zp
⊂ B

is a maximal subset of independent classes of infinite order, so ess. p-rk(B′) =
ess. p-rk(B). If s′ = 0, then C ′ = ∅ and we are done. Otherwise, for
sufficiently large m > n > 0 it follows from the property F of the ram-
ified IW module B that ord(bm) = pm−nord(bn). Let π0 ∈ K with
(π0) = ℘ord(℘), where ℘ can be also a principal ideal: in this case, the
sequence b ∈ F(A) is floating, in the terminology of Snoqit I. We claim
that

ΩE′ =
∏

ν∈C′

ΩE [(νπ0)
1/p∞ ],(5)

where ΩE [(νπ0)
1/p∞ ] := ∪nΩE [(νπ0)

1/pn ].
The inclusion

∏
ν∈C′ ΩE [(νπ0)

1/p∞ ] ⊂ ΩE′ is obvious from the def-
inition of ΩE′ . Conversely, if L ⊂ ΩE′ is a non trivial Zp-extension
of ΩE with L = ∪nΩE [(e

′
n)

1/pn ], the definition of C ′ implies, for suf-
ficiently large n, that e′n = en · πn · (π

′
n)

k, where πn ∈ 〈νπ0, ν ∈ C ′〉Z
and π′

n = p
ord(pn)
n with b′n = [pn] ∈ B†. But then ΩE [(π

′
n)

1/pn ] = ΩE

by the previous remark on classes of finite order, and it remains that
L ⊂

∏
ν∈C′ ΩE [(νπ0)

1/p∞ ], which confirms the claim.
It can be shown by class field theory that [ΩE′ ∩ (ΩE ·H) : ΩE ] <∞,

so ΩE′/ΩE is almost completely ramified, and so is
∏

ν∈C′

HE [(νπ0)
1/p∞ ]/HE = HE′/H.

2.2. Co-galois radicals and their projective limits. In this sec-
tion we consider an alternative definition of Kummer radicals. As a
prerequisite, we chose a norm coherent sequence of pn-th roots of unity
ζpn ∈ Kn and let T (W ) = lim

←−n
〈ζpn〉Z be the Tate module associated to

the groups of pn-th roots of unity. We have Z = (ζpn)n∈N ∈ T (W ) as
topological generator.
Let r ≥ n0 and L ⊆ Kr be a finite or infinite extension which is

galois over Q and M/L be a (finite) Kummer extension of exponent
q = pr which is galois over K.
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We let the cogalois radical of M/L be

R(M/L) =
(
L×〈(rad(M/L))1/q〉

)
/L× ⊂ L×.

This alternative definition of radicals is commonly used in cogalois
theory - see also Albu’s monograph [1]. We retrieve the Kummer radical
via rad(M/L) = (L×)q · (R(M/L))q. For x ∈ R(M/L) with order
s = ord(x), we find representatives x ∈ K× such that x1/s ≡ x mod K×.
Note also that the symbol x1/s is well defined inR(ML), when s|r, since
µr ⊂ L×.
The Kummer pairing is defined in terms of cogalois radicals by

〈., .〉M/L : Gal(M/L)×R(M/L)→ µpr ,

(σ, x) 7→ σ(x1/s)/x1/s.

The simplest properties of cogalois radicals are:

Lemma 1. Let M/L be a finite abelian Kummer p - extension with
galois group G = Gal(M/L) and R = R(M/L); suppose moreover
that there is a subfield k ⊆ L such that M/k,L/k are galois and let
∆ = Gal(L/k). Then G ∼= R• as Zp[∆] - modules, where • denotes
the action of Zp[∆] via Leopoldt reflection. Moreover, there is an order
reversing map on the lattices of subgroups l : I(G) → I(R) induced by
Kummer duality.

Proof. The twisted isomorphism of Zp[∆] modules is a common conse-
quence of Kummer duality - the pairing is not modified by the alterna-
tive definition of radicals. The isomorphism of the lattices of subgroups
is an expression of the Galois correspondence - see [1], .
If A = {a1, a2, . . . , ar} ⊂ Gal(M/L) is a p - base (in the sense that∏
i a

ei
i = 1 iff ei ≡ 0 mod ord(ai)), then there is a dual base B =

A• = {β1, β2, . . . , βr} ⊂ R(M/L) which is defined as follows: for each
i, let Ci = 〈A \ {ai}〉Z be the subgroup generated by all base elements
except ai and Mi = MCi , which is a cyclic extension with group Zpai.
Let βi ∈ R(M/L) be such that Mi = L[βi] and 〈βi, ai〉M/L = ζs, where
s = ord(ai)|q; by construction we have

〈βi, aj〉 = ζe(i,j)q , e(i, j) = δi,j ·
q

ord(ai)
.(6)

�

We let K∞ ⊆ F ⊂ Ω be an extension tower with F galois over K and
F/K∞ an infinite extension, X = Gal(F/K∞) and Xn = Gal(Fn/Kn).
The sequence (Xn)n∈N forms by definition a norm coherent system,
both when Xn are finite and infinite. We define the duals Rm =
R(Fm/Km) as follows.
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Suppose first thatXn are finite, Fn∩Kn+1 = Kn and there is a z(X) ∈
N with exp(Xn) ≤ pn+z for all n ≥ 0. Then Fn · Kn+z is a Kummer
abelian extension and the radicalR((Fn·Kn+m)/Kn+m) is a well defined
cogalois radical for all m ≥ z. In the limit, R((Fn · K∞)/K∞) is well
defined.
If K∞ ⊂ Fn, the previous definition holds over K∞. If in addition

Xn are not finite, then we consider the sequence of extensions Lm =
Fn · Km ∩ Ωm, which are the maximal Kummer abelian extensions of
Km contained in the shift Fn ·Km for m > n. Then

Rn,m = R((Lm ·K∞)/K∞)(7)

is a well defined sequence of cogalois radicals with Rn,m ⊂ Rn,m′ for
m′ > m. Thus, we may define R(Fn/Kn) = ∪m≥nRn,m with Rn,m given
by (7) and

Rn := ∪m≥nRn,m = R((Fn ·K∞)/K∞).

There is an alternative definition, starting from Fn ·K∞: let

Bn = {x ∈ K∞ · Fn : ∃m > 0 : xpm ∈ K∞}.(8)

Then Bn is a group and we claim that R(Fn/Kn) = Bn/(K
×
∞). Indeed,

if y ∈ R(Fn/Kn), then there is an x ∈ K∞ and an m > 0 such that
y = x1/pm ·(K∞)×, so x ∈ Bn. The converse is also a simple verification.
Since F/K is galois, for x ∈ Bn, y ∈ K∞ with xpm = y, we also have
(τy)1/p

m

∈ Bn for all the roots τy. Recall that the image x ∈ R(Fn/Kn)
does not depend on the choice of a particular root y1/p

m

, so the action of
τ onR(Fn/Kn) is well defined. This makes R(Fn/Kn) into a Λ-module.
With this definitions we have both for the finite and infinite case of

Xn the same radical definition:

Definition 1 ( Cogalois radicals ). Let K∞ ⊂ F ⊂ Ω be an intermediate
extension with F/K galois and X = Gal(F/K∞); let Fn = Ωn ∩ F and
Xn = Gal(Fn/Kn) with X = lim←−n

Xn. Then we define

R(Fn/Kn) = R((Fn ·K∞)/K∞) = Bn/(K
×
∞),(9)

where the radical in the middle is defined above, using (7) and Bn is
given by 8.
If K∞ ⊂ L ⊂ F ⊂ Ω is a tower in which both L and F are galois over

K and X = Gal(F/L), we define R(Fn/Ln) in analogy with R(F/K∞),
replacing Kn with Ln. If additionally, L and F are galois over Q, the
radicals are unchanged, but X is a Λ[∆]-module.

The duals Rm = R(Fm/Km) ∼= X•
m are also Λ-modules, endowed

with the Leopoldt-twisted action of Λ. We may thus define a natural
projective limit with respect to the twisted norms N∗

m,n. This can be



14 PREDA MIHĂILESCU

seen directly as a consequence of duality; also, if x = R
N∗

m,n
m , then

xω∗
n = 1 and by duality, (Gal(Km[x]/Km)

ωn = 1, so Km[x] is the lift
of an extension of Kn. With this, we define R(F/K∞) = lim←−n

Rn. We

also need the injective limit Ri(F/K∞) = lim
−→n

R(Fn/Kn): we have in
a natural way

F = ∪nK∞[R(Fn/Kn)] = K∞[Ri(F/K∞)],

but K∞[R(F/K∞)] makes no sense.
We constructed a natural dualR of the groupX , which is a projective

limit with respect to the twisted norms N∗
m,n. We have Rn = N∗

∞,nR =
{x ∈ Ri(F/K∞) : ω∗

nx = 1}.

Remark 1. The cogalois radicals are closely related to the definition
of Tate and Iwasawa of radicals as submodules of K = K×⊗Z (Qp/Zp),
[5], §7. The radicals of subextensions F ⊂ Kab, the maximal abelian
p-extension of K∞ arise there as annihilators, via Kummer pairing, of
the subgroup H ⊂ Gal(Kab/K∞), fixing F.

Proposition 1. Let K∞ ⊂ F ⊂ Ω be a galois extension of K with
X = Gal(F/K∞) a Weierstrass module and Xn = Gal((F ∩ Ωn)/Kn)
finite. Let Rn = R(Fm/Km) be defined like above; then (Rn)n∈N form
a projective system with respect to the twisted norms N∗

m,n and we let
R = lim

←−n
Rn. Moreover, the lifts ι′n,m : Rn → Rm are also injective.

〈., .〉n : Gal((Fn ·Kn+z)/Kn+z)× Rn → µpn+z

be the natural Kummer pairings of the abelian Kummer extensions
(Kn+zFn)/Kn+z. Then the system of pairings is compatible with the
pairs of maps (Nm,n, N

∗
m+z,n+z) and there is a projective projective pair-

ing 〈., .〉∞ : X × R → T (W ). The pairing is bilinear, non degenerate
and Λ (or even Λ[∆], if F/Q is galois) covariant.

Proof. We have already proved the existence of R. The compatibility
follows from the following computation, for x = (xn) ∈ X, r = (rn) ∈
R:

〈ιn,m(xn), rm〉m = 〈νm,n(xm), rm〉m

= 〈xpm−n

m , rm〉m

= (〈xm, rm〉m)
pm−n

.

The finite level pairings are Kummer and they induce by compatibility
a projective - projective pairing in the limit. We shall denote this
pairing by 〈., .〉F : Gal(F/K∞)×R(F/K∞)→ T (W ) �
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3. Ray class fields, shifted radicals and Iwasawa’s linear

space

This paper is strongly inspired by Iwasawa’s construction of a skew
symmetric pairing on Gal(Ω/ΩE′)×Gal(Ω/ΩE′), [5] §9-11. In this paper
we only need the fact that the space on which the pairing is defined,
Iwasawa’s linear space is selfdual. We shall derive this fact in detail in
this chapter, together with two fundamental lemmata, which are used
in the proofs of the conjectures of Leopoldt and Greenberg.

3.1. Ray class fields. Takagi’s theory of ray class fields plays a crucial
role in Iwasawa’s proofs and in our construction.

Let N > 0 and consider the p - parts T
(N)
m of the ray class fields of Km

to the modulus (pN). Then Hm ⊂ T
(N)
m . We have injective sequences

with to m and N :

T(N)
m ⊂ T

(N)
m+1 ∀ m ≥ 0 and T(N)

m ⊂ TN+1
m ∀N ≥ 0.

We let Tm = ∪NT
N
m; this is by definition the maximal p-ramified p-

abelian extension of Km, so we have Ωm = Tm. The galois groups
are

XN
m = Gal(T(N)

m /Km), Xm = Gal(Tm/Km) = Gal(Ωm/Km).

For fixed N we let TN = ∪mT
(N)
m and X(N) = Gal(T(N)/K∞). Finally,

Ω = ∪NT
(N) = ∪mTm = ∪mΩm, X = Gal(Ω/K∞).

We have the projective limits

X(N) = lim
←−
m

X(N)
m , Xm = lim

←−
N

X(N)
m , X = lim

←−
N

X(N) = lim
←−
m

Xm.

We may lift Γ canonically to Gal(Ωm/K) as follows: for fixed N,m,

the groups Y
(N)
m = Gal(T

(N)
m /K) are finite metabelian groups. More-

over, ∆m = Gal(Km/Q) acts on Y
(N)
m by conjugation, making it into a

Zp[∆m] - module. We define Γ̃
(N)
m ⊂ Y

(N)
m as the subgroup annihlated

by the augmentation A = {t ∈ Zp[∆m] : NKn,Qt = 0}. This is a well
defined subgroup of p-rank one, and we have the restriction properties

Γ̃(N+1)
m |

T
(N)
m

= Γ̃(N)
m .

Therefore, in the projective limit there is subgroup Γ̃m ⊂ Ym which
lifts Γ canonically to Gal(Ωm/K). It is a priori possible, that the re-
striction Γ̃m|K∞

( Γm. The following argument shows that this is not
the case: by Tschebotarew, we may find a prime q ⊂ Km such that
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xq :=
(

T
(N)
m /Km

q

)
⊂ Γ̃m is a generator. But then xq|K∞

fixed Km, which

confirms the claim.

With this we may define for all m the field Ω′
m = Ω

(Γ̃)p
m−k

m
m ; here k

is the largest integer with ζpk ∈ K, so Γpm−k

fixes Km and, of course,
we assume m ≥ k. Then Ω′

m is a canonical abelian subextension of
Ωm/Km which does not contain Km+1 and Gal(Ω′

m/K) is fixed by Γm

and ωm in Gal(Ω/K).
We also have upwards compatibility:

Γ̃m+1|Ωm
= Γ̃m,

and thus we may define a universal lift Γ̃ = lim
←−m

Γ̃m ∈ Gal(Ω/K).
From now on, any lift of Γ to a subextension of K∞ ⊂ F ⊂ Ω will be
understood as a restriction Γ̃|F.
We shall use the following expression for the “principal ideal theo-

rem” of Takagi theory:

Lemma 2. Let I ⊂ Km be an ideal and

xN =

(
T
(N)
m /Km

I

)
∈ X(N)

m , x = lim
←−
N

xN ∈ Xm.

Then

xN = 1 ⇔ I = (γ) and there is a eN ∈ En such that eNγ ≡ 1 mod pNO(Km),(10)

x = 1 ⇔ I = (γ) and 1 ∈ γ · En.(11)

Proof. The statement (10) is the usual formulation of the Principal
Ideal Theorem of ray class fields. For (11), consider the diagonal
embeddings γeN →֒ Kn ⊗Q Qp. Then limN→∞ γeN = 1 and since
e := limN→∞ eN ∈ En, it follows that 1 = γe ∈ γEn, as claimed. �

3.2. Property F. LetX = Gal(Ω/ΩE′) and Ωλ = ΩXcirc

, Xλ = X/X† =
Gal(Ωλ/ΩE′). Iwasawa constructs a skew symmetric pairing on Xλ and
shows that this space is selfdual with respect to this pairing. Our con-
struction will be simplified by shifting the base field from Ω′

E to K∞,
by means of radicals. Unlike the classical, this construction is not
canonical; however it is precisely the fact of being non canonical, while
preserving canonical subparts, that will bring an important new in-
sight: when Xλ ∩ Gal((H · ΩE′)/ΩE′) 6= {1}, then HE′/K∞ has finite
exponent. We shall define the Iwasawa linear space as a submodule
of A′ rather then a galois group. The following fact about X will be
useful below:



SNOQIT II 17

Lemma 3. The galois group X = Gal(Ω/ΩE′) has property F. Letting
Xλ = X/X†, for X ∈ {A,A′,B}, there is a direct sum decomposition

Xλ = Xλ[T ]⊕Xλ(F
′),(12)

where F ′ is the maximal divisor of the minimal polynomial GX(T ),
which is coprime to T . This induces Ωλ = ΩT · ΩF ′ ,ΩT ∩ ΩF ′ = ΩE′.
Moreover, A′/(A′)◦ has property F with respect to the twisted action of
Λ and in particular A(T ∗) = A[T ∗]. For A we have:

Aλ[T ] = Bλ[T ]⊕ A′
λ[T ],

and

A′
λ = A′[T ]⊕A[T ∗]⊕ A(F ),(13)

where F |F ′ is the maximal factor which is coprime to T ∗.

Proof. It is known (e.g. [5], §9) that Gal(Ω/ΩE′) is a Λ-torsion mod-
ule without finite Zp-torsion and R(Ω/ΩE′) →֒ A′. Moreover X [T ] =
Gal((Ω1 · ΩE′)/ΩE′). It is a known fact, which we shall prove for com-
pleteness in the Appendix below, that

Zp-rk(Gal((Ω1 ∩ ΩE′)/K∞)) = r2,

and X [T ] 6= {1} iff the Leopoldt conjecture is false for K.

Having defined a lifts Γ̃ of Γ above, the proof of Property F for X
follows the same steps as Iwasawa’s for the fact that Gal(H/K∞) has
property F. See for instance the Appendix of Snoqit 1 or the proofs of
Iwasawa’s theorem to which we referred there.
The fact 1 has now important consequences for Xλ, which is a p-

maximal submodule of X , and thus inherits the property F: thus Xλ is
a Weierstrass module. The decomposition (12) follows from this fact,

and letting ΩT = Ω
Xλ(F

′)
λ and ΩF ′ = Ω

Xλ[T ]
λ we obtain the disjoint

decomposition of Ωλ over ΩE′ .
Moreover, the radicals inherit by duality the property F with respect

to the twisted action of Λ. Since A(T ∗) = A′(T ∗) it follows from the
same fact, that A(T ∗) = A[T ∗]. Finally, both A and A′ have property
F, so Aλ, A

′
λ are Weierstrass modules. In particular, it follows that

for a ∈ A′[T ] we have aT = 1; from the definition we might also have
aT = b ∈ B, but this would imply A(T ) ) A[T ] in contradiction with
Fact 1. This implies the decomposition of Aλ[T ]. Since A′ has both
A[T ∗] and A′[T ] as direct terms, and A(T ∗) = A[T ∗], the decomposition
13 follows. �

Note that X = Gal(Ω/K∞) is too large for having property F: it con-
tains a free Λ-submodule of rank r2, so in particular X(T ) has infinite
height, an incompatibility with property F.
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3.3. Radical shifts. There is a map ρ1 : A′
n → R((Ωn · ΩE′)/ΩE′)

which is constructed as follows: let A ∈ an ∈ A′
n, α ∈ K×

n be such that

A ∈ an ∈ A′
n, α ∈ K×

∞ : (α) = Aord(an),

ρ1(an) = ΩE′ · α1/ord(an).(14)

Then one verifies that ρ1 : A′
n → R(Ωn/ΩE′) is an injective map and

passing to projective limits we obtain a map ρ1 : A
′ →֒ R(Ω/ΩE′). The

kernel consists of the maximal finite submodule Ker (ρ1) = (A′)◦. We
see already from the previous steps, that one has to take composita
of all relevant base fields with ΩE′ in order to follow the canonical
construction. It would be therefore be helpful to perform the same
construction over the base fields Kn or K∞.
Observe that the roots α1/ord(an) define the radical canonically over

ΩE′, yet they are meaningful expressions over K∞ too. This leads to
idea of shifting radicals down to K∞. When doing this, canonicity is
lost and one has to find a definition which conserves the norm coher-
ence of radicals and is compatible with ramification properties3. Since
Ker (ρ1) = (A′)◦, it suffices to define a map ρ0 : A

′/(A′)◦ → R(Ω/K∞)
which is injective. Consider a = (an)n∈N ∈ A′ with non trivial image
in A′/(A′)◦, so ιn,n+1Λan → Λan+1 is injective for n > 0.
We shall define a radical map ρ0 : A

′
m → R(Ωm/K∞) for all m > 0.

For any an ∈ An we let α(an) ∈ K×
∞ be chosen by the procedure in

(14); as additional condition, we assume that the degree
[
K∞[α(an)

1/ord(an)] ∩H : K∞

]
(15)

is maximal among all possible choice for α. This describes a procedure
which associates to an ∈ An an α(an) ∈ K×

n such that the degree in
(15) is maximal. We still have to make some choices for obtaining a
norm coherent map ρ0 : A′ →֒ R(Ω/K∞). The map will be defined
first on A′

n so the different levels are norm compatible for sufficiently
large n. We let first ρ0(A

◦) = 1, so the kernel is conserved from ρ1. In
particular for all a = (an)n∈N ∈ A◦ and all n we have ρ0(an) = 1.
Consider now the µ-part. The extension Ω/Ωλ has a pure µ-module

as galois group. There is thus a maximal µ-module Rµ ⊂ R(Ω/ΩE′);
we let

A′
µ = ρ−1

1 (Rµ) · (A
′)◦ ⊂ A′.

Let a ∈ A′
µ be an element of a minimal set of generators of A′

µ as a
Λ-module and q = pr = ord(a). For n > max(r, n0), we may choose
α(an) as above and define ρ0(an) = α(an) ·K∞. The choice of α(an) is

3In CM fields there is canonic shift of Gal(Ω−/ΩE′) down to K∞. This is devel-
oped in the Appendix
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up to p - units, so the extension is not unique. However, if B ∈ an is
an other ideal, then B = A · (ν) and thus Bord(an) = (αn) · (ν

ord(an)), so
α(an) ·ν

ord(an) is a valid representative for the ideal B, which generates
the same extension as α(an). The choice thus depends only on p - units
but not on the particular ideal A ∈ an. The map is then extended by
multiplicativity and galois covariance to (A′

mu)n. We have the following
“onto” property: ΩE′[ρ0((A

′
mu)n)] = Ωm,µ · ΩE′.

Let now A′
λ ⊂ A′ be a set of representatives forA′/(A′)† ∼= R(Ωλ/ΩE′)•.

Starting from a minimal set of generators for A′/(A′)†, we define like
in the µ-case, the map ρ0 on (A′

λ)n. We need to be more careful in
this case with numeration. The extension ΩF,n/ΩE′ is finite and its
exponent is at most pn+z′(A), where z′ is a constant of the dual module
X•

λ in Lemma 3. Therefore, we have for all n ≥ 0:

ΩE′[ρ0((A
′
λ)n+z′)] ⊇ Ωn,F · ΩE′.

The extension ΩT/ΩE′ is infinite and cannot be generated by final rad-
icals. Instead, the maximal Kummer subextension ΩT,n/ΩE′ of expo-
nent pn+z′ contained in the radical extension above.
We now show that for any m > n we may choose α(am) ∈ K×

∞ to
represent am in such a way that

K∞[α(an)
1/ord(an)] ⊂ (K∞[α(am)

1/ord(am)])(n),(16)

the last being the normal closure of K∞[α
1/ord(am)
m ] over K0. We as-

sume first that a has infinite order. In this case, the last condition
is equivalent to α(am) = α(an)

c · xord(an), (c, p) = 1. Let Q ∈ am
be a totally split prime and R = Nm,nQ ∈ an. From property F

we have [νm,nQ] = ap
m−n

m ; let A = R · (ν) and α(am) ∈ K×
∞ with

(α(am) = Qord(am) have the local maximality property required above.
Then

(α(am) =
(
Qpm−n

)ord(an)
= (O(Km+z) ·R)ord(an) (α(an)ν

ord(an)).

It follows that the condition α(am) = α(an)x
ord(an) can be fulfilled for

an adequate choice of α(am) modulo p - units in E ′
m+z ∩ U

ord(an)
n+z , so

(16) holds. We may choose ρ0(am) = K×
∞ · α

1/ord(am)
m and ρ0(ak) =

K×
∞ ·Nm,k(αm)

1/ord(am) = K×
∞ · α

1/ord(ak)
k for 0 ≤ k < m. By continuing

the procedure iteratively, we obtain a map ρ0(a) ∈ R(Ω/K∞). We shall
also need the injective limit for a describing infinite extensions, so we
let ρ′(a) = ∪mρ0(Λam).
Suppose now that a has finite order ps and exp(Λam) = ps for all

m ≥ 0. Choosing Q ∈ am like before, we have ord(Q) = ord(R) = ps.
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One can prove like above that there is a choice of α(am) ∈ K×
m such

that (α(am) = Qps and (16) holds.
Let ΩA = K∞[ρ′0(A

′)] ⊂ Ω, a non canonic extension of K∞ with ΩA∩
ΩE′ = K∞ and Ω = ΩA · ΩE′ = ΩE′[ρ′0(A

′)]. Indeed, by construction,
both conditions ΩA ∩ ΩE′ = K∞ and ΩA · ΩE′ = Ω are fulfilled. Let
HA = H∩ΩA,HA,λ = HA ∩Hλ. We also have an induced definition for
ΩA,F ,ΩA,T and the unramified subextensions HA,F ,HA,T . Moreover,
ΩA,µ = K∞[ρ0((A

′)†)] and HA,µ = ΩA,µ ∩ H. We consider canonical
submodules of A′:

Lemma/Definition 1. The subgroup AG ⊂ Aλ fixing HE′,λ in Hλ is
a canonical Λ-submodule. The module

AL := {a ∈ A′
λ : HE [ρ

′
0(a)] ⊂ H} ⊂ A′

λ = A′/(A′)†

does not depend on the choice of the lift ρ0.
We define a function ℓ : A′ → N as follows: for a ∈ A′, ℓ(a) =∞ if

a ∈ AL and ℓ(a) = [HE′[ρ′0(a)] ∩ H : HE′] otherwise: this map is well
defined and for ℓ(a)+ℓ(b) =∞ we have ℓ(ab) =∞ iff ℓ(a) = ℓ(b) =∞.
For an ∈ A′

n we also let ℓ(an) = [K∞[ρ0(an)] ∩H : K∞].

Proof. We explain here the facts from the definition that require a
proof. Since HE′ ⊂ H is a canonical subfield, its fixing group is a
canonical Λ-submodule. We shall prove later that AG ⊂ A′. Since

Hλ = Ωλ ∩H = ΩE′[ρ0(A
′
λ] ∩H = HE′[ρ0(A

′
λ)] ∩H

for all choices of ρ0 and since the maximality of the degree (15) holds
for all these choices, it follows that there is a maximal AL ⊂ A′ such
that H = HE′ [ρ0(AL)] for all ρ0. Thus AL is well defined. The mul-
tiplicativity rule for ℓ follows from the fact that HE′[ρ′0(ab)] is totally
unramified iff both HE′[ρ′(a)] and HE′[ρ′0(b)] are totally unramified. �

From the previous construction we have the following result on shifted
radicals:

Lemma 4. Notations being like above, there is a non canonical map
ρ0 : A

′ →R(Ω/K∞) such that

1. For any choice of ρ0 we have Ω = ΩE′[ρ′0(A
′)] and H = HE′ [ρ′0(AL)].

2. The extension ΩA := K∞[ρ0(A
′)] verifies ΩA · ΩE′ = Ω while

ΩA ∩ ΩE′ = K∞. However ΩA depends on the choice of ρ0.

If a ∈ A′ has infinite order, we may write K∞[a1/p
∞

] = K∞[ρ′0(a)] for
a fixed shift and HE′ [a1/p

∞

] = HE′[ρ′0(a)] canonically.
We shall consider in more detail the extension ΩA,λ = ΩA,F · ΩA,T .

The purpose of this section is to prove that there is a canonical module
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A(S) ⊂ A′ such that AG = AL = A(S) · A†. This is the Iwasawa linear
space.

3.4. The T and T ∗ parts and their conjectures. According to the
distinction in property F, the case of the T and T ∗ parts, which are
dual as radicals and galois groups, require a separate treatment. The
first result on the T -part is crucial both for the construction of the
Iwasawa space and for the proof of Leopoldt’s conjecture.

Lemma 5. Let D(K) = Z-rk(E(K)) − Zp-rk(E(K)) be the Leopoldt
defect of K. Then

Zp-rk(R(ΩA,T/K∞)) = D(K) = ess. p-rk(A(T ∗)).

Moreover K∞[ρ′0(A[T
∗])] ⊂ H for all ρ0.

Proof. Since Zp-rk(Gal(ΩE∩Ω(K))/K∞) = r2 and, by class field theory
(e.g. [9], p. 144), Zp-rk(Gal(Ω(K)/K∞)) = r2 +D(K) (recall that K is
galois and contains ζp, so r1 = 0 and r = 2r2), it follows that

Zp-rk(X [T ]) = Zp-rk(A[T
∗]) = Zp-rk(Gal((Ω1 ∩H)/K∞)) = D(K).

Suppose that there is a Zp-extension L/K∞ with L ⊂ Ω(K) = Ω1 but
[L ∩ H : K∞] = ps < ∞; in this case we have L ⊂ K∞[ρ′0(A[T

∗])] for
a radical lift ρ′0. Let M = H ∩ L and Mn,Ln ⊂ Ω′

n be the extensions
of Kn which are the fixed fields of M,L under the universal lift Γ̃n.
Then Mn ⊂ Ln and [Mn : Kn] = ps for sufficiently large n; by adequate
choice of the ground field, we may assume that this holds already for
n = 1.
Let now T

(N)
n be the ray class field defined above and assume that N

is such thatMn ( Ln∩T
(N)
n . We choose xN ∈ X

(N)
n [T ] = Gal(T

(N)
n /Kn)[T ]

which fixes Hn and generates Gal(Ln ∩ Mn); we can choose xN+1 ∈

X
(N+1)
n such that xN+1|T(N)

n
= xN and obtain a projective sequence with

x = lim
←−N

xN ∈ Xn. The choice of xN is possible, since Gal(Hn/Kn)

is finite, while X
(N)
n becomes arbitrarily large with increasing N . By

Tchebotarew’s Theorem, there is a prime q ⊂ O(Kn) which is to-

tally split in Kn/Q and coprime to p, such that
(

T
(N)
n /Kn

q

)
= xN . Let

q1 = Nn,1(q) be the prime of K below q. Then the action of xN by
restriction to L1 implies for all N that

(
T
(N)
n /Kn

q

)∣∣∣∣
L1

=

(
(L1 ∩ T

(N)
1 )/M1

q1

)
,
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and in the limit with respect to N , it follows that q1 is inert in L1/M1.
We shall raise below a contradiction to this fact, which shows that
L ⊂ H.
By choice of xN , the prime q fixes H, so it must be principal: q =

(γ), γ ∈ O(K). We have chosen xN ∈ X
(N)
n [T ]; thus xT

N = 1 and

consequently
(

T
(N)
n /Kn

qT

)
= 1. The Lemma 2 implies that 1 ∈ γT · En,

so γT ∈ En. It follows that γ = c · e with c ∈ U(K), e ∈ En. But then

γ1 = Nn,1(γ) = cp
n−k

·Nn,1(e). We can choose n arbitrarily large, so we
may find a generator γ′

1 = γ1e1 of the ideal q1 with e1 ∈ E and such
that γ′

1 ≡ 1 mod pN , for N > M + 1, where M is the largest integer

such that T
(M)
1 ⊂ H1. Then y1 =

(
L1/K
q1

)
fixes L1 ∩ T

(N)
1 ) M1. Since

L1 ∩ T
(N)
1 ) M1, this contradicts the fact that q1 is inert in L1/M1

established above. The contradiction implies that L ⊂ H, as claimed.
We still have to show that for n sufficiently large, cp

n−k

≡ 1 mod pN

for a fixed N . We prove this fact locally for every completion. Let thus
c′ ∈ K℘ be the image of c in the completion at a prime of K above p
and let π ∈ K℘ be a uniformizor and e(K) be the ramification index of
p in K and thus in K℘. We may assume that vp(c

′− 1) > 0 – otherwise
one can raise γ to a power coprime to p. Then c′ = 1+ dπ, d ∈ K℘ and
for m > 0,

(c′)p
m

= (1 + dπ)p
m

= 1 +

pm∑

i=1

(
pm

i

)
πi.

From the divisibility of the binomial coefficients by powers of p, we see
that for e(K) > 1 we have min vp

((
pm

i

)
πi
)
= vp(π

pm) = pm/e(K). For
e(K) = 1, the minimum is pm; in both cases it diverges with m → ∞
and thus, for sufficiently large n we may achieve that (γ′−1) ∈ pNU(K℘

for all primes K ⊃ ℘ ⊃ (p). We have chosen γ′ = γ1 · e, e ∈ E(K),
so e = limm→∞ em, em ∈ E(K). The sequence converges, so for m
sufficiently large, emγ1 ≡ 1 mod pN in all completions; therefore, the
same holds globally. Thus L ⊂ H, and this completes the proof. �

The result above calls for an investigation of the classes in A[T ]
which build the galois group Gal(K∞[ρ′(A[T ∗])]/K∞). We show that
these classes do not generate unramified extensions:

Lemma 6. Let a = (an)n∈N ∈ A[T ] be such that ϕ(a)|HE′ = 1. Then
ℓ(a) <∞ and ℓ(an) = c for all n sufficiently large.

Proof. Let Aλ = A/A† = A[T ∗]⊕ A(F ∗) = A[T ]⊕ A(F ) by Lemma 3.
There is a canonic field HE′ ⊆ HT ⊂ Hλ which is fixed by the restric-
tion of A(F ) to Hλ. Then Gal(HT/HE′) →֒ A[T ]) and R(HT /HE′) =
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ρ′0(A[T
∗]) ·H×

E′. From Lemma 5, it follows that

Zp-rk(Gal(HT/HE′)) = Zp-rk(R(HT /HE′))(17)

= Zp-rk(A[T
∗]) = D(K).

Let a ∈ A[T ] with ϕ(a)|Gal(HT /HE′)
6= 1 and fix n > 0. By the choice

of the base field given in the introduction, the class lift map ιn,n+1 is
injective on Λa = Zpa for all n ≥ 0. Note the identity in the group
ring: Nn,1 = pn−k + Tw,w ∈ Z[T ].
Let Q ∈ an be a totally split prime above Q which is coprime to p.

Then QT = (ν) is principal and Nn,1(ν) ∈ E(K). Let

q = Nn,1(Q) = Qpn−k

· (νw).

Raising this identity to the power q := ord(an)/p
n−k = ord(a1), an

equality which follows from the stability of the transitions in Λa, we
find

(α1) = qord(a1) = Qord(an) · (νqw).

If (αn) = Qord(an), the previous identity yields

δαn = α1 · ν
−qw, δ ∈ En.(18)

Let now N > 0 be fixed and x = (xn)n∈N ∈ X(N)[T ] be a lift of
ϕ(a) and assume additionally that Q was chosen by Tchebotarew’s

Theorem, so that xn =
(

T
(N)
n /Kn

Q

)
. Then xT

n = 1 =
(

T
(N)
n /Kn

(ν)

)
, and

Lemma 2 implies that there is a unit eN ∈ En with νeN ≡ 1 mod pN ,
for each N > 0. It follows that, modulo units, ν is locally arbitrarily
small. Then 1 ∈ νEn and αT

n ∈ E
q

n, so αn ∈ c1 · E
q

n, c1 ∈ U(K). The
equation (18) implies

α1 ∈ c1 · E(K).(19)

Let HE′ ⊂ L ⊂ HT be a Zp-extension with group generated by ϕ(a)

and let L/K be the fixed field under Γ̃. Since ord(a1) > 1, it follows
by restriction of ϕ(a) to L that q is inert in L ∩ H1; since L/K is a

Zp-extension, it is inert in L and x1 =
(

L/K
q

)
∈ Gal(L/K) generates

this group. But then

Zp

(
L/K

(α1)

)
= Zpx

ord(a1)
1 = (Gal(L/K))ord(a1) = Gal(L/(L ∩H1).

Let l ≥ 0 be minimal such that T
(l)
1 ∩ L ) H1 ∩ L. Then

(
T(N)/H
(α1)

)
6= 1

for N ≥ l. In particular, there is a maximal l′ ≥ 0 with α1E(K) ∩

U(K)p
l′

6= ∅. In view of (19), it follows that c1 6∈ E(K)U(K)p
l′+1

. Since
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c1 ∈ αn · E
q

n, we conclude that ℓ(an) ≤ l′ and thus ℓ(a) < ∞, which
completes the proof. �

Remark 2. We note that the above results are in accordance with
Iwasawa, [5], §9.2, 9.3. We chose to derive them explicitly, due to their
major impact for the proof of the outstanding conjectures for T and T ∗

– since we shall show that it follows from the two lemmata above, that
A[T ∗] and A′[T ] are finite: thus the Leopoldt and the generalized Gross
conjectures are true.
Iwasawa’s argument is the following: he considers the map f = fa :

Xλ → AL given by c(x, a)p
a

= xωn, for y = c(x, a) ∈ Xλ and n maximal
for fixed a, such that y exists. Then fa(x) is the preimage of the re-
striction of c(x, a) to Gal((ΩE′ ·H′

λ)/ΩE′ under Artin. Iwasawa makes
no attempt to find a precise relation between n and a, but see also the
first lemma in the next section. The map fa is the building map for the
skew symmetric pairing, and in §9.2 its kernel is determined. Defining
Y = Gal(Ωλ/(ΩE′ ·H′

λ)) and ω−1(Y ) = ∪nω
−1
n (Y ) – which is, with our

choice of the base field K, simply ω−1
1 (Y ) = Y [T ] – Iwasawa proves in

Lemma 14, that Ker (fa) = Y [T ]. Since ωn = pn−k · u mod T ∗, with
u ∈ Λ∗, this result readily implies our Lemma 5. The result of Lemma
6 is somewhat obscured by the definition of c(x, a), which is singular
for x ∈ X [T ]; but the explicite computation confirms the expectation
raised by Iwasawa’s result, namely that the extension ΩE′ [(A′[T ])1/p

∞

]
is almost completely ramified.
The Lemma 14 of [5] has an additional striking consequence: if

A′ = A′[T ]⊕A′(F ′) is the decomposition given in Lemma 3, it follows
from Iwasawa’s kernel computation that ΩE′[(A′(F ′))1/p

∞

] ⊂ H′ · ΩE′.
We shall prove in the next section that this is indeed the case, when
Iwasawa’s linear space is non trivial – or, say, in order to use defini-
tions already known, if AL 6= {1}. However, if Greenberg’s conjecture
is true and AL = {1} – which is in fact always the case for CM ex-
tensions K, as we prove below – then [ΩE′ · H′ : ΩE′] < ∞ and since
A(F ′) 6= {1} in general, the Lemma 14 appears not to hold in this case.
There might be an error in our understanding of Iwasawa’s conditions
on ℓ′-modules, or even a hidden assumption that indeed AL 6= {1}: we
do not pursue this issue here and derive directly all the results needed
for our proofs – while giving all the tribute to Iwasawa for the direction
and methods of investigation.
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The two lemmata above readily imply that A′[T ] and A[T ∗] are finite.
We give here for simplicity the argument only for CM extensions4 but
it generalizes quite strait forwardly to arbitrary base fields K.

Theorem 1. Let K be a CM extension of Q. Then Leopoldt’s conjec-
ture holds for K and A′[T ] is finite.

Proof. We may assume that K is galois and contains the p-th roots of
unity, fulfilling in addition all the usual conditions for the base fields,
which we established in the introduction. Every CM number field has
a finite extension of this kind, and since the Zp-extensions of the base
fields do not vanish under finite extensions, if D(K−1) > 0 for some CM
subfield K−1 ⊂ K, then D(K) > 0, so it suffices to prove Leopoldt’s
conjecture for K.
Assume thus that K is like above and D(K) > 0. From Lemma

5 we deduce that ess. p-rk(A[T ∗]) = D(K) and from Lemma 6 we
see that there is a submodule B ⊂ A′[T ] with B ∼ (A[T ∗])• and
[HE′[B1/p∞ ] ∩H : HE′ ] <∞].
Let G = Gal(Ω−/H−) ∼ U−

∞/E∞, by class field theory – e.g. [9],
Chapter 5.6. For f ∈ Zp[T ] we let Ωf = (Ω−)fG ⊂ G be the maximal
subfield with galois group Gf := Gal(Ωf/H

−) annihilated by f . From
the above B• →֒ GT ∗ and since A(T ) = A[T ], it follows that the
radicals for Ω(T ∗)2/ΩT ∗ stem from E∞. Since R(T ∗)2 = R(Ω(T ∗)2/H−) is a

Λ-module and R(Ω(T ∗)2/ΩT ∗) ⊂ (E∞)1/p
∞

while B1/p∞ ⊂ R(ΩT ∗/H−),
we obtain a contradiction. Indeed, R(T ∗)2 has Zp-rank 2r2 and since it

is a Λ-module, it has a minimal set of r2 generators in E1/p∞ . This is
incompatible with B ⊂ RT ∗ . Consequently B = {1} and D(K) = 0.
For completing the proof, we still need to show that B = A′[T ].

By construction, A[T ∗] ∼= Gal((H− ∩ K∞[(E(K))1/p
∞

])/K∞) and thus
reflection requires B ∼ (A′[T ])+: indeed, if L ⊂ Ω(K) ∩ H is any
Zp-extension with galois group generated by a ∈ (A′[T ])+, then by
reflection, R(L/K∞) →֒ A−(T ∗) = A−[T ∗], which confirms the claim.
On the other hand, we have seen in Lemma 3 that A[T ] = A′[T ]⊕B.
Thus, A′[T ] 6∼ B iff (A′[T ])− 6= {1}. This is a conjecture of Gross [3],
which follows from the elementary lemma below and the decomposition
A−[T ] = (A′)−[T ]⊕B−. �

Lemma 7. If a = (an)n∈N ∈ A− is such that aT = 1. Then a ∈ B. In
particular, if a ∈ (A′)−[T ], then at = b ∈ B−.

4The proof of Leopoldt’s conjecture which we give here can be understood also
as a bug fix for [8]: indeed, the final argument is similar, but it uses the much

stronger fact proved in Lemma 5, which implies that the radicals of Ω̃T∗ , in the
notation of [8], stem in the critical component not from units but from (A[T ])+.
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Proof. Let A ∈ an, so that A1− ∈ a2n; it follows that AT
n = (ν) for a

ν ∈ Kn, and NKn/K(ν) ∈ E(K). Dividing by the complex conjugate,
the Dedekind unit Theorem implies that NKn/K(ν) ∈ µpk . Therefore

νpk(1−) = xT for an x ∈ Kn, by Hilbert 90 – here k is the largest integer,

such that ζpk ∈ K, thus a constant. Then
(
Apk(1−)/(x)

)T
= (1); but

this implies that the ideal Apk(1−)/(x) ∈ a2p
k

n is ramified. This holds

for all n, so a2p
k

∈ B− and since p is odd and by definition of B−, it
follows that a ∈ B− too. �

3.5. The Iwasawa linear space. We now consider the F -part of the
galois group Xλ. Recall from Lemma 3 that ΩF ⊂ Ωλ is the fixed field
of X [T ] ⊕ X [T ∗] = Gal(Ωλ/ΩE′)[TT ∗]. Let AF = ρ−1

1 (ΩF ) ⊂ A′ and
HF = HE′[ρ′0(AF )] ∩Hλ.
Before considering the relation between radicals and galois groups,

we prove a result on lifts from A to X and cyclic continuations of class
fields:

Lemma 8. Let a ∈ A′(F ). Then there is a lift x ∈ Xλ = Gal(Ωλ/ΩE′)
with x|ΩE′ ·H = ϕ(a) and there is a further y = c(x, n) ∈ Xλ with

xord(an) = yωn.(20)

If L/ΩE′ is a Zp-extension and Ln = Ω′
n ∩ L intersects Hn · Ω

′
E′,n non

trivially, then Ln ⊂ Hn · Ω
′
E′,n.

Moreover, if L/K∞ is a Zp-subextension of H with [L·HE′ : HE′] =∞
and a ∈ A has Zp(ϕ(a)|L) = Gal(L/K∞, then ℓ(a) = ∞ and ℓ(an) =
vp(ord(an)) for all n.

Proof. From the definition of ΩF we know that Gal(ΩF/ΩE′) is an Iwa-
sawa module with annihilator coprime to T . In particular, ΩF,n/ΩE′,n

are finite extensions. If L/ΩE′ is a Zp-extension contained in ΩF and
[L ∩ ΩE′ · H : ΩE′] = ∞, then infinite galois theory implies that
L ⊂ ΩE′ · H. The lemma states that additionally, Ln ⊂ ΩE′,n · Hn

for all n. Let x ∈ Xλ with xT 6= 1 be a generator for Gal(L/ΩE′.
Since Xλ is a Weierstrass module, for n sufficiently large we have
ord(xm) = pm−nord(xn) and since x 6∈ Xλ[T ], property F implies that
xord(xn) = yord(xn) for a y ∈ Xλ(F ). Let a ∈ A′ be such that x|L = ϕ(a):
the choice is possible, since L ⊂ ΩE′ · H. From property F for A′ we
deduce that there is a constant q = pu such that ord(xn) = qord(an)
for all n sufficiently large. If q > 1, then there is an extension L′ ⊃ L
of degree q which is a Zp-extension of ΩE′. But Zp has no finite com-
pact subgroups, so we must have q = 1 and Ln has no cyclic extension
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above ΩE′ which is contained in Ω. The relation (20) also follows from
ord(an) = ord(xn).
Finally, we shift the radicals to K∞. We may consider without re-

striction of generality that L ∩ HE′ = K∞. Then it follows from the

facts proved above, that Ln/Kn has no cyclic continuation in T
(N)
n

above Kn, for any N > 0: otherwise, Ln · HE′,n has a cyclic contin-
uation, which was shown to be impossible. Let N > 0 and consider

a cycle-decomposition of Gal(T
(N)
n /Kn) =

∏s
i=1 Zx

(i)
n , as an abelian

p-group. We may assume that xn = x
(1)
n is such that xn|Ln

= ϕ(a).

Then x
ord(an)
n = 1, and by Tchebotarew’s Theorem, there is a prime

Q which is totally split above Q and such that
(

T
(N)
n /Kn

Q

)
= xn. Since

xn|H = ϕ(an), it follows that Q ∈ an. Let (αn) = Qord(an); by choice of

xn we have
(

T
(N)
n /Kn

(αn)

)
= 1 and Lemma 2 shows that we may choose αn

– by eventual multiplication by units – such that αn ≡ 1 mod pN . We

have shown that Ln ⊂ T
(N)
n has no cyclic continuation, and thus N can

be chosen arbitrarily large. In particular, we can achieve αn ∈ U
ord(an)
n

and thus ℓ(an) = vp(ord(an)) for all n, and ℓ(a) = ∞. This completes
the proof. �

The main result of this section defines the Iwasawa selfdual linear
space:

Theorem 2 (Iwasawa). There is a canonical selfdual submodule A(S) ⊂
A′/(A′)◦ such that

Hλ = HE′,λ[(A
(S))1/p

∞

] and(21)

Gal(Hλ/HE′,λ) ∼= A(S).

For all a = (an)n∈N ∈ A(S) we have also at finite levels n ≥ 0 that
ℓ(an) = vp(ord(an)). If A

(S) 6= {1}, then Gal(HE′,λ ∩ ΩF ) ∼= A[T ∗].

Proof. Let AG = Gal(Hλ/HE′,λ) = AG[T ]⊕ AG(F ). If a ∈ AG[T ] then
ℓ(a) =∞ by Lemma 5, while Lemma 8 implies that the same holds for
a ∈ AG(F ). Thus ℓ(a) =∞ for all a ∈ AG.
On the other hand, the radicals are canonic, since ρ1 is injective.

Therefore the module AL ⊂ A′/(A′)◦ with Hλ = HE′,λ[ρ
′(AL)] is well

defined. However, since ℓ(a) = ∞ for all a ∈ AG, it follows also
that AG ⊂ A′: indeed, we have seen that A[T ] = A′[T ] ⊕ B[T ] and
HE [(B[T ])1/p

∞

] ∩ H ⊆ HE′ . This confirms the claim. For any set of
representatives AG of AG mod (A′)† we have HE′,λ[(AG)

1/p∞ ] ⊆ Hλ. By
comparing Zp-ranks, we see that AG has finite index in AL; however,
AG is p-coalescence closed, so it follows that AG

∼= AL mod (A′)†.
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Letting A(S) = AL ⊂ (A′)/(A′)◦, a canonical submodule, we may
choose AG = AL, so A(S) ∼= (A(S))•, so the Iwasawa linear space is
selfdual.
Finally, assume that A(S) 6= {1}. If HE′,λ ∩ ΩF 6= K∞, Since A(S)

fixes HE′, for any b ∈ A with ord(b) = ∞ and ϕ(b)|HE′ 6= 1 we have

ℓ(b) < ∞: otherwise, b ∈ A(S). Let now L ⊂ H be any Zp-extension
with L ∩ HE′ = K∞ and L ⊂ ΩF . The last claim of Lemma 8 implies
that b ∈ A(S) for all b ∈ A with Zp(ϕ(b)|L) = Gal(L/K∞). We may
choose a lift ρ0 and let HF = K∞[ρ′0(A

′(F ))], an extension with group
Gal(HF/K∞) = ϕ

(
A(S)

) ∣∣
HF

. Suppose that L 6⊂ HF , which is possible

if HE′,λ 6= K∞. Since Gal(L/K∞) ⊂ ϕ
(
A(S)

) ∣∣
L
, it follows that the

compositum HF · L has also the restriction of ϕ
(
A(S)

)
as galois group

over K∞. This is however impossible, for since the rank should be
larger then Zp-rk(A

(S)). Therefore we must have HE′,λ ∩ ΩF = K∞,
which completes the proof. Note that we only considered the F parts.
For non CM extensions, in which we have not proved the Leopoldt
conjecture yet, it is still possible that Gal(HE′,λ/K∞) ∼= A[T ∗]. �

Remark 3. The above results are essentially due to Iwasawa. We have
taken from §9 - 11 of his seminal paper [5] the fundamental ingredients,
which are the use of Takagi theory and the right module to consider. By
shifting radicals to K∞ or HE′ we obtain however a simpler exposition
of the facts. Iwasawa’s construction of the function fa described in
the previous Remark obscures the case of A′[T ] and we have therefore
chosen to treat the T and T ∗ modules separately. However, his results
are consistent with ours - modulo the Lemma 14, which might miss the
premise A(S) 6= {1}, since for A(S) = 1, the normal case, we may have
ΩE′ = Ωe′ ·H and yet ω−1(Gal(Ωλ/ΩE′)) 6= 1.
Since Lemma 14 implies in particular that ΩE′ [ρ1(A[T

∗])]/ΩE′ is to-
tally unramified, one may argue that Iwasawa’s construction of the skew
symmetric pairing might have lead to a straight proof of Leopoldt’s con-
jecture, which is close to the one given is this paper.
Iwasawa proceeds in his paper by constructing a skew symmetric pair-

ing on the pair a, b of our proof; for this he uses Hasse’s reciprocity in
a beautiful way, which is worth reconsidering. We have not done this,
since the space A(S) is ephemeral, and we shall prove below that it van-
ishes, at least for CM base fields.
In fact, since Greenberg’s seminal paper [4] appeared in the same year

as the one of Iwasawa, and the conjecture raised in that paper obviously
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implied that A(S) must vanish, this lead, in the opinion of experts5 to a
reduced attention for properties and implications of the Iwasawa linear
space.

4. Thaine shifts and the Greenberg Conjecture

Iwasawa asked in [5], the last phrase of §11, the following question:
“It would be an important problem, to find out when dim(V +) > 0”;
in the notation of [5], V = Gal((ΩE′ ·H′)/ΩE′)⊗Zp

Qp.
The question was considered by his PhD student Ralph Greenberg,

who brought in [4], in the same year, evidences for the fact that λ+ = 0
should be true for abelian extensions K/Q. Since then, the term of
Greenberg conjecture is connected to various statements of finiteness
of canonic submodules of A. This may be for instance the statement
that λ+ = 0 for arbitrary CM fields or the stronger statement that A+

is finite for arbitrary CM extensions. Starting with Greenberg, much
numerical evidence has been gathered for the truth of Greenberg’s con-
jecture. For obvious reasons of complexity, the general computations
restrict mostly to quadratic base fields, while some sporadic verifica-
tions could be computed in extensions of larger degree. One of the
most vast numerical evidence in the literature can be found in [6]; we
used it repeatedly for verifying various structure results that lead to
the proofs in this paper.
We define here the general Greenberg conjecture as follows:

Conjecture 1. Let K/Q be an arbitrary galois extension containing
the p-th roots of unity and H/K∞ the maximal unramified p - abelian
extension of its cyclotomic Zp-extension. Let HE′ = H ∩ ΩE, with

ΩE = ∪nKn[E
1/pn

n ] and En = O(Kn). Then

[H : HE′ ] <∞.(22)

The tools for dealing with non CM extensions are more complex and
we restricted in this paper the attention to the simpler CM extensions
and their radicals. We shall thus prove in this section the

Theorem 3. If K is a CM extension, then

λ(A+) = 0, for A = lim
←−
n

An,

and An the p parts of the class groups of Kn, the intermediate levels of
the Zp-cyclotomic extension of K.

5This was explained by John Coates [2] in a personal discussion concerning the
Iwasawa linear space.
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The Theorem answers completely the initial question of Iwasawa
which was stated only for CM extensions: thus dim(V ) = 0, always.
We note that it suffices to prove the statement for galois CM extensions
containing the p-th roots of unity, that we have considered in this
paper. Indeed, if K is CM, then there is a finite algebraic extension
L = K[θ] which is galois, CM and contains the p-th roots of unity.
Then H+(K)[θ] ⊂ H+(L), so if A+(K) is infinite, so is A+(L).
We shall use the construction introduced by Thaine for the proof of

his celebrated Theorem ([11], [12] §15.1). The main facts that we need
are gathered in the following:

Lemma 9 ( Thaine shift ). Let K be a CM galois extension of Q and
assume that K is not a pk-th cyclotomic extension. Let an ∈ A−

n \(A
−
n )

p

be a class of order q = pm; then there is a cyclic abelian extension
Fn = Kn[η] of degree pm and a class bn ∈ An(Fn)

− with ord(bn) = p2m

and bp
m

n ∈ ιKn,Fn
(an).

Proof. We use the Thaine construction. LetQ ∈ an be a prime which is
totally split Q and unramified in K, and let Q ∈ Z be the rational prime
above it. We assume that Q is totally split in Kn+b for a b ≥ m − n;
then Q ≡ 1 mod pm and we let θ be a Q-th root of unity. Let F ⊂ K[θ]
be the subfield of degree pm and the fields Fm = Km[η] = F[ζpm], for
a Gauss period η of θ, build the cyclotomic Zp - extension of F. The
choice of Q also implies that F is linearly disjoint from Kn, so Fm/Q
are galois and Gal(Fm/Q) = Gal(Kn/Q)×Gal(F/Q).
Let Kn be the pn-th cyclotomic extension, so by assumption, Kn (

Kn. If χ is a Dirichlet character of order pn and β = (τ(χ))p
n

is its
Gauss sum in Kn, then it is a fact of elementary cyclotomy that

Fn = Kn[τ(χ)
1−] = Kn[β

(1−)/pn ].

Let (α′) = Qpn and (α) = (α′/α′). Then α is well defined up to roots
of unity. From the definition of the Gauss sums we see that β = q(1−)Θ,
where Θ = pnϑ is in the Stickelberger Ideal of Z/(pn · Z)[Gal(Kn/Q)]
and q ⊂ K is a prime above Q. We conclude that α 6∈ (Fn[η]

×)p;
otherwise, we may assume that α = βxp, and since Q is totally split
in Kn/Kn, the decomposition in prime ideals modulo p powers yields
a contradiction (here we need that Kn 6= Kn).
Let R ⊂ Fn be the ramified prime above Q and bn = [R]. Then

ord(R) = pmord(Q) = p2m. Indeed, let (γ′) = Rord(R), while γ = γ′/γ′;
then γ 6∈ Fp

n. Ramification of Q implies

(γ) = R(1−)ord(R) = Qord(R)/pm = (α)ord(R)/p2m , so

γ = η · αord(R)/p2m , η ∈ µpn.
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After eventually multiplying γ by η, we see that γ = αord(R)/p2m and
since α, γ 6∈ (Fn[η]

×)p, it follows that ord(R) = p2m, which proves the
claim. �

As a consequence, we have

Corollary 1. Let K,F,Q be like in the Lemma 9 and assume that K℘

contains the unramified pM -th extension for M sufficiently large, so p
is totally split in F/K. If β ∈ O(Kn) is normalized with ℓ̃(β) = k > 0,

then, β 6∈ U(Fn)
pk+1

.

Proof. We prove the claim by induction. Let Kn ⊂ K ⊂ L ⊂ Fn be
a tower with [L : K] = p and suppose β ∈ K has ℓ̃(β) = k. We shall
show that β is not a local pk+1-th power in L either. Let ℘̃ ⊂ K be
a prime above p and C̃ = Gal(K/Q)/D(℘̃), P̃ = {σ℘̃ : σ ∈ C̃}, so
U(K) =

∏
σ∈C̃ Kσ℘. Let β = (βσ)σ∈C̃ ∈ U(K) be the embedding of β

in this completion, so βσ = γpk

σ , γσ ∈ U(Kσ℘).
The prime p is totally split in L/K, thus U(Kσ℘) splits into a product

of the units in p distinct completions, in L. If G′ = Gal(L/K), then
we write under the Chinese Remainder Theorem,

U(Lσ) =
∏

ν∈G′

νUKσ
.

Since G′ permutes the components of U(Lσ) but fixes β, it follows
that the image ιU(Lσ)(βσ) = (βσ, βσ, . . . , βσ) consists of p copies of βσ.
Therefore, it is a pk-th power, but not an pk+1-th power in U(L).

This holds for all σ ∈ C̃ and also for all subextensions of degree p
in the Kn ⊂ Fn, therefore β is not a pk+1-th power in Fn either, as
claimed. �

We are now ready to prove Theorem 3:

Proof. If the Greenberg conjecture holds for a field K, we have shown
that it holds for its subfields, so we may assume that K℘ contains the
pM -th unramified extension of Qp, for sufficiently large M . This can
be achieved by a cyclotomic extension of the base field. Therefore the
premises of Corollary 1 can be met.
Assume that λ+(K) 6= 0, so (A(S))− 6= {1}. Let a = (an)n∈N ∈

(A(S))\Ap and n > n0, q = pm = ord(an). We choose a prime Q ∈
an and define F = K[η] and the cyclotomic Zp - extension Fn =
Kn[η],F∞ = ∪nFn like in the proof of the Lemma 9, with respect to
the rational prime Q below Q.
From Lemma 9 we see that R ⊂ Fn, the prime above Q, belongs to

a class bn of order q2. The Corollary 1 implies that ℓ(bn) = ℓ(an) =
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m < vp(ord(bn)). We construct a lift of bn as follows: for N > n
we let A ⊂ FN be a prime which is totally split over Q and such
that NN,n(A) ∈ bn while NF/K(A) ∈ aN ; the existence of such primes
follows from Tchebotarew’s Theorem. We let bN = [A] and repeat the
procedure, replacing n by N . Thus we inductively construct a norm
coherent sequence b = (bn)n∈N ∈ A−(F) with NF/K(b) = a and with
bn = [R].
If A+(K) is infinite, then so is A+(F), thus A(S)(F) 6= {1}. From

Theorem 2 we see that λ−(F) = Zp-rk((A
(S))−(F)). In particular ℓ(x) =

∞ for all x ∈ (A′)−(F) with ord(a) = ∞. But we have constructed
a lift b ∈ (A′)−(F) for which we have shown that ℓ(b) < ∞, while
ord(b) =∞. This contradiction yields the proof.
A more elementary proof is based on the explicite properties of the

canonical radical shifts for minus parts, derived in Appendix C and
Proposition 4. Let N = n0(A(F)) and M > N . From point 2. of
Proposition 4 and ℓ(bn) = vp(ord(bn)) − m < vp(ord(bn)), we gather
that

ℓ(bM) ≤ ℓ(bn)+vp(ord(bM))−vp(ord(bn)) = vp(ord(bM ))−m < vp(ord(bM )).

Since M > n0(A(F)), it follows from point 3. of the same proposition,
that ℓ(b) < ∞. Then point 4. implies that there is an r > N such

that for M > r, β(bM) ∈ β(br) · UM(F)p
ℓ(b)ωr . Since NF/K(β(bM)) =

β(am) ∈ ρ(aM )ord(aM ), we conclude that β(aM) ∈ β(ar) · UM (K)p
ℓ(b)ωr .

Since r is fixed, it follows from point 4 of Proposition 4 that ℓ(a) <∞,
in contradiction with the choice of a. This concludes the proof. �

The point 1. in Proposition 4 plays a central role in the above
proof. We have required here M > n0(F), so the transitions CM(F) =
AM+1(F)/ιM,M+1(AM(F)) are stable; we know though that semistable
transitions are a sufficient premise for the claim of point 1 to hold.
It can be shown in the Thaine shift, that if Q is split in Kn/Q and
bn = [R] as in the above proof, then Λbn contains a submodule Bn =
(Λbn)

fa, with fa the minimal polynomial of a and Bn
∼= Λn/p

mΛn,
where Λn = Λ/(ωnΛ). Therefore none of the transitions Ck(Λb), k ≤ n
are semistable. This fact shows that our proof is compatible with the
existence of modules Λa ⊂ (A′)−(K) with arbitrarily large, but finite
ℓ(a).

Remark 4. The method of Thaine shifts, combined with Proposition 4
offers also an alternative proof of the Leopoldt Conjecture: it suffices to
take a ∈ A−[T ∗], which is an obstruction space to Leopoldt’s Conjecture.
By Lemma (5) we have ℓ(a) =∞ and we may build a Thaine shift like
above, lifting a to b ∈ A(F). We still have ord(b) = ∞ and ℓ(b) < ∞
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and the variant of the proof of Greenberg’s conjecture using Proposition
4 then yields a contradiction to ℓ(a) =∞.

The methods used for proving λ+ = 0, in particular Proposition 2
and the use of Thaine shifts, could also be applied for showing that
µ+ = 0. This shall be done in a later version of this draft.

5. Appendix A: Finiteness of B+

In this section we shall prove:

Theorem 4. If K is galois and real, then B is finite.

Note that this theorem implies that B+ is finite for any CM exten-
sion: it suffices to take the galois closure and adjoin a p-th root of
unity in order to meet the premises of the theorem. If B+ is infinite
in the initial field, it would be infinite also in this finite extension, in
contradiction with the theorem.
The field K is in this section a CM galois extension of Q containing

the p-th roots of unity, so all the notations are consistent with the
ones introduced before.
We assume that the field K = (K[ζp])

+ is the maximal real subfield of
a CM extension K′ = K[ζp] and suppose that ζpk ∈ K′, but ζpk+1 6∈ K′.
Accordingly, we write K0 = K1 = . . . = Kk 6= Kk+1. Then n′ = n−k+1
in the definition of ωn.
The central idea of the proof consists in the analysis of Z - ranks of

the relative units6

EH(Kn) = {e ∈ E(Kn) : NKn/K(e) = 1}.

Assuming that the Leopoldt defect is stable above K, this module has
maximal Zp - rank, and so do factors like EH(Kn)/E

T (Kn). On the
other hand, we show that the assumption ess. p-rk(B) =: B(K) > 0
implies the existence of a defect in the Z - rank of EH(Kn)/E

T (Kn),
equal to B(K): this confirms the statement of the Theorem 4.

5.1. Group rings and units. We begin with a general fact on anni-

hilators of Λ - modules. Recall that X̃ = X ⊗Zp
Qp for Zp-modules

X .

Lemma 10. Let K/Q be a galois extension with group G and Kn build
its cyclotomic Zp - extension. Let b ∈ A be a sequence of classes of
infinite order. Then

6These are related, but not identical to Hilbert’s relative units in the Theorem
Hilbert 91. Unlike Hilbert, we are only interested in Z - ranks, so the conditions
involved are much simpler
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1. There is an ideal b⊤ = {x ∈ Λ[G], bx = 1} ⊂ Λ[G].

2. Let R[G] = Λ̃[G]. There is an idempotent β0 ∈ R[G] such that
b⊤ = β0R∩Λ[G] and for a fixed power pl, we have β = pl · β0 ∈
Λ[G] \ pΛ[G]. In particular

plb⊤ ⊂ βΛ[G] ⊂ b⊤.

3. At finite levels, let βn ∈ Z[ωn][G] approximate β to the order
pM , for sufficiently large M ≥ n. Let b⊤n = {x ∈ Z[ωn][G] :
bxn = 1} and ord(bn) = pn+z. Then

plb⊤n ⊂ (βn, p
n+z)Z[ωn][G] ⊂ b⊤n .(23)

Proof. For 1., one verifies from the definition that b⊤ is an ideal in
Λ[G]. It is thus a one sided module; upon tensoring with Qp, Maschke’s

Theorem implies that b̃⊤ = b⊤ ⊗ Qp has an orthogonal complement
and there is a generating idempotent, that we denote by β0. The
denominator of β only depends on G and thus on K, but not on n;
so we denote it with pl and see that β = plβ0 ∈ Λ[G] \ pΛ[G]. The
relation in 2. follows from β0R[G] ⊃ b⊤ ⊃ plβ0R[G] by multiplying
with pl. The relations at finite levels follow directly from this, by using
the order of bn. �

We assume now that K has galois group G and is totally real, while
B is infinite. We think of K as being the maximal real subextension
of a CM galois extension which contains the p-th roots of unity; this
extension may be denoted at places by K′. The Λ[G] - module B is
quasi cyclic, as an indirect consequence of a similar property of the
local units U∞:

Lemma 11. The group B is Λ[G] - quasicyclic: there is a b = (bn)n∈N ∈
B with

[B : Λ[G]b] <∞.

If β, b⊤ are defined like in the previous lemma with respect to b, then

ess. p-rk(B) = Qp-rk(βR[G]).(24)

Proof. Let Ω(K) be the product of all the Zp - extensions of K; and let
A(T ) be the T - primary part of A, while A[T ] = {x ∈ A(T ) : xT = 1}.
Then one proves like for abelian p - groups, that

A[T ] ∼ A(T )/(TA(T )).

If the Leopoldt defect vanishes, then Ω(K) is finite and so is A(T ).
In general, Gal(Ω(K)/H∞) →֒ U−(K′) and since the latter module is
Zp[G] quasicyclic, it follows that so is the galois group. This shows the
existence of b ∈ B which generates this module under the action of
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Zp[G], up to pseudoisomorphism. The equality of ranks follows from
the definition of annihilators. �

5.2. Units. If Leopoldt’s conjecture is true for K, then B is a fortiori
finite, so there is nothing to prove. We assume thus that the Leopoldt
defect D(K) > 0 and moreover, it is stationary in the Zp extensions,
that is D(Kn) = D(K) for all n ≥ 0.
The norm one units with respect to K will be denoted by

XH(Kn) = {x ∈ X(Kn) : NKn/K(x) = 1}, X ∈ {E,E ′, U}.

We let U ′(Kn) = {u ∈ U(Kn) : NKn/Q(u) = 1}. Then D(K) =

Zp-rk(U
′(Kn)) − Zp-rk(E(Kn)) for all n ≥ 0. The units EH(Kn) have

a family of relative generators:

Lemma 12. Let r be the number of real embeddings of K; then, for
n > 1, there is a set En = {d1, d2, . . . , dr} ⊂ EH(Kn) which is Z -
independent and such that

[
EH(Kn) : 〈En〉Z[T ]

]
<∞.

In particular Nn,0(di) = 1 and the norm is also the polynomial of min-
imal degree in Z[T ] which annihilates di. The ranks are

Z-rk(E(Kn)) = Z-rk(EH(Kn)) + Z-rk(E(K);(25)

Zp-rk(E(Kn)) = Zp-rk(EH(Kn)) + Zp-rk(E(K)).

Moreover

Z-rk
(
EH(Kn)/E(Kn)

T
)
= r.(26)

For Zp - ranks, we have Z-rk(EH(Kn)) = Zp-rk(EH(Kn))

Proof. We start with a computation of ranks: if r = |G|, then there is
a Z-base E0 = {ε1, ε2, . . . , εr−1} for E(K), by Dirichlet’s unit Theorem.
Suppose that [Kn : K] = pn

′

, n′ = n− k. Then

Z-rk(E(Kn)) = R− 1 = (pn
′

− 1)r + (r − 1), R = pn
′

r.

This equation reflects already the first claim in (25): one may choose
a Minkowski unit in En and deduce the relation between Z-ranks. The
relation is conserved, when passing to p - adic completions in U(Kn),
and this proves (25). Since Kn/K is galois, there is a Minkowski unit
D ∈ E(Kn) such that

[
E(Kn) : D

Z[Gal(Kn/Q)]
]
< ∞. Let e = Nn,0(D);

then Nn,0(D
pn

′

/e) = 1 and thus D′ = Dpn
′

/e ∈ EH(Kn) and since D
is Minkowski, it follows also that

[
EH(Kn) : (D

′)Z[T ]
]
< ∞. We may
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thus even choose di = (D′)σi, σi ∈ G. The ranks occurring in (26) can
now be estimated by using the unique D′; thus

Z-rk(EH(Kn)/E(Kn)
T = Z-rk

(
(D′)Z[T,G]/DTZ[G,T ]

)

= Z-rk (Z[T,G]/(TZ[T,G])) = |G| = r.

This proves (26). Passing now to Zp - ranks, from the fact that the
Leopoldt defect was assumed stationary, we deduce in particular that
Zp-rk(EH(Kn)) = Z-rk(EH(Kn)) and this equality applies to all proper
submodules of EH(Kn) and their completions. �

The proof of the Theorem 4 will follow if we show that the assump-
tion that B is not finite, leads to a contradiction with (26): there is a
defect in the rank of EH(Kn)/E

T (Kn), which is induced by the primes

℘n with ℘
ord(℘n)
n = (π), π ∈ K.

Let (α) ⊂ Kn be an ambig ideal which is not ramified. Then there
is an ideal A ∈ a0 ∈ A0 such that (α) = A · O(Kn), so the primes
in a0 capitulate completely in Kn. Since A0 is a finite group, there is
a fixed m > 0, depending only on K, such that all the primes from
classes in A0 that capitulate completely in K∞, already capitulate in
Km. Therefore α ∈ E(Kn) · Km and in general, if (β) ⊂ O(Kn) is any
ambig ideal, then

β ∈ K×
m · E

′(Kn).(27)

The units in EH(Kn)/E
T (Kn) are of particular interest: they are char-

acterized by the following

Lemma 13. Notations being like above,

EH(Kn)/E
T (Kn) ⊂

(
EH(Km) · (E

′(Kn))
T
)
/ET (Kn),

and

EH(Kn)
Nm,0/E(Kn)

ωm ⊂ (E ′(Kn))
ωm/E(Kn)

ωm .(28)

Proof. Let e ∈ EH(Kn) \ E(Kn)
T . Then by Hilbert 90, e = γT and

(γ) is an ambig ideal, thus the product of a p - unit, by an ideal of
K that capitulates in Km. Since all the ideals of classes in A0 which
capitulate, do so already in Km, if follows that γ = cm ·p with cm ∈ Km

and p ∈ E ′(Kn). Hence, e = cTm · p
T ∈ EH(Km) · (E

′(Kn))
T , which is

the first claim. Applying the norm Nm,0 = NKm/K to this equation,

cTm is annihilated and we obtain eNm,0 = pωm . Therefore, E
Nm,0

H ⊂
(E ′(Kn))

ωm · E(Kn)
ωm , which implies the claim of (28). �
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5.3. The hypothesis of infinite B. We now apply the assumption
|B| = ∞ for the estimation of the rank Z-rk(E ′(Kn)

T/E(Kn)
T ). This

will raise a contradiction between (28) and (26).
We let b = (bn)n∈N ∈ B be a sequence of infinite order, such that

℘n ∈ bn for some primes ℘n ⊂ Kn above p. Let β0 ∈ Qp[G] be a
generator of the annihilator b⊤ ⊗Zp

Qp, defined above and pl such that
β = plβ0 ∈ Zp[G] \ pZp[G]. The orthogonal complement of β0Qp[G]
in Qp[G] is generated by α0 = 1 − β0 ∈ Qp[G]. Let pk = ord(℘0) and

π ∈ K with (π) = ℘pk

0 . Since the order of bn diverge, ord(bn) = pz+n′

and ℘pn
′+z

n = (π). Furthermore, for a large fixed M , say M > n+ z+ l,
we let αM , βM ∈ Z[G] be rational approximants of α, β to order pM , so
βM ·αM = pMr, r ∈ Z[G]. By Lemma (11), βM annihilates also ℘n and
thus ℘βM

n = (νn) for a p - unit νn ∈ E ′(Kn). Then en := νT
n ∈ EH(Kn):

it is a unit, since ℘T
n = (1) and

NKn/K(en) =
(
NKn/K(νn)

)T
= 1.

Moreover,

(ναM
n ) = (℘pMr

n ) = πr′.

It follows that there is a unit ε ∈ En with ναM
n = ε · πr′ and thus

eαM
n = εT ∈ EH(Kn) ∩ E(Kn)

T .(29)

Applying νm,0, since ωm = Tνm,0, we obtain e
αMνm,0
n ⊂ E(Kn)

ωm . We
claim that in general

Lemma 14. Notations being like above,

Z-rk(EH(Kn)/E(Kn)
T ) = Z-rk

(
eZ[G]
n /(eZ[G]

n ∩ E(Kn)
T )
)
.(30)

Proof. Let p ∈ E ′(Kn) be a p - unit, thus (p) = ℘θ
n for a θ ∈ Z[G+].

Since p is principal, it follows that θ ∈ b⊤n and from point 3. of Lemma
10 we know that plθ ∈ (βM , pn+k+l).
Hence plθ = βMr1 + pn

′+k+l · r2; r1, r2 ∈ Z[G, T ], and

(pp
l

) = ℘plθ
n = ℘βMr1

n · ℘r2pn
′+k+l

n

=
(
νr1
n · π

plr2
)

Passing to algebraic numbers, we find a unit ε such that

pp
l

= ε · νr1
n · π

plr2 ,

and after applying T to this identity and using (29), we obtain

e′ = pTpl = εT · er1n ∈ eZn · E(K)T .
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Therefore

E ′(Kn)
plT ⊂ eZn · E(Kn)

T , and(31)

EH(Kn) ⊂ EH(Km) · e
Z
n · E(Kn)

T .

Finally, since ωm = T · νm,0, we may apply νm,0 to the last identity and

annihilate EH(Km). Note that eωm
n = e

pm+O(T )
n and thus

eωmZ[G,T ]
n ⊂ eZ[G]

n · E(Kn)
T , and

(D′)νm = (D′)p
m

·ETh(T ) ∈ eZ[G]
n · E(Kn)

T

which implies that

Z-rk(EH(Kn)/E(Kn)
T ) ≤ Z-rk(eZ[G]

n /(eZ[G]
n ∩ E(Kn)

T ).

The inequality Z-rk(EH(Kn)/E(Kn)
T ) ≥ Z-rk

(
e
Z[G]
n /(e

Z[G]
n ∩ E(Kn)

T )
)

is trivial, since en ∈ EH(Kn). From the two we obtain the rank equality
in (30). �

5.4. Proof of the Theorem 4. The Theorem 4 follows from the
above:

Proof. Let

b(K) = ess. p-rk(B) = r−Zp-rk(αZp[G]) = r−Z-rk
(
eZ[G]
n /(eZ[G]

n ∩ E(Kn)
T )
)
.

Then
Z-rk

(
eZ[G]
n /(eZ[G]

n ∩ E(Kn)
T )
)
= r −B(K).

From (26), we have Z-rk
(
EH(Kn)/EH(Kn)

T
)
= r, while (29) and

(30) together with the above yield the value r −B(K) for this rank.
It follows that B(K) = 0, which completes the proof of the Theorem
4. �

Observe that the defectB = ess. p-rk(B) in the rank ofEH(Kn)/E
T (Kn)

is connected to the fact that the p - units are localized in E ′(K) ·
(E ′(Kn))

β, which is a consequence of the fact that the ramified ideals
do not capitulate. We note that Theorem 4 confirms the Greenberg
conjecture for B ⊂ A.

6. Appendix B: Units in CM fields

The results that we develop in the rest of this paper hold for general
galois extensions containing the p-th roots of unity, thus for fields K
as considered above. The apparatus of proof is more involved though.
Therefore we assume from now on that K is a CM galois extension of
Q which contains the p-th roots of unity. Thus, complex conjugation
is an element  ∈ ∆ = Gal(K/Q) and it naturally splits groups and
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Λ[∆] - modules related to K∞/K in their plus and minus parts. We
have for instance A = A+ ⊕A−, where A+ = (1 + )A,A− = (1− )A;
here we use the fact that p is odd, otherwise one should divide by 2.
Also, H+ = Hϕ(A−) and H− = Hϕ(A+).

6.1. Order reversal in Kummer extensions. It is useful to consider
primary parts in more depth. We note the following phenomenon of or-
der reversal in Kummer pairings. Let f ∈ Λ be a distinguished polyno-
mial and suppose that a = (an)n∈N ∈ A−\(A−)p has characteristic poly-
nomial fk for k > 1. LetA = (Λa)(c) be the p-coalescent hull of Λa; this
is a Zp-complementable module, thus A− = A ⊕A′, for a Zp-module
A′ ⊂ A−. We let Ha = (H−)A

′

⊂ H−, a field with Gal(Ha/K∞) ∼= Λa.
For n > 0 let Ln ⊂ Han be a maximal cyclic extension such that Han =

LΛ. Let pn+z(a) be the order of an and Ln = Kn′ [β1/pn+z(a)
], n′ = nz(a)

and r = p-rk(Λan) = k · deg(f); then B = {β, βτ , . . . , βτr−1
} span a

radical of Ha,n. Let ∆n = Gal(Han/Kn′) ∼= An and Rn = R(Ha,n/Kn),

so β1/pn+z(a)
∈ Rn · (Kn′)×. By duality, we have βfk(T ∗) ∈ Fpn+z(a)

n′ .
In terms of Kummer pairing, we have the following fact: if

〈β(f(T ∗))i , µ〉Han
= ζpm,

for a µ ∈ ∆ and 0 ≤ i < k, then µ 6∈ ∆
(f(T ))k−i

n . The reason is simply
that for µ = ν(f(T ))k−i

we would have:

〈β(f(T ∗))i , µ〉L′
m

= 〈β, µ(f(T ))i〉L′
m
= 〈β, ν(f(T ))k−i+i

〉L′
m

= 〈β, 1〉L′
m
= 1,

which contradicts the choice of µ.
Therefore we have the following order reversing property

Lemma 15. Let f ∈ Zp[T ] be a distinguished polynomial and a ∈
A− \ Ap have characteristic polynomial fk for k > 1. Let Ha,n be
the subfield of Hn defined above, with ∆n = Gal(Ha,n/Kn′) ∼= An and
Rn = R(Ha,n/Kn) be the radical. Then

H
ϕ

(

A
f(T )i

n

)

a,n = Kn′ [Rf(T ∗)k−i

n ], i = 0, 1, . . . , k − 1.(32)

The Lemma 15 completely describes the class field associated to a
submodule of the primary part A−(f). In general, we have:

Proposition 2. Notations being like above, let a = (an)n∈N ∈ A− \Ap

have characteristic polynomial g ∈ Zp[T ] and A = (Λa)(c). Then there
is a canonic injective sequence of class fields Ha,n ⊂ Hn with

(i) Gal(Ha,n/Kn) ∼= Λan;
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(ii) Ha,n ⊂ Ha,m for 0 ≤ n < m.
(iii) If g = fk, k > 1 is the power of a prime polynomial, then (32)

holds.
(iv) Let n′ = max(n, n+z(a)), with z(a) defined above. The radicals

Rn = R(Ha,n/Kn form a projective sequence. If Ha = ∪nHa,n

and R = lim
←−n

Rn, then the projective - projective pairing pairing

〈., .〉Ha
: A× R→W verifies

H
ϕ
(

Af(T )i
)

a = K∞[Rf(T ∗)k−i

], i = 0, 1, . . . , k − 1,(33)

〈a, ρ〉Ha
= 0 for a ∈ A[f j], ρ ∈ R[f l], j + l > k + 1.

6.2. Global and local units and related fields. We recall that
En, E

′
n ⊂ Kn are the units, resp. the p - units of Kn and

Un = O(Kn ⊗Q Qp) =
∏

℘⊃(p)

O(Kn,℘)

is the product of the units in all the completions of Kn at primes above
p. The algebra Kn = Kn⊗QQp is a galois algebra with group containing
Gal(Kn/Q) and Kn →֒ Kn is dense in the product topology.
Let ℘ ∈ K be a prime above p and C = ∆/D℘ be a set of coset

representatives of the decomposition group of ℘ in ∆. Then P = {ν℘ :
ν ∈ C} is the set of all the primes of K above p and by assumption,
these primes are totally ramified in K∞/K. A uniformizor π ∈ Un is an
element whose embeddings ιν℘(π) ∈ Knn, ν℘ are uniformizors of the
respective completions, for all ν ∈ C. Herewith we let

U (1)
n = {u ∈ Un : u− 1 ≡ 0 mod π},

U ′
n = {u ∈ U (1)

n : NKn/Q(u) = 1}

If K/Qp is a finite local extension, we also write Kn = K[µpn+1] and

Un, U
(1)
n , U ′

n are defined like in the “global” case. Then

Lemma 16. Let K/Qp be a local finite galois extension with K ∩
Qp[µp∞] = Qp[µpk+1]. Then the system (U ′

n)n∈N defined above is norm
coherent and the norm is surjective at all levels, that is

NKm/Kn
(U ′

m) = U ′
n, ∀m > n > 0.

Proof. This follows from class field theory: Gal(K/Qp) acts by conju-
gation on the groups Γn,m = Gal(Kn/Km), which are fixed under this
action. By class field theory,

Γn,m
∼= K×

m/NKn/Km
(K×

n ).(34)

But Kn/Km is totally ramified, so we have

K×
m/NKn/Km

(K×
n ) = U (1)

m /NKn/Km
(U (1)

n ),
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and (34) implies that the norm residue group is Gal(K/Qp) - invariant,
and it thus is a quotient of Zp. Since N(U ′

n) = {1} by definition, it
follows that the restriction of the norm to U ′

n is indeed surjective. �

We now show that there are local Minkowski units and describe their
relation to the global ones. Serre proves in [10], §1.4, Proposition 3, in
the case when K/Qp is a local field, that the group U (1)(K) contains a
cyclic Zp[G] module of finite index, which is isomorphic to Zp[G]: thus
U (1)(K) is quasi - cyclic.
Using this result one obtains units ξ ∈ U generating Zp[G] - modules

of finite index U ⊂ U , which we call local Minkowski units for K. Let
℘ ∈ P be fixed and υ ∈ K℘ be a local Minkowski unit, according to
Serre. Then we define ξ = ξ(υ) ∈ U and ρ̃ ∈ U by:

ιτ℘(ξ) =

{
υ for τ = 1,

1 for τ ∈ G, τ 6= 1.
(35)

ιτ℘(ρ̃) =

{
1 for τ = 1,

0 for τ ∈ G, τ 6= 1.
(36)

The set C acts on ξ and for σ ∈ C, the unit ξσ satisfies:

ιτ℘(ξ) =

{
υ for τ = σ,

1 for τ ∈ G, τ 6= σ.

We denote units the generators u ∈ U for U by local Minkowski units.
The previous construction shows that such units exist. SinceNKn/Q(En) =
{1}, local units of norm one are interesting for the embedding En →֒
U ′
n. The module U ′

n ⊂ Un is a quasi - cyclic Zp[∆] submodule of Un

with U
(1)
n /U ′

n = U (1)(Zp) ∼= Zp. For a Zp - module M we denote

M̃ = M ⊗Zp
Qp: thus Ũ

′ ∼= (1−NK/Q/|∆|)Qp[∆], the last being a two

sided module in Qp[∆]. For any K we have E(K) ⊂ U ′ and therefore
U (1)(Zp) is mapped injectively in ∆ by the Artin map. Let ξ0 ∈ U ′

0\U
′p
0

be a local Minkowski unit for U ′
0. From Lemma 16 we conclude that

there is a norm coherent system (ξn)n∈N, ξn ∈ U ′
n in which ξn are local

Minkowski units for U ′
n.

The global units En embed diagonally in Un and their completion in
the product topology is written En ⊂ Un. There may be a rank loss in
this completion step and the possible difference

D(Kn) := Z-rk(En)− Zp-rk(En)

is called the Leopoldt defect, since Leopoldt conjected in 1962 the
vanishing of D(Kn), at least for abelian extensions ofQ. After the proof
of this fact in 1967, by Baker and Brumer, the fact that D(K) = 0 for
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all number fields remained as an open conjecture, which also caries the
name of Leopoldt. It is known ([12], Proposition ) that the Leopoldt
defect D(Kn) is stationary for sufficiently large n; we assume that K is
chosen such that D(Kn) = D(K). As a consequence, we have

Z-rk(En/E0) = Zp-rk(En/E0).

We define E∞ = ∪nEn and U∞ = ∪nUn; this traditional definition
as injective limits is in contrast with our approach, but it allows to use
in a first step the commonly established results. It is a known fact that

Fact 2. The module V = U ′
∞/(U ′

∞ ∩ E∞) is a finitely generated Λ
- torsion module. We let FE ∈ Zp[T ] be its minimal polynomial and
pm be the exponent of the µ - part of V . Note that the radical R =
R(HE/K∞) ∼ V .

Let GE |FE is the largest factor that is not divisible by T . The
condition T 2 ∤ FE is a consequence of Leopoldt’s conjecture, so it
must be assumed separately. As a consequence of the above, we have
(U ′

n)
pmFE(T ) ⊂ En.

The question whether En also contain norm coherent sequences of
Minkowski units is treated in the following

Proposition 3. Notations being like above, we assume that T 2 6=
FE(T ). Then there is a norm coherent sequence of Minkowski units
δn ∈ En.

Proof. Let en ∈ En \E
p
n be a Minkowski unit and e0 = Nn,0(en), which

is a Minkowski unit for E(K). Let U ′′
n = {x ∈ Un : Nn,0(x) = 1} ⊂ U ′

n;
we let ξn be a norm coherent system of local Minkowski units for U ′

n and
ϑn be an induced system of generators of U ′′

n . We may assume that ξ0
is such that there is an idempotent α0 ∈ Qp[∆] with α = pkα0 ∈ Zp[∆]
and such that ξα0 = e0; the idempotent is related to the annihilator
ideal of e0 ∈ E(K).
We have seen that Zp-rk(U

′′
n) = Zp-rk(EH,n). The module Λ ⊃ Zp

acts on the completion of En and by choosing en ∈ En\E
p
n we have then

eΛn ⊃ EH,n ⊃ (U ′′)
pmGE(T )
n . Therefore, there is thus a β ∈ (Zp[∆× Γ])×

such that

eβΛn ⊃ (U ′′)p
mGE(T )

n ⊃ ϑpmGE(T )Λ
n .

It follows that ξ
(α+Tβ)pmGE(T )
n ∈ eΛn . Since this holds for all n, the ξn

are norm coherent local Minkowski units, and m,GE(0) are p - adic
constants that do not depend on n, it follows that

[E0 : Nn,0(En)] <∞, ∀n ≥ 0.
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This gives the following inductive construction of norm coherent se-

quences of global Minkowski units: start by δ0 ∈ ξ
αpmGE(0)Zp [∆]
0 and

δ0 ∈ E(K) is Minkowski. Then, for arbitrary n > 0, we have seen
that there is a δn ∈ En with Nn,0δn = δ0. We show that we may

choose δn ∈ En. But this follows from (Nn,0En) = Nn,0En, which is a
consequence of the fact that Γ →֒ Gal(Kn/Qp). We may thus find for
arbitrary large n a unit δn ∈ En which is Minkowski and is sent by the
norm to δ0. Applying the same result to En, we find δ2n ∈ E2n which
is Minkowski and sent by the norm to δn, etc. By induction, this yields
a norm coherent sequence of units δm ∈ Em with Nm,n(δm) = δn for all
m > n ≥ 0. �

As a consequence we have

Corollary 2. Notations being like above, there is an n1 > 0 such that

Nm,n(Em) · En1 = En for all m > n > n1.

In particular, if T 2 ∤ FE(T ), both U∞ and E∞, E∞ can be defined as
projective limits.

Proof. Since Nn,0(En) has finite index in E0, it follows that the indices
[En : Nn+1,n(En+1)] must stabilize to 1 beyond some level, which is n1.
Thus [Nm,n(Em) · En1 : En] = 1 for all m > n > n1. We obtain a
projective system with respect to the norms. �

6.3. The p - ramified extensions of the minus part. The exten-
sion Ωn/Kn is an infinite extension and Zp-rk(Gal(Ωn/Kn)) = D(K) +
r2(Kn) + 1. Here r2(Kn) is the number of pairs of conjugate complex
embedding and the 1 stands for the extension K∞/Kn, thus

Zp-rk (Gal((ΩnK∞)/K∞)) = r2(Kn) +D(K).

It is a folklore fact, which we shall prove for completeness below, that
the regular part r2(Kn) in the above rank stems from Ωn ∩ ΩE . The
intersection can be described precisely by:

Lemma 17. Notations being like above, we define for m > n: E ′m =
{eN

∗
m,n : e ∈ Em} and Em = E ′m · (Em)

pm; here ∗ is the Iwasawa involu-
tion [9], p. 150. Then

Ω−
n ·K∞ = Hn · ∪mKm[E

1/pm

m ]× Tn,(37)

where Tn/Kn is an extension with group Gal(Tn/Kn) ∼= (Z/(pn·Z))s−1, s =
|C|, which shall be described in the proof.



44 PREDA MIHĂILESCU

Proof. We show that the subgroups Em give an explicite construction
of Ω−∩Ω1, as radicals. The proof uses reflection, class field theory and
some technical, but strait forward estimations of ranks.
A classical result from class field theory [9], , says that

Gal(Ωn/Hn) ∼= U (1)
n /

(
En ∩ U (1)

n

)
.

Since (U
(1)
n )− ∩ En = µpn, it follows that Gal(Ωn/Hn) = (U

(1)
n )− ×

T (U−
n )/µpn, where the torsion part T (U−

n ) =
∏

ν∈C µpn is the product
of the images of the pn - th roots of unity in the single completions,
factored by the diagonal embedding of the global units.
For the proof, we need to verify that ranks are equal on both sides.

Let πν ∈ Kn be a list of integers such that (πν) = ℘νh for h the order

of the class of ℘ν . Then we identify immediately Tn =
∏

ν∈C Kn[π
1/pn

ν ]
as a p - ramified extension with group Gal(Tn/Kn) = T (U−

n )/µpn ⊂
Gal(Ωn/Hn).
A straight forward computation in the group ring yields that T ∗x ≡

0 mod (ωn, p
n)Λ iff x ∈ N∗

n,0Λ. On the other hand, suppose that x ∈
R((ΩnKm)/Km) ∩ Em. This observation and Kummer theory imply

that xω∗
n ∈ Em. Therefore ∪mKm[E

1/pm

m ] = Ω−
n ∩ΩE . Comparing ranks,

we see that if Ω−
n ·K∞ 6= Tn ·Hn ·Ω

−
n ∩ΩE , then there is an extension

Ω−
n ⊃ Ω′′

n ) (Ω−
n ∩ ΩE), such that

Zp-rk(Gal(Ω′′
n/K∞)) = r2(Kn) = Zp-rk(Gal(Ω−

n ∩ ΩE)).

Since ΩE ⊂ Ω it follows that Gal((Ω−
n∩ΩE)/K∞) is a factor of Gal(Ω−

n /K∞)
and also of Gal(Ω′′

n/K∞).
The index [Gal(Ω′′

n : K∞) : Gal((Ω−
n ∩ ΩE)/K∞)] < ∞ and since

Gal(Ω′′
n/K∞) is a free Zp - module and thus has no finite compact

subgroups, it follows from infinite galois theory that Ω′′
n = Ω−

n ∩ ΩE ,
which completes the proof. �

An important consequence is the following:

Corollary 3. If L ⊂ H is a cyclic subextension in which not all the
primes above p are split then either L/K∞ is finite or L ⊂ HE′. More-
over, there is a subfield H−

B ⊂ H such that Gal(H−
B/K∞) ∼= B− and in

each Zp - subextension of HB a prime above p is inert.

Proof. SinceB+ is finite by Theorem 4, it follows that the only elements
of infinite order of B lay in B−. If the primes ℘+ ∈ K+ are not
split in K/K+, then they either are inert, case in which B = B+ is
finite, or they are ramified, and then ℘ = ℘ as ideals, for all primes
℘ ⊃ (p), ℘ ⊂ K. In both cases B = B+ is by assumption finite, so
there is nothing to prove.
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If ℘+ is split, then complex conjugation induces pairs of primes above
p which lay above the same prime of K+. We let C = C+ · {1, }, with
the obvious meaning for C+ and define s = |C+|, the number of pairs
of conjugate primes above p in K. Let M ⊂ Ω0 be the product of all

Zp - extensions of K, so Gal(M/H0) ∼= U
(1)
0 /E0 by class field theory

and Gal(M−/(H0 · T0)) ∼= (U
(1)
0 )−/T (U0). Let ϕ denote the global

Artin symbol and ϕ℘ the local in the completion at the prime ℘. Then
ϕ|Gal(M−/K∞)

is uniquely determined by the values of ϕν℘, ν ∈ C+,

since ϕ(xx)|Gal(M−/K∞)
= 1. Thus, omitting the finite extension H0·T0,

Gal(M−/K∞) ∼
∏

ν∈C+

U
(1)
0,℘.

Now for any ℘, the field K℘, we let d = |D℘|. It is known ([5], §12) that
K℘ has d+1 independent Zp - extensions and if M is the product of all
these extensions and Kc

℘ is the ramified cyclotomic Zp - extension, then
Gal(M/Kc

℘) ∼ Zp[D℘] is a pseudocyclic Zp[D℘] - module of maximal
rank d, containing the unramified Zp -extension as the one with galois
group fixed by D℘. We claim that HB = M− ∩H is an extension with
Zp - free group of rank Zp-rk(Gal(HB/K∞)) = s. Consider M−

℘/K
c
℘; by

comparing the rank

s · d = r2(K) = Zp-rk(Gal(M−/K∞))

with the product of the ranks of Gal(M℘/K
c
℘) over all ν℘, ν ∈ C+, we

see that Gal(M−
℘/K∞) ∼= Gal(M℘/K

c
℘) and

Gal(M−/K∞) ∼
∏

ν∈C+

Gal(Mν℘/K
c
ν℘).

In particular, there are s mutually linearly disjoint Zp subextensions
Lν ⊂ M− with Gal(Lν/K∞) ∼= Gal(Mν℘/K

c
ν℘), which do not split all

the primes above p and whose galois groups are equal to the decompo-
sition groups of ν℘ in the respective extensions. Let bn = [℘1−

n ] with
℘n the ramified prime of Kn above ℘. Then νb = (νbn)n∈N ∈ B− for
all ν ∈ C+ and Gal(Lν/K∞) = ϕ(νb) by restriction of the Artin sym-
bol. We claim that B− = 〈νb : ν ∈ C+〉Zp

. Since ι is injective in the
finite levels of A−, it suffices to show that Zp-rk(B

−) = s. The images
of the classes [ν℘n], [ν℘n] are dependent in B− and since for ν ∈ C+

they span all the classes of primes above p; the claim follows from the
definition of B−. Finally, since M− ⊂ ΩE by Lemma 17, it follows that
HE′ = H ∩M− =

∏
ν∈C+ Lν , which completes the proof. �
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6.4. An alternative approach for the conjecture of Gross. The
corollary 3 is a natural consequence of class field theory. However, from
the point of view of galois theory, one is used to consider H′ ⊂ H, the
maximal subextension of H which splits all the primes above p, as a
fixed field of B. Here, it arises basically as a direct complement of HB.
This is a useful fact, indicating already that (A′)−(T ) and B− should
be complementary: indeed, since B− fixes (H′)−, A′ is a factor. On the
other hand Gal((Ω1 ∩ Ω−

E ∩ H)/K∞), let B− appear as a factor. We
shall consider the consequences of this discrepancy in this section.
The Lemma 7 has the following important consequence:

Theorem 5. Notations being like above, (A′)−[T ] = {1}.

Proof. Using Weierstrass modules, the proof is immediate and was
given in Theorem 1. We give an alternative proof, which is an ap-
plication of the order reversal lemma. Suppose that (A′)−[T ] 6= {1}.
A straight forward computation shows that if a′n ∈ (A′

n)
− verifies

(a′n)
T = 1 as a class of A′, then for all an ∈ a′n = an · B

−
n we have

aTn 6= 1; in particular, fixing a representant an ∈ A−
n of a′n, there is a

1 6= bn ∈ B−
n such that aTn = bn.

From Lemma 6 it follows that for each a ∈ A−(T ) of T - order j

we have aT
j−1
∈ B− and the socle - roof lemma implies that A(T )

is Λ[∆] - cyclic, like B−. Let HB ⊂ HT ⊂ H− be the a subfield with
Gal(HT/K∞) = A−(T ) and letR = R(HT /K∞) andR′ = R(HB/K∞) ⊂
lim←−n
En. The order reversal Lemma 15 implies that Gal(HB/K∞) ∼=

A−(T )/(TA−(T )), since (R′)T
∗

= 1. However, we know from Corollary
3 that Gal(KHB/K∞) = B− = A[T ]. Let b ∈ B− ∩ A(T )T , b 6∈ Ap, so
b = aT for an a ∈ A− \ (A−)p. There is a Zp - subextension L ⊂ HB

with group generated by ϕ(b): here we need the Corollary and the fact
that the primes above p are not totally split in any subfield of HB. Let
e ∈ R′ be a generator of R(L/K∞) Then there is a c ∈ Z×

p such that,
in the additive projective - projective Kummer pairing,

c = 〈b, e〉L/K∞
= 〈b, e〉HT /K∞

= 〈aT , e〉HT /K∞
= 〈a, eT

∗

〉HT /K∞
= 0,

since (R′)T
∗

= 1 and a fortiori eT∗ = 1. We obtain a contradiction
to c ∈ Z×

p and herewith, to the assumption that b = aT . It follows

that for all b ∈ B− there exists no a ∈ A− with b = aT , so plainly
A−(T ) = A−[T ] = B−, which completes the proof. �

Remark 5. The above result was conjected by Gross, in connection
with the non vanishing of certain p - adic regulator of p - units, which
was proved in [3] to be equivalent to the statement of the Theorem.
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The class field theoretic statement that A′(T ) is finite, was considered
by Kuz’min, and then Tong, as the generalized Gross conjecture.

Since M [T ] is a direct term in Weierstrass modules M , we have the

Corollary 4. Let Aλ = A−/(A−)† ∼= Gal(H−
λ /K∞ and A′

λ = A′−/(A′−)†.
Then

Aλ = A′
λ ⊕B−,

and fA′(0) 6= 0.

Proof. The module Aλ is by definition Weierstrass and thus Aλ =
Aλ[T ]⊕M , where the complement M has minimal polynomial coprime
to T . From Lemma 4 we know that Aλ[T ] = B− and the definition of
A′ and A′

λ implies that M = A′
λ. This completes the proof. �

7. Appendix C: Radicals from A−

We start with a proof of

Lemma 18. The extension (ΩE′ ∩ Ω ·H)/ΩE is finite.

Proof. Let 2s = |C| be the number of distinct primes above p in K. If
these primes are not split in K/K+, then Theorem 4 implies that B is
finite. We assume thus that all the primes of K+ above p are split in
K/K+ and let C ′ = Gal(K+/D(℘+)) with |C ′| = s. Then P is a set
of s pairs of conjugate primes (ν℘, ν℘)ν∈C′ and ℘n · ℘n have bounded
order for all n ≥ 0, as consequence of the same Theorem. By Corollary
3 we know that Zp-rk(B

−) = s and B− = 〈[(ν℘)1−] : ν ∈ C ′〉Zp
while

ess. p-rk(B) = Zp-rk(B
−) as consequence of the finiteness of B+. Note

that the definition of C ′ is consistent with the one used in the section
on p units; we thus deduce from (5) that

ΩE′ =
∏

ν∈C′

ΩE

[(
νπ1−

0

)1/p∞]
.

Let bn ∈ B−
n = [℘1−

n ]; since ℘ is totally ramified in Kn/K, ord(bn) =
pn−lord(bl) with l the smallest integer such that [℘l] 6= 1. But then

℘
(1−)ord(bn)
n = (π1−

l ) with (πl) = ℘
ord(bl)
l . Since the generator π1−

l of
this principal ideal is uniquely defined up to roots of unity, it follows
that K∞[(π1−

l )1/p
∞

] ∩ H is finite over K∞ and a fortiori [ΩE′ ∩ (ΩE ·
H) : ΩE ] < ∞, as claimed. In particular HE′/HE is at most a finite
extension. �

The Theorem 2 gave a general characterization of the Iwasawa linear
space A(S), which is canonical, even when the radical shifts ρ0 are not.
In CM fields, the radical shifts ρ0 can be defined in a canonical way
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at least on A−, so we can obtain a simplified proof of the facts of this
Proposition. Similar results can be obtained for µ-parts; we shall do
this at a later point.
We give below an elementary investigation of the canonical radicals of

the minus part, together with some additional properties of the radicals
((A(S))−)1/p

∞

.
By Corollary 4, A(S)[T ] = {1} and A(S) ⊂ A′. Since E−

n = µpn is a
finite module, it follows that for a ∈ (A′)− the extension K∞[a1/p

∞

] is

well defined: indeed, if α′
n ∈ Kn,A ∈ a

1/2
n are such that (α′

n) = Aord(an)

then αn := (α′
n)

1− ∈ K1−
n is well defined up to roots of units, and

β(an) := αn mod µpn · (K
×
n )

ord(an)(38)

∈ K1−
n /

(
µpn · (K

×
n )

(1−)ord(an)
)

depends only on an, while (αn) = A2ord(an) and A2 ∈ an, by choice.

Therefore the extension K∞[a
1/ord(an)
n ] = K∞[β(an)

1/ord(an)] is well de-
fined. For each a = (an)n∈N ∈ (A′)− \ Ap we may define a unique
β(an) ∈ (K×

n )
1−/

(
µpn · (K

×
n )

(1−)ord(an)
)
, as in (38); we let ρ0(an) =

K2n+z· < β(an)
1/ord(an) >Z – the index 2n allows at this point to cir-

cumvent the implicit roots of unity in the definition of the radical: their
roots are all in K2n+z . Let ρ0(a) = ∪nK∞ · ρ0(an); note that the defini-
tion of ρ0 is consistent with the one given in §2.3; however, it is canoni-
cal in this case. We also let ρ1(an) = ΩE′,2n+z ·ρ0(an), ρ1(a) = ΩE′ ·ρ0(a)

and define Ωλ = ΩGal(Ω/ΩE′)† , by analogy with Hλ. Then we have by
construction of ρ1 that

R(Ω+
λ /ΩE′) = ρ1((A

′)−)/Ω×
E′.

We also have an extension H
+

A := K∞[ρ0((A
′)−)] with

R(H
+

A/K∞) = ρ0((A
′)−)/(K∞)× = R(Ω+

λ /ΩE′).

We recall the construction of β(an) for reference:

Lemma 19. Let an ∈ (A′
n)

−. There is a well defined value

β(an) ∈ (K×
n )

1−/
(
µpn · (K

×
n )

(1−)ord(an)
)
,

such that for all B ∈ a
1/2
n , α′ ∈ Kn with (α′) = Bord(an) we have

α := α′/α′ ≡ β(an) mod µpn · (K
×
n )

ord(an).

Also, α1/ord(an) ∈ ρ0(an).

Let a = (an)n∈N ∈ (A′)−; we consider now the local behavior of

radicals built from the classes an. Since H+ = H
+

A ∪ H, there is a well
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defined function ℓ : (A′)− → Z≥0 such that

[K∞[ρ] ∩H : K∞] = pℓ(a)∀a ∈ (A′
n)

−, ∀n.(39)

We let ℓ(a) = limn ℓ(an). This definition is consistent with the previous
general definition of the map ℓ, and it takes advantage of the simple
making of the radicals in the minus part. We deduce more details about
the growth of the function ℓ(an) below. We start with

Definition 2. We define the functions ℓ̃0,n, ℓ̃n : (K×
n )

1− → Z≥0 for
x ∈ (K×

n )
1− by

ℓ̃0,n(x) = max{j ∈ Z≥0 : x ∈ Upj

n },

ℓ̃n(x) = max{ℓ0(ζ
k
pn(x) : 0 ≤ k < pn}.

If x ∈ (K×
n )

(1−) has ℓ̃0,n(x) < ℓ̃n(x) and y = ζjx with ℓ̃0,n(y) = ℓ̃n(x),
we say that y is a normed representant for x; the number x is normed
if ℓ̃0,n(x) = ℓ̃n(x). If ℓ̃n(x) = m ≤ n and x is normed, then x has pn−m

normed representants, since ζp
m

pn = ζpn−m ∈ Upm

n . In particular, normed

representants are unique only for ℓ̃n(x) ≥ n.
By definition,

ℓ̃n(x
c) = ℓ̃n(x); ℓ̃0,n(x

c) = ℓ̃0,n(x), for all c ∈ Z \ pZ.

For normed x ∈ (K×
n )

1−, x 6= 1, the values ℓ̃m(x) = ℓ̃n(x) for all
m ≥ n. Indeed, if this was not the case, there is an m ≥ n such that

ℓ̃m+1(x) = ℓ̃m(x) + 1, so x = upk

m = upk+1

m+1 with k = ℓ̃m(x), uj ∈ Uj \ U
p
j ,

for j ∈ {m,m + 1}. Then up
m+1 = ξum for some ξ ∈ µpm+1; if ξ ∈

µpm, then Um+1 = Um[ζ
1/p
pm ] = Um[(ξum)

1/p]; thus, by Kummer theory,

ξum = ξ′ · zpm, ym, zm ∈ Um. But then
(

ξ′zpm
ξ

)pk
= x and ℓm(x) = k + 1,

which contradicts the assumption. If ξ ∈ µpm+1 \ µpm, then taking the
norms N = NUm+1/Um

we obtain theat N(ξ) ∈ Up
m, which is impossible.

This confirms the claim, showing that there is a well defined function
ℓ̃ : (K×

∞)1− → Z≥0 with ℓ̃(x) = ℓ̃m(x) for x ∈ Kn and all m ≥ n. The

same holds for ℓ̃0,n: there is a well defined map ℓ̃0 : K∞ → Z≥0 with

ℓ̃0(x) = ℓ̃0,m(x) for all x ∈ Kn and m ≥ n.
Let a = (an)n∈N ∈ (A′)− be given and m > n > 0. Consider R ∈ am,

a prime which is completely split over Q and let Q = Nm,n(R) and α ∈
(K×

m)
1− be related to R by the procedure above. We may also choose

α to be normed. If ℓ̃(α) < vp(ord(am)), then
[
K∞[α1/ord(am)] ∩H

]
=

pℓ̃(α) = pℓ(α), so ℓ̃(α) = ℓ(α). If ℓ(α) = vp(ord(am)), it may be that

ℓ̃(α) > ℓ(α). In this case, we choose γ ∈ K× with

γ 6∈ Up
n, and NKm/K(γ) 6∈ U(K)p,(40)



50 PREDA MIHĂILESCU

and consider the ideals R1 = R(γ) ∈ am and Q1 = Q · (Nm,n(γ)) =
Nm,n(R1) ∈ an. Then R1 gives raise to a new value α1αγ

(1−)ord(an) ∈
ρ(a2n) · K

×
m and by construction we have ℓ(α1) = ord(an). We retain

this construction in:

Definition 3. Let a = (an)n∈N ∈ (A′)−. Let m > 0; a pair (A, α) ∈
an × (K×

n )
1− is called an instantiation pair for a2n, if α = β1−, (β) =

Aord(an) and ℓ̃(α) = ℓ(an), while NKm/K(β) 6∈ U(K)p.

We have shown above how to construct instantiation pairs. By the
choice (40) we deduce form > n ≥ 0 that (Nm,n(A, Nm,n(α)

1/pm−n

) is an

instantiation pair for a2n, where the root Nm,n(α)
1/pm−n

is chosen among

all possible values, such that the ℓ̃0,n is maximal. Using instantiations,
we investigate the behavior of ℓ(a) under the norm map.

Proposition 4. Let a = (an) ∈ (A′)− have infinite order and n0 be
such that p-rk(An) = p-rk(An+1) for n ≥ n0. Then

1. For m > n ≥ k, with k the largest integer with µpk ⊂ K, we
have

ℓ(am)− ℓ(an) ≤ vp(ord(am))− vp(ord(an)),

2. Suppose that the transition Cn = (A′
n+1)

−/ιn,n+1((A
′
n)

−) is sta-
ble or semistable. If ℓ(an) < vp(ord(an)), then ℓ(am) = ℓ(an)
for all m > n.

3. We have ℓ(a) = ∞ iff ℓ(an) = vp(an) for all n ≥ n0. For all
a, b ∈ (A′)− with ℓ(a)+ℓ(b) =∞, we have ℓ(ab) = min(ℓ(a), ℓ(b))
and there is a canonic module

(A(S))− = {x ∈ (A′)− : ℓ(x) =∞}.

4. We have ℓ(a) = m < ∞ iff there is an r ≥ n0 and a αr ∈
Kr∩U

pm

r \U
pm+1

r such that for all n > r and all αn ∈ ρ(an)
ord(an)

αn ∈ αr · U
pmωr

n ·Kord(an)
n .(41)

Proof. For claim 1., let (R, αm) be an instantiation for am and Q =

Nm,n(R). Let αm = upℓ(am)

m , um ∈ Um \ U
p
m with α

1/ord(am)
m ∈ ρ(am) and

βn = Nm,n(αm) = Nm,n(un)
pℓ(am)

. Then ℓ̃(βn) ≥ ℓ(am), since we may
have Nm,n(um) ∈ Up

n . On the other hand,

(Nm,n(αm)) =
(
Qord(an)

)ord(am)/ord(an)
.

From the definition of instantiations, (Q, αn) with α
ord(am)/ord(an)
n = β

is an instantiation of a2n, so we obtain

ℓ̃(β) = ℓ̃(αn)
ord(am)/ord(an) = ℓ(an) + vp(ord(am)/ord(an)).
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Combining with ℓ̃(βn) ≥ ℓ(am), we obtain

ℓ̃(β) = ℓ(an) + vp(ord(am)/ord(an)) ≥ ℓ(am),

which is point 1.
We now prove 2. and write for simplicity N = Nn+1,n and t = τn.

Let m = n+1 and (R, αm) like before. For semistable transitions there

is an l < p − 1 such that at
l

n+1 = 1 and thus νn+1,n(an+1) = apun+1 for
u ∈ (Zp[t])

×. Then νn+1,n(R) = Rpu ·(γ) for a principal ideal (γ) ⊂ K×
n .

Let q = ord(an), p · q = ord(an+1); then

Nn+1,n(αn+1) = αpu
n+1γ

(1−)pq.

But (Nn+1,n(αn+1)) = R(1−)pq = Q(1−)pq = (αp
n), for αn ∈ ρ(an)

q.
Then, after eventually multiplying by a root of unity,

αn = αu
n+1 · γ

(1−)q.

If pℓ(an) < q, it follows from the above identity that ℓ(an+1) = ℓ(an).
By induction, we obtain the claim 2. Note that for n > n0, all transi-
tions are stable, so the premises of this statement are always true for
sufficiently large n. As a direct consequence, ℓ(a) < ∞ if there is an
n > n0 with ℓ(an) < vp(an). This is the first part of claim 3.
It follows from claim 2 that ℓ(ab) = ∞ iff ℓ(a) = ℓ(b) = ∞, which

shows that the set (A(S))− is canonically defined. This is an elementary
redefinition of the minus part of the Iwasawa linear space given in (21).
Since ℓ(τa) = ℓ(a) for all a ∈ (A′)−, it is a module. If either ℓ(a) = m
or ℓ(b) = m is finite, then ℓ(ab) = m by point 2. Note that if both ℓ(a)
and ℓ(b) are finite, then ℓ(ab) may be larger than both, it may even be
infinite.
For proving (41), let ℓ(a) = ℓ(an1) = m, let n > r > n1 and choose

(R, αn) an instantiation of an. We have thus αn = upm

n , un ∈ Un \ U
p
n;

moreover, the premises imply that αr = upm

r , ur ∈ Ur \ U
p
r . Then

Nn,r(αr) = αpn−r

r = Nn,r(un)
pm = upn

r .

It follows that Nn,r(un) = ηupn−r

r , η ∈ µpn and the norming condition
on αn, αr implies that η = 1. Thus Nn,r(un/ur) = 1 and Hilbert 90
applied to Un yields um = ur · v

ωr
n . The claim follows from the fact

that αn is uniquely defined up to elements from (K×
n )

ord(an) and roots
of unity, as shown in (38).

8. Appendix D: On Leopoldt’s Conjecture

The results proved in the previous Appendix parts, yield an elemen-
tary proof of the following
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Theorem 6. If K/Q is a totally real extension in which the primes
above p are totally split, then Leopoldt’s conjecture holds for K.

Proof. Assume that K satisfies the premises of the theorem, but the
Leopoldt defect is positive. Then there is a Zp-extension L/K. The
normal closure of K is a real galois extension K[α] and L[α] is a non
trivial extension of K[α]: thus Leopoldt’s conjecture is also false for the
galois closure. We may thus assume without restriction of generality
that K is galois and real.
Let ℘ ⊂ K be a prime above p which ramifies in L; we may also

assume without restriction of generality that ℘ does not split in any
subextension of L: this can always be achieved by taking a finite ex-
tension of K. Since p is totally split in K, the completion K℘ = Qp

has the two Zp-extensions L℘,K∞,℘. On the other hand, the only Zp-
extensions of Qp are the unramified one and the cyclotomic ramified
Qp[µp∞]. Since the latter is absorbed inK∞, it follows that (L·K∞)/K∞

is unramified at ℘. This holds for all primes that ramify in L, and since
K is galois, it follows that L ·K∞ ⊂ H. Since K is real, Theorems 4 and
3 imply that λ(A) = 0 so H must be finite. Therefore, the Leopoldt
defect D(K) = 0, which completes the proof. �

Remark 6. The above is a simplified and improved version of the proof
given for this fact in [7]. The argument was used by Greenberg in [4]
in order to prove the existence of Λ - modules with arbitrary large λ.
The Theorem 4 has the following more general consequence. If K/Q
is galois with group G and ℘ is a prime above p with decomposition
group D ⊂ G, then the extension Ω(K)℘/K∞,℘ has a galois group ∆℘

which is a cyclic Zp[D] module with annihilator in the augmentation
of this group ring. Indeed, if the norm part was not trivial, we would
find a Zp - subextension K∞ ⊂ L ⊂ Ω(K) such that Gal(L℘/K∞,℘)
is fixed by conjugation by D℘: the local extension L℘ must then be
a Zp - extension of Qp, and we apply the same argument as before
to raise a contradiction. Therefore, the group ∆℘ is contained in the
augmentation of Zp[D℘] for all ℘.
One can also prove by elementary means that if L/K is a cyclic

extension of degree p in which the prime p is not split, and if Leopoldt’s
conjecture holds for K, then it holds for L. This is also an improvement
of a result proved in [7]. Since we gave a general prove above, we leave
this proof out here.

�
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