Products of Geck-Rouquier conjugacy classes and the Hecke algebra of composed permutations

Pierre-Loïc Méliot¹

¹Institut Gaspard Monge — Université Paris-Est Marne-La-Vallée — 77454 Marne-La-Vallée cedex 2 meliot@phare.normalesup.org

Abstract. We show the q-analog of a well-known result of Farahat and Higman: in the center of the Iwahori-Hecke algebra $\mathcal{H}_{n,q}$, if $(a_{\lambda\mu}^{\nu}(n,q))_{\nu}$ is the set of structure constants involved in the product of two Geck-Rouquier conjugacy classes $\Gamma_{\lambda,n}$ and $\Gamma_{\mu,n}$, then each coefficient $a_{\lambda\mu}^{\nu}(n,q)$ depend on n and q in a polynomial way. Our proof relies on the construction of a projective limit of the Hecke algebras; this projective limit is inspired by the Ivanov-Kerov algebra of partial permutations.

Résumé. Nous démontrons le q-analogue d'un résultat bien connu de Farahat et Higman : dans le centre de l'algèbre d'Iwahori-Hecke $\mathscr{H}_{n,q}$, si $(a^{\nu}_{\lambda\mu}(n,q))_{\nu}$ est l'ensemble des constantes de structure mises en jeu dans le produit de deux classes de conjugaison de Geck-Rouquier $\Gamma_{\lambda,n}$ et $\Gamma_{\mu,n}$, alors chaque coefficient $a^{\nu}_{\lambda\mu}(n,q)$ dépend de façon polynomiale de n et de q. Notre preuve repose sur la construction d'une limite projective des algèbres d'Hecke ; cette limite projective est inspirée de l'algèbre d'Ivanov-Kerov des permutations partielles.

Keywords: Iwahori-Hecke algebras, Geck-Rouquier conjugacy classes, symmetric functions.

In this paper, we answer a question asked in [FW09] that concerns the products of Geck-Rouquier conjugacy classes in the Hecke algebras $\mathscr{H}_{n,q}$. If $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_r)$ is a partition with $|\lambda|+\ell(\lambda)\leq n$, we consider the completed partition

$$\lambda \to n = (\lambda_1 + 1, \lambda_2 + 1, \dots, \lambda_r + 1, 1^{n-|\lambda|-\ell(\lambda)}),$$

and we denote by $C_{\lambda,n}=C_{\lambda\to n}$ the corresponding conjugacy class, that is to say, the sum of all permutations with cycle type $\lambda\to n$ in the center of the symmetric group algebra $\mathbb{C}\mathfrak{S}_n$. Notice that in particular, $C_{\lambda,n}=0$ if $|\lambda|+\ell(\lambda)>n$. It is known since [FH59] that the products of completed conjugacy classes write as

$$C_{\lambda,n} * C_{\mu,n} = \sum_{|\nu| \le |\lambda| + |\mu|} a_{\lambda\mu}^{\nu}(n) C_{\nu,n},$$

where the structure constants $a_{\lambda\mu}^{\nu}(n)$ depend on n in a polynomial way. In [GR97], some deformations Γ_{λ} of the conjugacy classes C_{λ} are constructed. These central elements form a basis of the center $\mathscr{Z}_{n,q}$ of the Iwahori-Hecke algebra $\mathscr{H}_{n,q}$, and they are characterized by the two following properties, see [Fra99]:

subm. to DMTCS (c) by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

2

- 1. The element Γ_{λ} is central and specializes to C_{λ} for q=1.
- 2. The difference $\Gamma_{\lambda} C_{\lambda}$ involves no permutation of minimal length in its conjugacy class.

As before, $\Gamma_{\lambda,n} = \Gamma_{\lambda \to n}$ if $|\lambda| + \ell(\lambda) \le n$, and 0 otherwise. Our main result is the following:

Theorem 1 In the center of the Hecke algebra $\mathcal{H}_{n,q}$, the products of completed Geck-Rouquier conjugacy classes write as

$$\Gamma_{\lambda,n} * \Gamma_{\mu,n} = \sum_{|\nu| \le |\lambda| + |\mu|} a_{\lambda\mu}^{\nu}(n,q) \Gamma_{\nu,n},$$

and the structure constants $a_{\lambda\mu}^{\nu}(n,q)$ are in $\mathbb{Q}[n,q,q^{-1}]$.

The first part of Theorem 1 — that is to say, that elements $\Gamma_{\nu,n}$ involved in the product satisfy the inequality $|\nu| \leq |\lambda| + |\mu|$ — was already in [FW09, Theorem 1.1], and the polynomial dependance of the coefficients $a_{\lambda\mu}^{\nu}(n,q)$ was Conjecture 3.1; our paper is devoted to a proof of this conjecture. We shall combine two main arguments:

- We construct a projective limit $\mathscr{D}_{\infty,q}$ of the Hecke algebras, which is essentially a q-version of the algebra of Ivanov and Kerov, see [IK99]. We perform *generic computations* inside various subalgebras of $\mathscr{D}_{\infty,q}$, and we project then these calculations on the algebras $\mathscr{H}_{n,q}$ and their centers.
- The centers of the Hecke algebras admit numerous bases, and these bases are related one to another in the same way as the bases of the symmetric function algebra Λ . This allows to separate the dependance on q and the dependance on n of the coefficients $a_{\lambda u}^{\nu}(n,q)$.

Before we start, let us fix some notations. If n is a non-negative integer, \mathfrak{P}_n is the set of partitions of n, \mathfrak{C}_n is the set of compositions of n, and \mathfrak{S}_n is the set of permutations of the interval $[\![1,n]\!]$. The **type** of a permutation $\sigma \in \mathfrak{S}_n$ is the partition $\lambda = t(\sigma)$ obtained by ordering the sizes of the orbits of σ ; for instance, t(24513) = (3,2). The **code** of a composition $c \in \mathfrak{C}_n$ is the complementary in $[\![1,n]\!]$ of the set of descents of c; for instance, the code of (3,2,3) is $\{1,2,4,6,7\}$. Finally, we denote by $\mathscr{Z}_n = Z(\mathbb{C}\mathfrak{S}_n)$ the center of the algebra $\mathbb{C}\mathfrak{S}_n$; the conjugacy classes C_λ form a linear basis of \mathscr{Z}_n when λ runs over \mathfrak{P}_n .

1 Partial permutations and the Ivanov-Kerov algebra

Since our argument is essentially inspired by the construction of [IK99], let us recall it briefly. A **partial permutation** of order n is a pair (σ, S) where S is a subset of [1, n], and σ is a permutation in $\mathfrak{S}(S)$. Alternatively, one may see a partial permutation as a permutation σ in \mathfrak{S}_n together with a subset containing the non-trivial orbits of σ . The product of two partial permutations is

$$(\sigma, S)(\tau, T) = (\sigma\tau, S \cup T),$$

and this operation yield a semigroup whose complex algebra is denoted by \mathscr{B}_n . There is a natural projection $\operatorname{pr}_n: \mathscr{B}_n \to \mathbb{C}\mathfrak{S}_n$ that consists in forgetting the support of a partial permutation, and also natural compatible maps

$$\phi_{N,n}: (\sigma,S) \in \mathscr{B}_N \mapsto \begin{cases} (\sigma,S) \in \mathscr{B}_n & \text{if } S \subset [1,n], \\ 0 & \text{otherwise,} \end{cases}$$

whence a projective limit $\mathscr{B}_{\infty} = \varprojlim \mathscr{B}_n$ with respect to this system $(\phi_{N,n})_{N \geq n}$ and in the category of filtered algebras. Now, one can lift the conjugacy classes C_{λ} to the algebras of partial permutations. Indeed, the symmetric group \mathfrak{S}_n acts on \mathscr{B}_n by

$$\sigma \cdot (\tau, S) = (\sigma \tau \sigma^{-1}, \sigma(S)),$$

and a linear basis of the invariant subalgebra $\mathscr{A}_n = (\mathscr{B}_n)^{\mathfrak{S}_n}$ is labelled by the partitions λ of size less than or equal to n:

$$\mathscr{A}_n = \bigoplus_{|\lambda| \leq n} \mathbb{C} A_{\lambda,n}, \qquad \text{where } A_{\lambda,n} = \sum_{\substack{|S| = |\lambda| \\ \sigma \in \mathfrak{S}(S), \ t(\sigma) = \lambda}} (\sigma, S).$$

Since the actions $\mathfrak{S}_n \curvearrowright \mathscr{B}_n$ are compatible with the morphisms $\phi_{N,n}$, the inverse limit $\mathscr{A}_{\infty} = (\mathscr{B}_{\infty})^{\mathfrak{S}_{\infty}}$ of the invariant subalgebras has a basis $(A_{\lambda})_{\lambda}$ indexed by all partitions $\lambda \in \mathfrak{P} = \bigsqcup_{n \in \mathbb{N}} \mathfrak{P}_n$, and such that $\phi_{\infty,n}(A_{\lambda}) = A_{\lambda,n}$ (with by convention $A_{\lambda,n} = 0$ if $|\lambda| > n$). As a consequence, if $(a_{\lambda\mu}^{\nu})_{\lambda,\mu,\nu}$ is the family of structure constants of the **Ivanov-Kerov algebra**⁽ⁱ⁾ \mathscr{A}_{∞} in the basis $(A_{\lambda})_{\lambda \in \mathfrak{P}}$, then

$$\forall n, \ A_{\lambda,n} * A_{\mu,n} = \sum_{\nu} a^{\nu}_{\lambda\mu} A_{\nu,n},$$

with $A_{\lambda,n}=0$ if $|\lambda|\geq n$. Moreover, it is not difficult to see that $a_{\lambda\mu}^{\nu}\neq 0$ implies $|\nu|\leq |\lambda|+|\mu|$, and also $|\nu|-\ell(\nu)\leq |\lambda|-\ell(\lambda)+|\mu|-\ell(\mu)$, cf. [IK99, §10], for the study of the filtrations of \mathscr{A}_{∞} . Now, $\mathrm{pr}_n(\mathscr{A}_n)=\mathscr{Z}_n$, and more precisely,

$$\operatorname{pr}_n(A_{\lambda,n}) = \binom{n - |\lambda| + m_1(\lambda)}{m_1(\lambda)} C_{\lambda - 1, n}.$$

where $\lambda - 1 = (\lambda_1 - 1, \dots, \lambda_s - 1)$ if $\lambda = (\lambda_1, \dots, \lambda_s \ge 2, 1, \dots, 1)$. The result of Farahat and Higman follows immediately, and we shall try to mimic this construction in the context of Iwahori-Hecke algebras.

2 Composed permutations and their Hecke algebra

We recall that the **Iwahori-Hecke algebra** of type A and order n is the quantized version of the symmetric group algebra defined over $\mathbb{C}(q)$ by

$$\mathscr{H}_{n,q} = \left\langle S_1, \dots, S_{n-1} \right| \begin{array}{c} \text{braid relations: } \forall i, \ S_i S_{i+1} S_i = S_{i+1} S_i S_{i+1} \\ \text{commutation relations: } \forall |j-i| > 1, \ S_i S_j = S_j S_i \\ \text{quadratic relations: } \forall i, \ (S_i)^2 = (q-1) \ S_i + q \end{array} \right\rangle.$$

When q=1, we recover the symmetric group algebra $\mathbb{C}\mathfrak{S}_n$. If $\omega\in\mathfrak{S}_n$, let us denote by T_ω the product $S_{i_1}S_{i_2}\cdots S_{i_r}$, where $\omega=s_{i_1}s_{i_2}\cdots s_{i_r}$ is any reduced expression of ω in elementary transpositions $s_i=(i,i+1)$. Then, it is well known that the elements T_ω do not depend on the choice of reduced expressions, and that they form a $\mathbb{C}(q)$ -linear basis of $\mathscr{H}_{n,q}$, see [Mat99].

 $^{^{(}i)}$ It can be shown that \mathscr{A}_{∞} is isomorphic to the algebra of shifted symmetric polynomials, see Theorem 9.1 in [IK99].

In order to construct a *projective* limit of the algebras $\mathcal{H}_{n,q}$, it is very tempting to mimic the construction of Ivanov and Kerov, and therefore to build an Hecke algebra of partial permutations. Unfortunately, this is not possible; let us explain why by considering for instance the transposition $\sigma = 1432$ in \mathfrak{S}_4 . The possible supports for σ are $\{2,4\}$, $\{1,2,4\}$, $\{2,3,4\}$ and $\{1,2,3,4\}$. However,

$$\sigma = s_2 s_3 s_2,$$

and the support of s_2 (respectively, of s_3) contains at least $\{2,3\}$ (resp., $\{3,4\}$). So, if we take account of the Coxeter structure of \mathfrak{S}_4 — and it should obviously be the case in the context of Hecke algebras — then the only valid supports for σ are the connected ones, namely, $\{2,3,4\}$ and $\{1,2,3,4\}$. This problem leads to consider *composed permutations* instead of *partial permutations*. If c is a composition of n, let us denote by $\pi(c)$ the corresponding set partition of $[\![1,n]\!]$, i.e., the set partition whose parts are the intervals $[\![1,c_1]\!]$, $[\![c_1+1,c_1+c_2]\!]$, etc. A **composed permutation** of order n is a pair (σ,c) with $\sigma \in \mathfrak{S}_n$ and c composition in \mathfrak{C}_n such that $\pi(c)$ is coarser than the set partition of orbits of σ . For instance, (32154867, (5,3)) is a composed permutation of order n; we shall also write this n0. The product of two composed permutations is then defined by

$$(\sigma, c) (\tau, d) = (\sigma \tau, c \vee d),$$

where $c \vee d$ is the finest composition of n such that $\pi(c \vee d) \geq \pi(c) \vee \pi(d)$ in the lattice of set partitions. For instance,

$$321|54|867 \times 12|435|687 = 42153|768.$$

One obtains so a semigroup of composed permutations; its complex semigroup algebra will be denoted by \mathfrak{D}_n , and the dimension of \mathfrak{D}_n is the number of composed permutations of order n.

Now, let us describe an Hecke version $\mathscr{D}_{n,q}$ of the algebra \mathscr{D}_n . As for $\mathscr{H}_{n,q}$, one introduces generators $(S_i)_{1 \leq i \leq n-1}$ corresponding to the elementary transpositions s_i , but one has also to introduce generators $(I_i)_{1 \leq i \leq n-1}$ that allow to join the parts of the composition of a composed permutation. Hence, the **Iwahori-Hecke algebra of composed permutations** is defined (over the ground field $\mathbb{C}(q)$) by $\mathscr{D}_{n,q} = \langle S_1, \ldots, S_{n-1}, I_1, \ldots, I_{n-1} \rangle$ and the following relations:

$$\forall i, \ S_i S_{i+1} S_i = S_{i+1} S_i S_{i+1}$$

$$\forall |j-i| > 1, \ S_i S_j = S_j S_i$$

$$\forall i, \ (S_i)^2 = (q-1) \, S_i + q \, I_i$$

$$\forall i, j, \ S_i I_j = I_j S_i$$

$$\forall i, j, \ I_i I_j = I_j I_i$$

$$\forall i, \ S_i I_i = S_i$$

$$\forall i, \ (I_i)^2 = I_i$$

The generators S_i correspond to the composed permutations $1|2| \dots |i-1|i+1, i|i+2| \dots |n$, and the generators I_i correspond to the composed permutations $1|2| \dots |i-1|i, i+1|i+2| \dots |n$.

⁽ii) If one considers pairs (σ, π) where π is any set partition of $[\![1, n]\!]$ coarser than $\operatorname{orb}(\sigma)$ (and not necessarily a set partition associated to a composition), then one obtains an algebra of *split permutations* whose subalgebra of invariants is related to the connected Hurwitz numbers $H_{n,\sigma}(\lambda)$.

Proposition 2 The algebra $\mathcal{D}_{n,q}$ specializes to the algebra of composed permutations \mathcal{D}_n when q=1; to the Iwahori-Hecke algebra $\mathcal{H}_{n,q}$ when $I_1=I_2=\cdots=I_{n-1}=1$; and to the algebra $\mathcal{D}_{m,q}$ of lower order m< n when $I_m=I_{m+1}=\cdots=I_{n-1}=0$ and $S_m=S_{m+1}=\cdots=S_{n-1}=0$.

In the following, we shall denote by pr_n the specialization $\mathscr{D}_{n,q} \to \mathscr{H}_{n,q}$; it generalizes the map $\mathscr{D}_n \to \mathbb{C}\mathfrak{S}_n$ of the first section. The first part of Proposition 2 is actually the only one that is non trivial, and it will be a consequence of Theorem 3. If ω is a permutation with reduced expression $\omega = s_{i_1}s_{i_2}\cdots s_{i_r}$, we denote as before by T_ω the product $S_{i_1}S_{i_2}\ldots S_{i_r}$ in $\mathscr{D}_{n,q}$. On the other hand, if c is a composition of $[\![1,n]\!]$, we denote by I_c the product of the generators I_j with j in the code of c (so for instance, $I_{(3,2,3)} = I_1I_2I_4I_6I_7$ in $\mathscr{D}_{8,q}$). These elements are central idempotents, and I_c correspond to the composed permutation (id, c). Finally, if (σ,c) is a composed permutation, $T_{\sigma,c}$ is the product $T_{\sigma}I_c$.

Theorem 3 In $\mathcal{D}_{n,q}$, the products T_{σ} do not depend on the choice of reduced expressions, and the products $T_{\sigma,c}$ form a linear basis of $\mathcal{D}_{n,q}$ when (σ,c) runs over composed permutations of order n. There is an isomorphism of $\mathbb{C}(q)$ -algebras between

$$\mathscr{D}_{n,q}$$
 and $\bigoplus_{c\in\mathfrak{C}_n}\mathscr{H}_{c,q},$

where $\mathcal{H}_{c,q}$ is the Young subalgebra $\mathcal{H}_{c_1,q} \otimes \mathcal{H}_{c_2,q} \otimes \cdots \otimes \mathcal{H}_{c_r,q}$ of $\mathcal{H}_{n,q}$.

Proof: If $\sigma \in \mathfrak{S}_n$, the Matsumoto theorem ensures that it is always possible to go from a reduced expression $s_{i_1}s_{i_2}\cdots s_{i_r}$ to another reduced expression $s_{i_1}s_{i_2}\cdots s_{j_r}$ by braid moves $s_is_{i+1}s_i \leftrightarrow s_{i+1}s_is_{i+1}$ and commutations $s_is_j \leftrightarrow s_js_i$ when |j-i|>1. Since the corresponding products of S_i in $\mathscr{D}_{n,q}$ are preserved by these substitutions, a product T_σ in $\mathscr{D}_{n,q}$ does not depend on the choice of a reduced expression. Now, let us consider an arbitrary product Π of generators S_i and I_j (in any order). As the elements I_j are central idempotents, it is always possible to reduce the product to

$$\Pi = S_{i_1} S_{i_2} \cdots S_{i_p} I_c$$

with c composition of n—here, $s_{i_1}s_{i_2}\cdots s_{i_p}$ is a priori not a reduced expression. Moreover, since $S_i\,I_i=S_i$, we can suppose that the code of c contains $\{i_1,\ldots,i_p\}$. Now, suppose that $\sigma=s_{i_1}s_{i_2}\cdots s_{i_p}$ is not a reduced expression. Then, by using braid moves and commutations, we can transform the expression in one with two consecutive letters that are identical, that is to say that if $j_k=j_{k+1}$,

$$\sigma = s_{j_1} \cdots s_{j_k} s_{j_{k+1}} \cdots s_{j_p} = s_{j_1} \cdots s_{j_{k-1}} s_{j_{k+2}} \cdots s_{j_p}.$$

We apply the same moves to the S_i in $\mathcal{D}_{n,q}$ and we obtain $\Pi = S_{j_1} \cdots S_{j_k} S_{j_{k+1}} \cdots S_{j_p} I_c$; notice that the code of c still contains $\{j_1,\ldots,j_p\}=\{i_1,\ldots,i_p\}$. By using the quadratic relation in $\mathcal{D}_{n,q}$, we conclude that if $j_k=j_{k+1}$,

$$\Pi = (q-1) S_{j_1} \cdots S_{j_{k-1}} S_{j_k} S_{j_{k+2}} \cdots S_{j_p} I_c + q S_{j_1} \cdots S_{j_{k-1}} I_{j_k} S_{j_{k+2}} \cdots S_{j_p} I_c$$

$$= (q-1) S_{j_1} \cdots S_{j_{k-1}} S_{j_k} S_{j_{k+2}} \cdots S_{j_p} I_c + q S_{j_1} \cdots S_{j_{k-1}} S_{j_{k+2}} \cdots S_{j_p} I_c$$

because $I_{j_k}I_c=I_c$. Consequently, by induction on p, any product Π is a $\mathbb{Z}[q]$ -linear combination of products $T_{\tau,c}$ (and with the same composition c for all the terms of the linear combination). So, the

reduced products $T_{\sigma,c}$ span linearly $\mathscr{D}_{n,q}$ when (σ,c) runs over composed permutations of order n. If c is in \mathfrak{C}_n , we define a morphism of $\mathbb{C}(q)$ -algebras from $\mathscr{D}_{n,q}$ to $\mathscr{H}_{c,q}$ by

$$\psi_c(S_i) = \begin{cases} S_i & \text{if } i \text{ is in the code of } c, \\ 0 & \text{otherwise,} \end{cases} ; \qquad \psi_c(I_i) = \begin{cases} 1 & \text{if } i \text{ is in the code of } c, \\ 0 & \text{otherwise.} \end{cases}$$

The elements $\psi_c(S_i)$ and $\psi_c(I_i)$ sastify in $\mathscr{H}_{c,q}$ the relations of the generators S_i and I_i in $\mathscr{D}_{n,q}$. So, there is indeed such a morphism of algebras $\psi_c: \mathscr{D}_{n,q} \to \mathscr{H}_{c,q}$, and one has in fact $\psi_c(T_{\sigma,b}) = T_{\sigma}$ if $\pi(b) \leq \pi(c)$, and 0 otherwise. Let us consider the direct sum of algebras $\mathscr{H}_{\mathfrak{C}_n,q} = \bigoplus_{c \in \mathfrak{C}_n} \mathscr{H}_{c,q}$, and the direct sum of morphisms $\psi = \bigoplus_{c \in \mathfrak{C}_n} \psi_c$. We denote the basis vectors $[0,0,\ldots,(T_{\sigma} \in \mathscr{H}_{c,q}),\ldots,0]$ of $\mathscr{H}_{\mathfrak{C}_n,q}$ by $T_{\sigma \in \mathscr{H}_{c,q}}$; in particular,

$$\psi(T_{\sigma,c}) = \sum_{d>c} T_{\sigma \in \mathscr{H}_{d,q}}$$

for any composed permutation (σ, c) . As a consequence, the map ψ is surjective, because

$$\psi\left(\sum_{d\geq c}\mu(c,d)\,T_{\sigma,c}\right) = T_{\sigma\in\mathscr{H}_{c,q}}$$

where $\mu(c,d) = \mu(\pi(c),\pi(d)) = (-1)^{\ell(c)-\ell(d)}$ is the Möbius function of the hypercube lattice of compositions. If σ is a permutation, we denote by $\operatorname{orb}(\sigma)$ the set partition whose parts are the orbits of σ . Since the families $(T_{\sigma,c})_{\operatorname{orb}(\sigma)\leq\pi(c)}$ and $(T_{\sigma\in\mathscr{H}_{c,q}})_{\operatorname{orb}(\sigma)\leq\pi(c)}$ have the same cardinality $\dim\mathscr{D}_n$, we conclude that $(T_{\sigma,c})_{\operatorname{orb}(\sigma)<\pi(c)}$ is a $\mathbb{C}(q)$ -linear basis of $\mathscr{D}_{n,q}$ and that ψ is an isomorphism of $\mathbb{C}(q)$ -algebras. \square

Notice that the second part of Theorem 3 is the q-analog of Corollary 3.2 in [IK99]. To conclude this part, we have to build the inverse limit $\mathscr{D}_{\infty,q} = \varprojlim \mathscr{D}_{n,q}$, but this is easy thanks to the specializations evoked in the third part of Proposition 2. Hence, if $\phi_{N,n}: \mathscr{D}_{N,q} \to \mathscr{D}_{n,q}$ is the map that sends the generators $I_{i\geq n}$ and $S_{i\geq n}$ to zero and that preserves the other generators, then $(\phi_{N,n})_{N\geq n}$ is a system of compatible maps, and these maps behave well with respect to the filtration $\deg T_{\sigma,c} = |\operatorname{code}(c)|$. Consequently, there is a projective limit $\mathscr{D}_{\infty,q}$ whose elements are the infinite linear combinations of $T_{\sigma,c}$, with σ finite permutation in \mathfrak{S}_{∞} and c infinite composition compatible with σ and with almost all its parts of size 1.

It is not true that two elements x and y in $\mathscr{D}_{\infty,q}$ are equal if and only if their projections $\operatorname{pr}_n(\phi_{\infty,n}(x))$ and $\operatorname{pr}_n(\phi_{\infty,n}(y))$ are equal for all n: for instance,

$$T[21|34|5|6|\cdots] = S_1I_1I_3$$
 and $T[2134|5|6|\cdots] = S_1I_1I_2I_3$

have the same projections in all the Hecke algebras (namely, S_1 if $n \geq 4$ and 0 otherwise), but they are not equal. However, the result is true if we consider only the subalgebras $\mathscr{D}'_{n,q} \subset \mathscr{D}_{n,q}$ spanned by the $T_{\sigma,c}$ with $c=(k,1,\ldots,1)$ — then, σ may be considered as a partial permutation of $[\![1,k]\!]$.

Proposition 4 For any n, the vector space $\mathscr{D}'_{n,q}$ spanned by the $T_{\sigma,c}$ with $c=(k,1^{n-k})$ is a subalgebra of $\mathscr{D}_{n,q}$. In the inverse limit $\mathscr{D}'_{\infty,q} \subset \mathscr{D}_{\infty,q}$, the projections $\operatorname{pr}_{\infty,n} = \operatorname{pr}_n \circ \phi_{\infty,n}$ separate the vectors:

$$\forall x, y \in \mathscr{D}'_{\infty,q}, \qquad (\forall n, \ \mathrm{pr}_{\infty,n}(x) = \mathrm{pr}_{\infty,n}(y)) \iff (x = y).$$

Proof: The supremum of two compositions $(k, 1^{n-k})$ and $(l, 1^{n-l})$ is $(m, 1^{n-m})$ with $m = \max(k, l)$; consequently, $\mathscr{D}'_{n,q}$ is indeed a subalgebra of $\mathscr{D}_{n,q}$. Any element x of the projective limit $\mathscr{D}'_{\infty,q}$ writes uniquely as

$$x = \sum_{k=0}^{\infty} \sum_{\sigma \in \mathfrak{S}_k} a_{\sigma,k}(x) T_{\sigma,(k,1^{\infty})}.$$

Suppose that x and y have the same projections, and let us fix a permutation σ . There is a minimal integer k such that $\sigma \in \mathfrak{S}_k$, and $a_{\sigma,k}(x)$ is the coefficient of T_σ in $\operatorname{pr}_{\infty,k}(x)$; consequently, $a_{\sigma,k}(x) = a_{\sigma,k}(y)$. Now, $a_{\sigma,k}(x) + a_{\sigma,k+1}(x)$ is the coefficient of T_σ in $\operatorname{pr}_{\infty,k+1}(x)$, so one has also $a_{\sigma,k}(x) + a_{\sigma,k+1}(x) = a_{\sigma,k}(y) + a_{\sigma,k+1}(y)$, and $a_{\sigma,k+1}(x) = a_{\sigma,k+1}(y)$. By using the same argument and by induction on l, we conclude that $a_{\sigma,k+l}(x) = a_{\sigma,k+l}(y)$ for every l, and therefore x = y. We have then proved that the projections separate the vectors in $\mathscr{D}'_{\infty,q}$.

3 Bases of the center of the Hecke algebra

In the following, $\mathscr{Z}_{n,q}$ is the center of $\mathscr{H}_{n,q}$. We have already given a characterization of the **Geck-Rouquier central elements** Γ_{λ} , and they form a linear basis of $\mathscr{Z}_{n,q}$ when λ runs over \mathfrak{P}_n . Let us write down explicitly this basis when n=3:

$$\Gamma_3 = T_{231} + T_{312} + (q-1)q^{-1}T_{321}$$
; $\Gamma_{2,1} = T_{213} + T_{132} + q^{-1}T_{321}$; $\Gamma_{1,1,1} = T_{123}$

The first significative example of Geck-Rouquier element is actually when n=4. Thus, if one considers

$$\Gamma_{3,1} = T_{1342} + T_{1423} + T_{2314} + T_{3124} + q^{-1} \left(T_{2431} + T_{4132} + T_{3214} + T_{4213} \right) + \left(q - 1 \right) q^{-1} \left(T_{1432} + T_{3214} \right) + \left(q - 1 \right) q^{-2} \left(T_{3421} + T_{4312} + 2 T_{4231} \right) + \left(q - 1 \right)^2 q^{-3} T_{4321},$$

the terms with coefficient 1 are the four minimal 3-cycles in \mathfrak{S}_4 ; the terms whose coefficients specialize to 1 when q=1 are the eight 3-cycles in \mathfrak{S}_4 ; and the other terms are not minimal in their conjugacy classes, and their coefficients vanish when q=1.

It is really unclear how one can lift these elements to the Hecke algebras of composed permutations; fortunately, the center $\mathscr{Z}_{n,q}$ admits other linear bases that are easier to pull back from $\mathscr{H}_{n,q}$ to $\mathscr{D}_{n,q}$. In [Las06], seven different bases for $\mathscr{Z}_{n,q}$ are studied⁽ⁱⁱⁱ⁾, and it is shown that up to diagonal matrices that depend on q in a polynomial way, the transition matrices between these bases are the same as the transition matrices between the usual bases of the algebra of symmetric functions. We shall only need the **norm basis** N_{λ} , whose properties are recalled in Proposition 5. If c is a composition of n and \mathfrak{S}_c is the corresponding Young subgroup of \mathfrak{S}_n , it is well-known that each coset in $\mathfrak{S}_n/\mathfrak{S}_c$ or $\mathfrak{S}_c\backslash\mathfrak{S}_n$ has a unique representative ω of minimal length which is called the **distinguished representative** — this fact is even true for parabolic double cosets. In what follows, we rather work with right cosets, and the distinguished representatives of $\mathfrak{S}_c\backslash\mathfrak{S}_n$ are precisely the permutation words whose recoils are contained in the set of descents of c. So for instance, if c=(2,3), then

$$\mathfrak{S}_{(2,3)} \setminus \mathfrak{S}_5 = \{12345, 13245, 13425, 13452, 31245, 31425, 31452, 34125, 34152, 34512\} = 12 \sqcup 1345.$$

⁽iii) One can also consult [Jon90] and [Fra99].

Proposition 5 [Las06, Theorem 7] If c is a composition of n, let us denote by N_c the element

$$\sum_{\omega \in \mathfrak{S}_c \setminus \mathfrak{S}_n} q^{-\ell(\omega)} \, T_{\omega^{-1}} \, T_{\omega}$$

in the Hecke algebra $\mathcal{H}_{n,q}$. Then, N_c does not depend on the order of the parts of c, and the N_{λ} form a linear basis of $\mathcal{Z}_{n,q}$ when λ runs over \mathfrak{P}_n — in particular, the norms N_c are central elements. Moreover,

$$(\Gamma_{\lambda})_{\lambda \in \mathfrak{P}_n} = D \cdot M2E \cdot (N_{\mu})_{\mu \in \mathfrak{P}_n},$$

where M2E is the transition matrice between monomial functions m_{λ} and elementary functions e_{μ} , and D is the diagonal matrix with coefficients $(q/(q-1))^{n-\ell(\lambda)}$.

So for instance, $\Gamma_3 = q^2 (q-1)^{-2} (3 N_3 - 3 N_{2,1} + N_{1,1,1})$, because $m_3 = 3 e_3 - 3 e_{2,1} + e_{1,1,1}$. Let us write down explicitly the norm basis when n = 3:

$$N_3 = T_{123} ; N_{2,1} = 3T_{123} + (q-1)q^{-1}(T_{213} + T_{132}) + (q-1)q^{-2}T_{321}$$

$$N_{1,1,1} = 6T_{123} + 3(q-1)q^{-1}(T_{213} + T_{132}) + (q-1)^2q^{-2}(T_{231} + T_{312}) + (q^3 - 1)q^{-3}T_{321}$$

We shall see hereafter that these norms have natural preimages by the projections pr_n and $\operatorname{pr}_{\infty,n}$.

4 Generic norms and the Hecke-Ivanov-Kerov algebra

Let us fix some notations. If c is a composition of size |c| less than n, then $c \uparrow n$ is the composition $(c_1, \ldots, c_r, n - |c|)$, $J_c = I_1 I_2 \cdots I_{|c|-1}$, and

$$M_{c,n} = \sum_{\omega \in \mathfrak{S}_{c\uparrow n} \backslash \mathfrak{S}_n} q^{-\ell(\omega)} \, T_{\omega^{-1}} \, T_{\omega} \, J_c,$$

the products T_{ω} being considered as elements of $\mathscr{D}_{n,q}$. So, $M_{c,n}$ is an element of $\mathscr{D}_{n,q}$, and we set $M_{c,n}=0$ if |c|>n.

Proposition 6 For any N, n and any composition c, $\phi_{N,n}(M_{c,N}) = M_{c,n}$, and $\operatorname{pr}_n(M_{c,n}) = N_{c\uparrow n}$ if $|c| \leq n$, and 0 otherwise. On the other hand, $M_{c,n}$ is always in $\mathscr{D}'_{n,q}$.

Proof: Because of the description of distinguished representatives of right cosets by positions of recoils, if $|c| \leq n$, then the sum $M_{c,n}$ is over permutation words ω with recoils in the set of descents of c (notice that we include |c| in the set of descents of c). Let us denote by $R_{c,n}$ this set of words, and suppose that $|c| \leq n-1$. If $\omega \in R_{c,n}$ is such that $\omega(n) \neq n$, then T_{ω} involves S_{n-1} , so the image by $\phi_{n,n-1}$ of the corresponding term in $M_{c,n}$ is zero. On the other hand, if $\omega(n) = n$, then any reduced decomposition of T_{ω} does not involve S_{n-1} , so the corresponding term in $M_{c,n}$ is preserved by $\phi_{n,n-1}$. Consequently, $\phi_{n,n-1}(M_{c,n})$ is a sum with the same terms as $M_{c,n}$, but with ω running over $R_{c,n-1}$; so, we have proved that $\phi_{n,n-1}(M_{c,n}) = M_{c,n-1}$ when $|c| \leq n-1$. The other cases are much easier: thus, if |c| = n, then

 $M_{c,n-1}=0$, and $\phi_{n,n-1}(M_{c,n})$ is also zero because $\phi_{n,n-1}(J_c)=0$. And if |c|>n, then $M_{c,n}$ and $M_{c,n-1}$ are both equal to zero, and again $\phi_{n,n-1}(M_{c,n})=M_{c,n-1}$. Since

$$\phi_{N,n} = \phi_{n+1,n} \circ \phi_{n+2,n+1} \circ \cdots \circ \phi_{N,N-1},$$

we have proved the first part of the proposition, and the second part is really obvious.

Now, let us show that $M_{c,n}$ is in $\mathscr{D}'_{n,q}$. Notice that the result is trivial if |c| > n, and also if |c| = n, because we have then $J_c = I_{(n)}$, and therefore d = (n) for any composed permutation (σ,d) involved in $M_{c,|c|}$. Suppose then that $|c| \leq n-1$. Because of the description of $\mathfrak{S}_d \backslash \mathfrak{S}_{|d|}$ as a shuffle product, any distinguished representative ω of $\mathfrak{S}_{c\uparrow n} \backslash \mathfrak{S}_n$ is the shuffle of a distinguished representative ω_c of $\mathfrak{S}_c \backslash \mathfrak{S}_{|c|}$ with the word $|c|+1,|c|+2,\ldots,n$. For instance, 5613724 is the distinguished representative of a right $\mathfrak{S}_{(2,2,3)}$ -coset, and it is a shuffle of 567 with the distinguished representative 1324 of a right $\mathfrak{S}_{(2,2)}$ -coset. Let us denote by $s_{i_1} \cdots s_{i_r}$ a reduced expression of ω_c , and by $j_{|c|+1},\ldots,j_n$ the positions of $|c|+1,\ldots,n$ in ω . Then, it is not difficult to see that

$$s_{i_1} \cdots s_{i_r} \times (s_{|c|} s_{|c|-1} \cdots s_{j_{|c|+1}}) (s_{|c|+1} s_{|c|} \cdots s_{j_{|c|+2}}) \cdots (s_{n-1} s_{n-2} \cdots s_{j_n})$$

is a reduced expression for ω ; for instance, s_2 is the reduced expression of 1324, and

$$s_2 \times (s_4 s_3 s_2 s_1) (s_5 s_4 s_3 s_2) (s_6 s_5)$$

is a reduced expression of 5613724. From this, we deduce that $T_{\omega} J_c = T_{\omega,(k,1^{n-k})}$, where k is the highest integer in $[\![c]+1,n]\!]$ such that $j_k < k$ — we take k=|c| if $\omega=\omega_c$. Then, the multiplication by $T_{\omega^{-1}}$ cannot fatten the composition anymore, so $T_{\omega^{-1}}T_{\omega} J_c$ is a linear combination of $T_{\tau,(k,1^{n-k})}$, and we have proved that $M_{n,c}$ is indeed in $\mathscr{D}'_{n,o}$.

From the previous proof, it is now clear that if we consider the infinite sum $M_c = \sum q^{-\ell(\omega)} T_{\omega^{-1}} T_{\omega} J_c$ over permutation words $\omega \in \mathfrak{S}_{\infty}$ with their recoils in the set of descents of c, then M_c is the unique element of $\mathscr{D}_{\infty,q}$ such that $\phi_{\infty,n}(M_c) = M_{c,n}$ for any positive integer n, and also the unique element of $\mathscr{D}'_{\infty,q}$ such that $\operatorname{pr}_{\infty,n}(M_c) = N_{c\uparrow n}$ for any positive integer n (with by convention $N_{c\uparrow n} = 0$ if |c| > n). In particular, M_c does not depend on the order of the parts of c, because this is true for the $N_{c\uparrow n}$ and the projections separate the vectors in $\mathscr{D}'_{\infty,q}$. Consequently, we shall consider only elements M_{λ} labelled by partitions λ of arbitrary size, and call them **generic norms**. For instance:

$$M_{(2),3} = T_{12|3} + 2T_{123} + (1 - q^{-1})(T_{132} + T_{213}) + (q^{-1} - q^{-2})T_{321}$$

In what follows, if i < n, we denote by $(S_i)^{-1}$ the element of $\mathcal{D}_{n,q}$ equal to:

$$(S_i)^{-1} = q^{-1} S_i + (q^{-1} - 1) I_i$$

The product $S_i(S_i)^{-1} = (S_i)^{-1}S_i$ equals I_i in $\mathcal{D}_{n,q}$, and by the specialization $\operatorname{pr}_n: \mathcal{D}_{n,q} \to \mathcal{H}_{n,q}$, one recovers $S_i(S_i)^{-1} = 1$ in the Hecke algebra $\mathcal{H}_{n,q}$.

Theorem 7 The M_{λ} span linearly the subalgebra $\mathscr{C}_{\infty,q} \subset \mathscr{D}'_{\infty,q}$ that consists in elements $x \in \mathscr{D}'_{\infty,q}$ such that $I_i x = S_i x (S_i)^{-1}$ for every i. In particular, any product $M_{\lambda} * M_{\mu}$ is a linear combination of M_{ν} , and moreover, the terms M_{ν} involved in the product satisfy the inequality $|\nu| \leq |\lambda| + |\mu|$.

Proof: If $I_i x = S_i x (S_i)^{-1}$ and $I_i y = S_i y (S_i)^{-1}$, then

$$I_i xy = I_i x I_i y = S_i x (S_i)^{-1} S_i y (S_i)^{-1} = S_i x I_i y (S_i)^{-1} = S_i x y (S_i)^{-1},$$

so the elements that "commute" with S_i in $\mathscr{D}_{\infty,q}$ form a subalgebra. As an intersection, $\mathscr{C}_{\infty,q}$ is also a subalgebra of $\mathscr{D}_{\infty,q}$; let us see why it is spanned by the generic norms. If $\mathscr{D}'_{\infty,q,i}$ is the subspace of $\mathscr{D}_{\infty,q}$ spanned by the $T_{\sigma,c}$ with $c=(k,1^\infty)\vee(1^{i-1},2,1^\infty)$, then the projections separate the vectors in this subspace — this is the same proof as in Proposition 4. For $\lambda\in\mathfrak{P}$, I_i M_λ and S_i M_λ $(S_i)^{-1}$ belong to $\mathscr{D}'_{\infty,q,i}$, and they have the same projections in $\mathscr{H}_{n,q}$, because $\mathrm{pr}_{\infty,n}(M_\lambda)$ is a norm and in particular a central element. Consequently, I_i $M_\lambda=S_i$ M_λ $(S_i)^{-1}$, and the M_λ are indeed in $\mathscr{C}_{\infty,q}$. Now, if we consider an element $x\in\mathscr{C}_{\infty,q}$, then for i< n, $\mathrm{pr}_n(x)=S_i$ $\mathrm{pr}_n(x)$ $(S_i)^{-1}$, so $\mathrm{pr}_n(x)$ is in $\mathscr{Z}_{n,q}$ and is a linear combination of norms:

$$\forall n \in \mathbb{N}, \ \operatorname{pr}_n(x) = \sum_{\lambda \in \mathfrak{P}_n} a_{\lambda}(x) N_{\lambda}$$

Since the same holds for any difference $x - \sum b_{\lambda} M_{\lambda}$, we can construct by induction on n an infinite linear combination S_{∞} of M_{λ} that has the same projections as x:

$$\operatorname{pr}_{1}(x) = \sum_{|\lambda|=1} b_{\lambda} N_{\lambda} \quad \Rightarrow \quad \operatorname{pr}_{1}\left(x - \sum_{|\lambda|=1} b_{\lambda} M_{\lambda}\right) = 0, \quad S_{1} = \sum_{|\lambda|=1} b_{\lambda} M_{\lambda}$$

$$\operatorname{pr}_{2}\left(x - S_{1}\right) = \sum_{|\lambda|=2} b_{\lambda} N_{\lambda} \quad \Rightarrow \quad \operatorname{pr}_{1,2}\left(x - \sum_{|\lambda|\leq 2} b_{\lambda} M_{\lambda}\right) = 0, \quad S_{2} = \sum_{|\lambda|\leq 2} b_{\lambda} M_{\lambda}$$

$$\vdots$$

$$\operatorname{pr}_{n+1}\left(x - S_{n}\right) = \sum_{|\lambda|=n+1} b_{\lambda} N_{\lambda} \quad \Rightarrow \quad S_{n+1} = S_{n} + \sum_{|\lambda|=n+1} b_{\lambda} M_{\lambda} = \sum_{|\lambda|\leq n+1} b_{\lambda} M_{\lambda}$$

Then, $S_{\infty} = \sum_{\lambda \in \mathfrak{P}} b_{\lambda} M_{\lambda}$ is in $\mathscr{D}'_{\infty,q}$ and has the same projections as x, so $S_{\infty} = x$. In particular, since $\mathscr{C}_{\infty,q}$ is a subalgebra, a product $M_{\lambda} * M_{\mu}$ is in $\mathscr{C}_{\infty,q}$ and is an *a priori* infinite linear combination of M_{ν} :

$$\forall \lambda, \mu, \ M_{\lambda} * M_{\mu} = \sum g_{\lambda\mu}^{\nu} M_{\nu}$$

Since the norms N_{λ} are defined over $\mathbb{Z}[q,q^{-1}]$, by projection on the Hecke algebras $\mathscr{H}_{n,q}$, one sees that the $g^{\nu}_{\lambda\mu}$ are also in $\mathbb{Z}[q,q^{-1}]$ — in fact, they are *symmetric* polynomials in q and q^{-1} . It remains to be shown that the previous sum is in fact over partitions $|\nu|$ with $|\nu| \leq |\lambda| + |\mu|$; we shall see why this is true in the last paragraph^(iv).

For example, $M_1*M_1=M_1+(q+1+q^{-1})\,M_{1,1}-(q+2+q^{-1})\,M_2$, and from this generic identity one deduces the expression of any product $(N_{(1)\uparrow n})^2$, e.g.,

$$N_{1,1}^2 = (q+2+q^{-1})(N_{1,1}-N_2)$$
 ; $N_{3,1}^2 = N_{3,1} + (q+1+q^{-1})N_{2,1,1} - (q+2+q^{-1})N_{2,2}$.

Let us denote by $\mathscr{A}_{\infty,q}$ the subspace of $\mathscr{C}_{\infty,q}$ whose elements are *finite* linear combinations of generic norms; this is in fact a subalgebra, which we call the **Hecke-Ivanov-Kerov algebra** since it plays the same role for Iwahori-Hecke algebras as \mathscr{A}_{∞} for symmetric group algebras.

⁽iv) Unfortunately, we did not succeed in proving this result with adequate filtrations on $\mathscr{D}_{\infty,q}$ or $\mathscr{D}'_{\infty,q}$.

5 Completion of partitions and symmetric functions

The proof of Theorem 1 and of the last part of Theorem 7 relies now on a rather elementary property of the transition matrices M2E and E2M. By convention, we set $e_{\lambda\uparrow n}=0$ if $|\lambda|>n$, and $m_{\lambda\to n}=0$ if $|\lambda|+\ell(\lambda)>n$. Then:

Proposition 8 There exists polynomials $P_{\lambda\mu}(n) \in \mathbb{Q}[n]$ and $Q_{\lambda\mu}(n) \in \mathbb{Q}[n]$ such that

$$\forall \lambda, n, \qquad m_{\lambda \to n} = \sum_{\mu' \leq_d \lambda} P_{\lambda \mu}(n) \ e_{\mu \uparrow n} \quad \text{and} \quad e_{\lambda \uparrow n} = \sum_{\mu \leq_d \lambda'} Q_{\lambda \mu}(n) \ m_{\mu \to n},$$

where $\mu \leq_d \lambda$ is the domination relation on partitions.

This fact follows from the study of the Kotska matrix elements $K_{\lambda,\mu\to n}$, see [Mac95, §1.6, in particular the example 4. (c)]. It can also be shown directly by expanding $e_{\lambda\uparrow n}$ on a sufficient number of variables and collecting the monomials; this simpler proof explains the appearance of binomial coefficients $\binom{n}{k}$. For instance,

$$m_{2,1\to n} = e_{2,1\uparrow n} - 3 e_{3\uparrow n} - (n-3) e_{1,1\uparrow n} + (2n-8) e_{2\uparrow n} + (2n-5) e_{1\uparrow n} - n(n-4) e_{\uparrow n},$$

$$e_{2,1\uparrow n} = \frac{n(n-1)(n-2)}{2} m_{\to n} + \frac{(n-2)(3n-7)}{2} m_{1\to n} + (3n-10) m_{1,1\to n} + 3 m_{1,1,1\to n} + (n-3) m_{2\to n} + m_{2,1\to n}.$$

In the following, $N_{\lambda,n}=N_{\lambda\uparrow n}$ if $|\lambda|\leq n$, and 0 otherwise. Because of the existence of the projective limits M_{λ} , we know that $N_{\lambda,n}*N_{\mu,n}=\sum_{\nu}g_{\lambda\mu}^{\nu}N_{\nu,n}$, where the sum is not restricted. But on the other hand, by using Proposition 5 and the second identity in Proposition 8, one sees that

$$N_{\lambda,n} * N_{\mu,n} = \sum_{|\rho| \leq |\lambda|, \ |\sigma| \leq |\mu|} h_{\lambda\mu}^{\rho\sigma}(n) \ \Gamma_{\rho,n} * \Gamma_{\sigma,n}, \quad \text{with the } h_{\lambda\mu}^{\rho\sigma}(n) \in \mathbb{Q}[n,q,q^{-1}].$$

Because of the result of Francis and Wang, the latter sum may be written as $\sum_{|\tau| \leq |\lambda| + |\mu|} i_{\lambda\mu}^{\tau}(n) \Gamma_{\tau,n}$, and by using the first identity of Proposition 8, one has finally

$$N_{\lambda,n}\,*\,N_{\mu,n} = \sum_{|\nu| < |\lambda| + |\mu|} j_{\lambda\mu}^{\nu}(n)\,N_{\nu,n}, \quad \text{with the } j_{\lambda\mu}^{\nu}(n) \in \mathbb{Q}[n,q,q^{-1}].$$

From this, it can be shown that the first sum $\sum_{\nu} g^{\nu}_{\lambda\mu} N_{\nu,n}$ is in fact restricted on partitions $|\nu|$ such that $|\nu| \leq |\lambda| + |\mu|$, and because the projections separate the vectors of $\mathscr{D}'_{\infty,q}$, this implies that $M_{\lambda} * M_{\mu} = \sum_{|\nu| \leq |\lambda| + |\mu|} g^{\nu}_{\lambda\mu} M_{\nu}$, so the last part of Theorem 7 is proved. Finally, by reversing the argument, one sees that the $a^{\nu}_{\lambda\mu}(n,q)$ are in $\mathbb{Q}[n](q)$:

$$\begin{split} \Gamma_{\lambda,n} * \Gamma_{\mu,n} &= (q/(q-1))^{|\lambda|+|\mu|} \sum_{\rho,\sigma} P_{\lambda\rho}(n) \, P_{\mu\sigma}(n) \, N_{\rho,n} * N_{\sigma,n} \\ &= (q/(q-1))^{|\lambda|+|\mu|} \sum_{\rho,\sigma,\tau} P_{\lambda\rho}(n) \, P_{\mu\sigma}(n) \, g_{\rho\sigma}^{\tau} \, N_{\tau,n} \\ &= \sum_{\rho,\sigma,\tau,\nu} (q/(q-1))^{|\lambda|+|\mu|-|\nu|} \, P_{\lambda\rho}(n) \, P_{\mu\sigma}(n) \, g_{\rho\sigma}^{\tau}(q) \, Q_{\tau\nu}(n) \, \Gamma_{\nu,n} = \sum_{\nu} a_{\lambda\mu}^{\nu}(n,q) \, \Gamma_{\nu,n} \end{split}$$

12 Pierre-Loïc Méliot

with $a_{\lambda\mu}^{\nu}(n,q)=(q/(q-1))^{|\lambda|+|\mu|-|\nu|}\,(P^{\otimes 2}(n)\,g(q)\,Q(n))_{\lambda\mu}^{\nu}$ in tensor notation. And since the Γ_{λ} are known to be defined over $\mathbb{Z}[q,q^{-1}]$, the coefficients $a_{\lambda\mu}^{\nu}(n,q)\in\mathbb{Q}[n](q)$ are in fact^(v) in $\mathbb{Q}[n,q,q^{-1}]$. Using this technique, one can for instance show that

$$(\Gamma_{(1),n})^2 = \frac{n(n-1)}{2} q \Gamma_{(0),n} + (n-1) (q-1) \Gamma_{(1),n} + (q+q^{-1}) \Gamma_{(1,1),n} + (q+1+q^{-1}) \Gamma_{(2),n},$$

and this is because $m_{1\to n}=e_{1\uparrow n}-n\,e_{\uparrow n}$ and $e_{1\uparrow n}=n\,m_{\to n}+m_{1\to n}$. Let us conclude by two remarks. First, the reader may have noticed that we did not construct generic conjugacy classes $F_\lambda\in\mathscr{A}_{\infty,q}$ such that $\mathrm{pr}_{\infty,n}(F_\lambda)=\Gamma_{\lambda,n}$; since the Geck-Rouquier elements themselves are difficult to describe, we had little hope to obtain simple generic versions of these Γ_λ . Secondly, the Ivanov-Kerov projective limits of other group algebras — e.g., the algebras of the finite reductive Lie groups $\mathrm{GL}(n,\mathbb{F}_q)$, $\mathrm{U}(n,\mathbb{F}_{q^2})$, etc. — have not yet been studied. It seems to be an interesting open question.

References

- [FH59] H. Farahat and G. Higman. The centers of symmetric group rings. *Proc. Roy. Soc. London (A)*, 250:212–221, 1959.
- [Fra99] A. Francis. The minimal basis for the centre of an Iwahori-Hecke algebra. *J. Algebra*, 221:1–28, 1999
- [FW09] A. Francis and W. Wang. The centers of Iwahori-Hecke algebras are filtered. *Representation Theory, Comtemporary Mathematics*, 478:29–38, 2009.
- [GR97] M. Geck and R. Rouquier. Centers and simple modules for Iwahori-Hecke algebras. In *Finite reductive groups (Luminy, 1994)*, volume 141 of *Progr. Math.*, pages 251–272. Birkhaüser, Boston, 1997.
- [IK99] V. Ivanov and S. Kerov. The algebra of conjugacy classes in symmetric groups, and partial permutations. In *Representation Theory, Dynamical Systems, Combinatorial and Algorithmical Methods III*, volume 256 of *Zapiski Nauchnyh Seminarov POMI*, pages 95–120, 1999. English translation available at arXiv:math/0302203v1 [math.CO].
- [Jon90] L. Jones. Centers of generic Hecke algebras. Trans. Amer. Math. Soc., 317:361–392, 1990.
- [Las06] A. Lascoux. The Hecke algebra and structure constants of the ring of symmetric polynomials, 2006. Available at arXiv:math/0602379 [math.CO].
- [Mac95] I. G. Macdonald. *Symmetric functions and Hall polynomials*. Oxford Mathematical Monographs. Oxford University Press, 2nd edition, 1995.
- [Mat99] A. Mathas. *Iwahori-Hecke algebras and Schur algebras of the symmetric group*, volume 15 of *University Lecture Series*. Amer. Math. Soc., 1999.

⁽v) They are even in $\mathbb{Q}_{\mathbb{Z}}[n] \otimes \mathbb{Z}[q,q^{-1}]$, where $\mathbb{Q}_{\mathbb{Z}}[n]$ is the \mathbb{Z} -module of polynomials with rational coefficients and integer values on integers; indeed, the matrices M2E and E2M have integer entries. It is well known that $\mathbb{Q}_{\mathbb{Z}}[n]$ is spanned over \mathbb{Z} by the binomials $\binom{n}{n}$.