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PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH

FOLIATED BOUNDARIES

FRÉDÉRIC ROCHON

Abstract. Let X be a smooth compact manifold with boundary. For smooth
foliations on the boundary of X admitting a ‘resolution’ in terms of a fibra-
tion, we construct a pseudodifferential calculus generalizing the fibred cusp
calculus of Mazzeo and Melrose. In particular, we introduce certain symbols
leading to a simple description of the Fredholm operators inside the calculus.
When the leaves of the fibration ‘resolving’ the foliation are compact, we also
obtain an index formula for Fredholm perturbations of Dirac-type operators.
Along the way, we obtain a formula for the adiabatic limit of the eta invariant
for invertible perturbations of Dirac-type operators, a result of independent
interest generalizing the well-known formula of Bismut and Cheeger.
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Introduction

Let X be a smooth compact manifold with non-empty boundary ∂X . Assume
that ∂X is the total space of a smooth fibration

Z ∂X

Φ

��

Y

where the base Y and the typical fibre Z are smooth closed manifolds. Let also x ∈
C∞(X) be a choice of boundary defining function. On the interior of X , consider a
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2 FRÉDÉRIC ROCHON

complete Riemannian metric gΦ which in a collar neighborhood c : ∂X×[0, ǫ)x → X
of ∂X takes the form

gΦ =
dx2

x4
+

Φ∗h

x2
+ κ

where κ is a symmetric 2-tensor restricting to a Riemannian metric on each fibre
of Φ, and h is a Riemannian metric on Y . When Y = ∂X and Φ is the identity
map, this means gΦ is a conical metric near ∂X . The Euclidean metric on Rn

is the prototypical example of a metric of this form. When instead Y is a point,
(X \ ∂X, gΦ) is a manifold with a cylindrical end. In general, when 0 < dimY <
dim ∂X , the metric gΦ behaves like a cone in the base of the fibration and like a
cylindrical end in the fibres. Important examples of metrics of this form are given by
gravitational instantons in the ALF and ALG classes such as the multi-Taub-NUT
metric and the reduced 2-monopole moduli space metric.

To study geometric operators arising in this context, like the Laplacian and the
Dirac operator, Mazzeo and Melrose introduced in [27] the fibred cusp calculus
(also called Φ-calculus), a pseudodifferential calculus naturally adapted to this sort
of metrics. When Y = ∂X and Φ is the identity map, this reduces to the scattering
calculus of [30], while when Y is a point, this is the cusp calculus, a calculus
intimately related to the b-calculus of [28].

As for other related calculus of pseudodifferential operators, like the b-calculus,
the 0-calculus [26], the Edge Calculus [25] or the Θ-calculus [11], the starting point
of the construction of [27] is a certain space of vector fields, namely

VΦ(X) = {ξ ∈ Γ(TX) | ∃C > 0 such that gΦ(ξ(p), ξ(p)) < C ∀ p ∈ X \ ∂X},

the space of fibred cusp vector fields. If (x, y, z) are coordinates in a small neighbor-
hood near ∂X where the fibration Φ is trivial with y and z being local coordinates
on the base Y and the fibre Z respectively, then in that neighborhood, a fibred
cusp vector field ξ ∈ VΦ(X) is necessarily of the form

ξ = ax2
∂

∂x
+
∑

i

bix
∂

∂yi
+
∑

j

cj
∂

∂zj

where a, bi, cj ∈ C∞(X) are smooth functions up to the boundary. In fact, the
space VΦ(X) can be defined alternatively by

VΦ(X) = {ξ ∈ Γ(TX) | ξx ∈ x2C∞(X) and Φ∗(ξ|∂X) = 0}.

The space VΦ(X) is easily seen to be a Lie subalgebra of Γ(TX). This means we

can define unambiguously the space DiffkΦ(X) of Φ-differential operators of order k
as those operators on C∞(X) which can be written as a finite sum of products of
smooth functions with at most k elements of VΦ(X). To define more generally the
space ΨmΦ (X) of Φ-pseudodifferential operators of order m, Mazzeo and Melrose
describe their Schwartz kernels as conormal distributions on the manifold X ×X
suitably blown up at the corner ∂X×∂X . The Φ-pseudodifferential operators map
smooth functions to smooth functions and they map the subspace Ċ∞(X) ⊂ C∞(X)
of functions vanishing to infinite order at ∂X to itself. They are closed under compo-
sition and the Φ-operators of order 0 induce bounded linear operators on the space
L2
Φ(X \ ∂X) of square integrable functions with respect to the density defined by

gΦ. More generally, there are natural Sobolev spaces on which Φ-pseudodifferential
operators act.
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The notions of symbol and ellipticity have a natural generalization in this con-
text. However, ellipticity is not enough to insure an operator is Fredholm. Another
‘symbol’, called the normal operator, which encodes the asymptotic behavior of the
operator at infinity, must also be invertible. In that case, one says the operator is
fully elliptic. The criterion of Mazzeo and Melrose is that a Φ-operator is Fredholm
(when acting on suitable Sobolev spaces) if and only if it is fully elliptic. One of the
nice features of the Φ-calculus is that, in contrast with other types of pseudodiffer-
ential calculi, the inverse of an invertible fully elliptic Φ-operator is automatically
in the calculus.

In [27], Mazzeo and Melrose raised the problem of finding a nice formula for
the index of fully elliptic Φ-operators. When Y is a point, a formula for the index
of fully elliptic Φ-operators is essentially given by the Atiyah-Patodi-Singer index
theorem [6]. When Y = ∂X , then the problem can be reduced to the Atiyah-
Singer index theorem [7] as explained in [30]. In the intermediate cases, obtaining
a satisfactory formula is more delicate. When X \ ∂X = S1 × R3, a formula was
obtained by [34] for some operators coming from gauge theory. in [20], Lauter
and Moroianu computed the Hochschild homology of the algebra of Φ-operators
and obtained an index formula in this framework. In [17], the L2-cohomology of
Φ-metrics is computed in terms of intersection homology. An index in K-theory for
families was obtained in [31]. In [32], Moroianu used the index theorem of Vaillant
[39] to obtain one for Dirac-type Φ-operators. This formula was also obtained in
[23] using the adiabatic calculus of [31]. This was subsequently generalized in [1] to
include Fredholm perturbations of Dirac-type Φ-operators and to deal with families.

In the present paper, we generalize the Φ-calculus to situations where the fi-
bration Φ on the boundary is replaced by a smooth foliation F . Since a foliation
locally looks like a fibration, the notions of Φ-vector fields and Φ-differential op-
erators have obvious generalizations. However, the passage from a fibration to
a foliation is much more delicate for pseudodifferential operators. This is because
pseudodifferential operators are not local, so the global aspects of the foliation have
to be taken into account in their definition. One way to proceed is to use the general
construction of [4] for manifolds with Lie structure at infinity. The calculi obtained
in this way have many of the usual properties, but they are typically smaller than
the calculi constructed à la Melrose. This makes certain constructions, like the
one of a parametrix, more delicate. To be able to use some of the known results
about Φ-operators, notably about the index of fully elliptic ones, we will proceed
differently.

More precisely, we will assume the foliation F can be ‘resolved’ into a fibration
with possibly non-compact fibres but with compact base (see Assumption 1 at the
beginning of § 3). This certainly impose a restriction. Still, as we indicate in § 3,
a wide variety of natural examples arise in this way. For this type of foliations,
one can then define F -pseudodifferential operators using Φ-pseudodifferential op-
erators on the fibration ‘resolving’ the foliation. Standard mapping properties and
the fact the F -calculus is closed under composition follow without too much effort.
The notion of symbol and ellipticity also has an obvious generalization. The in-
troduction of a normal operator requires more work, but eventually lead to simple
criteria describing the F -operators which are compact or Fredholm. One important
new feature is that, contrary to what happens for Φ-operators, the inverse of an
invertible fully elliptic F -operator is not necessarily in the calculus. In fact, the
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construction of a parametrix in the spirit of [27] only works in certain special cases
(see Theorem 7.1 and Corollary 7.3).

When the fibres of the fibration ‘resolving’ the foliation are compact (see As-
sumption 2 at the beginning of § 8), we are able to obtain an index formula for
(Fredholm perturbations of) Dirac-type F -operators (see Theorem 8.4). The for-
mula is quite similar to the one of [1] for Dirac-type Φ-operators, except that it
has a new term, a ρ-invariant encoding how the normal operator is lifted to the
fibration ‘resolving’ the foliation. To obtain this formula, our strategy, inspired
from [23], is to start with a cusp metric, that is, a Φ-metric with Y = pt, and to
compute the limit of the known formula when the metric is deformed to a F -metric.
The main step is to compute the adiabatic limit of some eta invariant, which we
can do using the index formula of [1]. This gives in this way a generalization of
the adiabatic limit of Bismut and Cheeger to invertible perturbations of Dirac-type
operators (see Theorem 8.6), a result of independent interest.

The paper is organized as follows. In § 1, we introduce the relevant geometric
structures arising on a manifold with foliated boundaries. It is followed in § 2 by a
brief description of the construction of pseudodifferential operators using groupoids.
In section 3, we focus our attention on foliations that can be ‘resolved’ by a fibration
and we define the algebra of F -pseudodifferential operators. The notions of symbol
and of normal operator are introduced in § 4. We then define the natural Sobolev
spaces on which F -operators act and provide a compactness criterion. Before ob-
taining a Fredholm criterion in § 7, we need in § 6 to develop an adequate notion
of Sobolev spaces for F -suspended operators. Finally, in § 8, we state and prove
our index theorem for Fredholm perturbations of Dirac-type F -operators.

Acknowledgements. The author is grateful to Paolo Piazza for helpful discus-
sions.

1. Manifolds with foliated boundaries

Let X be a smooth manifold of dimension n with non-empty boundary ∂X .
Suppose that F is a smooth foliation on the boundary ∂X and denote by ℓ the
dimension of the leaves. To ease the presentation, we are assuming the boundary
∂X is connected, but the reader should keep in mind that the results presented in
this paper admit straightforward generalizations to situations where ∂X has more
than one connected component (with the dimension of the leaves of the foliation
possibly varying from one connected component to another). Fix also once and for
all a boundary defining function x ∈ C∞(X), that is, x is a function such that x > 0
in the interior of X , x = 0 on ∂X and the differential of x is nowhere zero on ∂X .

With this data, we can define the space of foliated cusp vector fields (or
F-vector fields) by

(1.1) VF(X) = {ξ ∈ Γ(TX) | ξx ∈ x2C∞(X) and ξ|∂X ∈ Γ(TF)}

where TF is the distribution associated to the foliation F . The condition ξ|∂X ∈
Γ(TF) simply means that ξ is required to be tangent to the leaves of the foliation.
As a particular case, we recover the space of fibred cusp vector fields introduced in
[27] when the leaves of F are given by the fibres of a smooth fibration.

As can be seen directly from the definition, the space VF(X) is a Lie subalgebra
of the Lie algebra of smooth vector fields Γ(TX). Thanks to this property, we can
define the space DiffmF (X) of foliated cusp differential operators of order m
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or F-differential operators of order m as the space of operators on C∞(X)
generated by C∞(X) and products of up to m elements of VF (X).

By a theorem of Serre and Swan, the Lie algebra VF(X) can be identified with
the space of sections of a certain vector bundle, namely the F-tangent bundle
FTX . This vector bundle is defined as follows. For p ∈ X , let Ip(X) ⊂ C∞(X) be
the ideal of functions vanishing at p and set

(1.2) FTpX = VF(X)/Ip(X)VF (X).

The F -tangent vector bundle FTX is then the vector bundle whose fibre above
p ∈ X is given by (1.2). The theorem of Serre and Swan insures that it has
a natural smooth structure and is such that there is a canonical identification
VF(X) = Γ(FTX). The restriction of FTX to the interior X \∂X of X is naturally
isomorphic to TX |X\∂X . This isomorphism extends to a natural map of vector

bundles

(1.3) ρ : FTX → TX.

On the boundary however, this map fails to be an isomorphism. In fact, the kernel
of its restriction to the boundary ρ|∂X : FTX

∣∣
∂X

→ TX |∂X forms a smooth

vector bundle FN∂X → ∂X of rank n − ℓ. Notice however that despite the fact
the map ρ is not an isomorphism of vector bundles, the bundles FTX and TX are
nevertheless isomorphic, although not in a natural way. The map ρ also induces a
map of sections

(1.4) ρΓ : Γ(FTX) → Γ(TX)

which is just the natural inclusion VF(X) ⊂ Γ(TX) under the identification of
VF(X) with Γ(FTX). This discussion can be conveniently summarized by the
notion of Lie algebroid which we now recall.

Definition 1.1. A Lie algebroid E over a manifold M (possibly with corners)
is a vector bundle E over M together with a Lie algebra structure on its space
of smooth sections Γ(E) and a bundle map a : E → TM extending to a map of
sections aΓ : Γ(E) → Γ(TM) such that

(i) aΓ([X,Y ]) = [aΓ(X), aΓ(Y )] for all X,Y ∈ Γ(E),
(ii) [X, fY ] = f [X,Y ] + (aΓ(X)f)Y for all X,Y ∈ Γ(E) and f ∈ C∞(M).

The map aΓ is called the anchor map of E.

Clearly, the F -tangent bundle FTX is a Lie algebroid with anchor map given by
(1.4). Since all the vector fields of VF (X) are tangential to the boundary of X , the
Lie algebroid FTX is also said to be boundary tangential in the terminology of [3].

If gF is a choice of smooth metric for the vector bundle FTX , then its restriction
to FTX

∣∣
X\∂X = TX |X\∂X induces a Riemannian metric on X \ ∂X also denoted

gF . We will say the metric gF is a F-metric or foliated boundary metric. The
metric gF gives a particular example of a Riemannian manifold with Lie structure at
infinity, a notion extensively studied in [3]. In our case, the Lie structure at infinity
is specified by the foliation F and the boundary defining function x. Among other
things, we know from the general results of [3] that (X\∂X, gF) is complete. Notice
that the Lie algebra of foliated cusp vector fields can also be defined in terms of
the metric gF ,
(1.5)
VF(X) = {ξ ∈ Γ(TX) | ∃C > 0 such that gF (ξ(p), ξ(p)) < C ∀ p ∈ X \ ∂X}.
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The Laplacian ∆gF associated to a F -metric gF is a natural example of foliated
cusp operator. More generally, any reasonable differential operator geometrically
constructed from the metric gF , for instance the Dirac operator when (X \∂X, gF)
has a spin structure, will give an example of foliated cusp operator.

The motivation behind the terminology foliated cusp comes from another type
of metrics, namely foliated cusp metrics. A foliated cusp metric gF−c is a metric
of the form

(1.6) gF−c = x2gF

for some F -metric gF . In particular, a foliated cusp metric is always conformal to
a F -metric. In a local chart U = [0, ǫ) × F × B, near ∂X on which the foliation
looks like a fibration with its leaves given by {0} × F × {b} for b ∈ B, a simple
example of such metric is given by

(1.7)
dx2

x2
+ gB + x2gF

where gB and gF are (pull-backs of) metrics on B and F respectively. When
we restrict this metric to a leaf (0, ǫ) × F × {b} for some b ∈ B, we get a cusp

metric dx2

x2 + x2gF , suggesting the metric (1.7) as a whole is a foliated cusp. The
corresponding F -metric is of the form

(1.8)
dx2

x4
+
gB
x2

+ gF

in this local chart. A particular feature of foliated cusp metrics is that they give
non-compact complete Riemannian manifold of finite volume. As for a F -metric,
one can use a foliated cusp metric gF−c to define a space of vector fields
(1.9)
VF−c(X) = {ξ ∈ Γ(TX) | ∃C > 0 such that gF−c(ξ(p), ξ(p)) < C ∀ p ∈ X\∂X}.

As can be check directly however, this space is not a Lie subalgebra of the Lie
algebra Γ(TX), which is not so convenient to define a corresponding algebra of
differential operators. Instead, one can notice that VgF−c(X) = x−1VF (X), which
suggests the following natural definition for differential operators of order m asso-
ciated to (1.9)

(1.10) DiffmgF−c
(X) = x−mDiffmF (X).

This definition is consistent with the fact the Laplacian of a foliated cusp metric is
an element of x−2 Diff2

F (X).

2. Microlocalization using groupoids

As was shown in many circumstances, even if one is solely interested in differential
operators, it is often useful to have a corresponding calculus of pseudodifferential
operators to study them, for instance to determine if a given differential operator is
Fredholm. For the algebra Diff∗

F(X), such a microlocalization could also be useful to
study operators arising from a foliated cusp metric as in (1.10). For instance, when
the foliation F comes from a fibration, this point of view was used very successfully
by Vaillant in his thesis [39] to study certain Dirac-type operators associated to
fibred cusp metrics. As shown in [4] and [33], one very general way of microlocalizing
an algebra of differential operators such as Diff∗

F(X) comes from groupoid theory.
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To describe this construction, we will first recall briefly the definition of a Lie
groupoid.

A groupoid G is a category whose morphisms are invertible and form a set. Let
us denote by G(1) its set of morphisms and by M its set of objects. An element
g ∈ G(1) has a domain d(g) ∈M and a range r(g) ∈M . This defines maps

(2.1) d : G(1) →M, r : G(1) →M.

Since two morphisms compose when the range of one is the domain of the other,
there is a composition map

(2.2) µ : {(g, h) ∈ G(1) × G(1) | r(h) = d(g)} →M, µ(g, h) = g ◦ h.

Since every morphism is invertible, there is also an inverse map

(2.3)
inv : G(1) → G(1)

g 7→ g−1.

In particular, this tacitly assume that for each m, there is a unique unit element
em such that g ◦ g−1 = em whenever r(g) = m. We denote the space of units by
G(0) and remark that it is canonically identified with the space of objects M .

Definition 2.1. A Lie groupoid is a groupoid G such that G(1) and G(0) are
smooth manifolds with corners and such that the structural maps d, r, inv and µ are
smooth with d and r submersions (in the sense of definition 1 in [33]). With this
definition, the fibres of d and r are smooth manifolds without boundary or corner.

The d-vertical tangent space of a Lie groupoid G, denoted TvertG, is the
vector bundle defined by the kernel of the differential d∗ : TG(1) → TG(0). The Lie

algebroid of G, denoted A(G), is defined to be the restriction of TvertG to G(0). Its
space of sections is naturally identified with the space of sections of TvertG which
are right invariant with respect to the action of G and its Lie algebra structure is
identified with the corresponding one for right invariant sections of TvertG. The
anchor map of A(G) is induced by the differential of the range map r:

(2.4) r∗ : A(G) → TG(0) = TM.

In [33], a calculus of pseudodifferential operators was defined on such Lie groupoids
providing a unifying point of view for the description of pseudodifferential operators
arising in various contexts. In particular, as described in [4], this gives a system-
atic way of constructing an algebra of pseudodifferential operators for Riemannian
manifold with Lie structure at infinity. One of the key ingredients for this approach
is an integrability criterion of Debord [13] (see also corollary 5.9 in [12]).

Theorem 2.2 (Debord). A Lie algebroid with injective anchor map on a dense
open set is integrable, that is, it is the Lie algebroid of a Lie groupoid.

This criterion certainly applies to the Lie algebroid of a Riemannian mani-
fold with Lie structure at infinity. In particular, it applies to the Lie algebroid
FTX . Thus there is a Lie groupoid G with Lie algebroid canonically identi-
fied with FTX . From [33], we get a corresponding algebra Ψ∞(G) of pseudo-
differential operators which acts on C∞

c (X \ ∂X) via the vector representation
πX : Ψ∞(G) → End(C∞

c (X \ ∂X)). This representation gives a corresponding alge-
bra of pseudodifferential operators on X \∂X . As described in [4], if we can find an
F -metric gF with positive injective radius, then this algebra can also be described
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directly without referring to the groupoid. The advantage of using groupoids, be-
sides making the construction systematic, is that the composition property follows
for free.

However, as can be seen from previous works about pseudodifferential operators
associated to various types of Lie structure at infinity (see for instance [26], [11], [28],
[30], [27], [25],[39], [21], [18] and [16]) the algebra of pseudodifferential constructed
in [33] and [4] is usually not big enough to allow certain natural construction, for
instance the construction of a parametrix. Of course, in all the papers just men-
tioned, there is always a groupoid hidden behind the definition of the corresponding
calculus of pseudodifferential operators. The groupoid is hidden because what is
usually used in not the groupoid, but a natural compactification of it, typically
a manifold with corners on which the pseudodifferential operators are defined in
terms of conormal distributions. Notice that the Lie groupoids used in [33] and [4]
are also manifolds with corners, but they are usually not compact.

3. Microlocalization for certain types of foliated boundaries

Since we are interested in analytical constructions like the construction of a
parametrix, we will construct our algebra of pseudodifferential operators more in
the spirit of [27]. In order to be able to do so, we will narrow down the type of
foliations we will consider on the boundary ∂X .

To define our algebra of pseudodifferential operators on X , we will make the
following assumption on the foliation F .

Assumption 1. The foliation F on ∂X arises as follows:

(i) ∂X = (∂X̃)/Γ where ∂X̃ is a smooth manifold (not necessarily compact)
on which a countable discrete group Γ acts on the right by diffeomorphisms

freely and properly discontinuously. The manifold ∂X̃ is the total space of
a fibration

(3.1) Z̃ // ∂X̃

Φ

��

Y

where the base Y is a closed manifold and the typical fibre Z̃ is a smooth
manifold. The group Γ acts smoothly and locally freely1 on Y in such a way
that

Φ(m · γ) = Φ(m) · γ, ∀ m ∈ ∂X̃, γ ∈ Γ.

(ii) The leaves of the foliation F are given by the images of the fibres of the

fibration Φ : ∂X̃ → Y under the quotient map q : ∂X̃ → ∂X. Thus the
leaves of the foliation are given by q(Φ−1(y)) for y ∈ Y .

Remark 3.1. Since Γ acts smoothly and locally freely on Y , notice that the subset
of Y where the action is free is a countable intersection of dense open sets, so in
particular it is dense in Y by the Baire category theorem.

1Recall that Γ acts locally freely on Y if given γ ∈ Γ and an open set U ⊂ Y such that γ(y) = y

for any y ∈ U , then γ = 1.
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Example 3.2. Here is a simple way to construct such a foliation. Let W̃ denote
the universal cover of a smooth closed manifold W . Then Γ = π1(W ) acts freely and

properly discontinuously on W̃ . Suppose also that Γ acts smoothly and locally freely
on another closed manifold V . Then the diagonal action of Γ on the total space of

the trivial fibration prR : W̃×V → V satisfies all the requirements in Assumption 1,

so that there is an induced foliation on the quotient space (W̃ × V )/Γ.

An important special case is given by the following.

Example 3.3 (Kronecker foliation). For θ an irrational number, the Kronecker
foliation on the torus T2 = R2/Z2 is the foliation whose leaves are obtained by
projecting the straight lines of slope θ in R2 onto the torus. Each leaf is then
diffeomorphic to the real line and is dense in the torus. The Kronecker foliation
is an example of foliation satisfying Assumption 1. Indeed, consider the fibration
Φ : R × (R/Z) → R/Z given by the projection on the right factor. Let Γ = Z acts
on the total space by

(3.2) (x, [y]) · k = (x+ k, [y − θk]), (x, [y]) ∈ R× (R/Z), k ∈ Z,

where the brackets denote equivalence classes modulo the action of Z. It induces an
action of Z on R/Z,

(3.3) [y] · k = [y − θk], [y] ∈ R/Z, k ∈ Z.

This fibration and group actions satisfy part (i) of Assumption 1, so that there is
an induced foliation on the quotient

(R× (R/Z))/Z.

One can then easily check that the diffeomorphism

(3.4)
ψ : (R× (R/Z))/Z → T2 = R/Z× R/Z

[x, [y]] 7→ ([x], [θx + y])

identifies the foliation on (R× (R/Z))/Z with the Kronecker foliation on T2.

Example 3.4 (Seifert fibrations). Let F be a foliation of a closed smooth 3-
manifold M by circles. By a result of Epstein [15], this foliation is then diffeo-

morphic to a Seifert fibration. Thus, its leaves are the fibres of a circle bundle N̂
over some compact orbifold surface without boundary Σ̂ (the space of leaves). If
this orbifold is bad, which means its universal cover is not a smooth manifold, then
the foliation F cannot come from the quotient of a fibration. As described in [38],

this can only happen if Σ̂ is the teardrop (a 2-sphere with one cone point) or a

2-sphere with two cone points having different cone angles. Otherwise, Σ̂ is a good
orbifold, which means its universal cover is a smooth manifold. In that case, one
can show (see for instance Theorem 2.5 in [37]) that Σ̂ can be covered by a smooth

closed surface Σ. If N → Σ is the pull-back of N̂ to Σ and Γ is the group of deck
transformations of the cover Σ → Σ̂, then N → Σ is naturally a Γ-equivariant circle
bundle satisfying all the hypotheses in Assumption 1. The foliation we obtain by
passing to the quotient is then precisely F .

Example 3.5. As in the previous example, take N̂ → Σ̂ to be a Seifert fibration
over a good compact orbifold surface without boundary Σ̂. Since S1 ⊂ SU(2), we

can enlarge the structure group to form a principal SU(2)-bundle P̂ over Σ̂. The

fibres of P̂ then define a foliation F on the total space of this bundle. Except for
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finitely many leaves diffeomorphic to lens spaces, the leaves of F are diffeomorphic
to S3. If Σ is a smooth closed surface covering Σ̂ and Γ is the group of deck
transformations, then the pull-back P of P̂ to Σ is a Γ-equivariant SU(2)-bundle
satisfying the hypotheses of Assumption 1 and the foliation obtained by passing to
the quotient is precisely F . This construction still works if instead of SU(2) we
have more generally a smooth compact manifold admitting a free S1-action.

We refer to §2.1 of [8] for further examples. For a foliation F arising as in
Assumption 1, the holonomy groupoid admits a simple construction. It is given by

G = ∂X̃ ×Φ ∂X̃/Γ

with space of units given by G(0) = ∂X̃/Γ = ∂X and with domain and range maps
given by

d[(m̃, m̃′)] = [m̃′], r[(m̃, m̃′)] = [m̃]

where the brackets denote equivalence classes modulo the action of the group Γ. If
Γy is the isotropy group of y ∈ Y , then there is a canonical identification of the
leaf Ly = q(Φ−1(y)) with the quotient Zy/Γy, where Zy = Φ−1(y). Moreover, the
holonomy cover of Ly is then given by the quotient map

Zy → Zy/Γy = Ly.

The quotient map q : ∂X̃ → ∂X should be understood as a ‘resolution’ of the
foliation F into a fibration. This resolution will allow us to describe our algebra
of pseudodifferential operators in terms of the fibred cusp operators of Mazzeo and
Melrose [27].

Let c : ∂X × [0, ǫ)x →֒ X be a collar neighborhood of ∂X compatible with
the boundary defining function x, that is, such that c(∂X × {r}) = x−1(r) for all

r ∈ [0, ǫ). The quotient map q : ∂X̃ → ∂X extends to a map

(3.5) qc = q × Id[0,ǫ)x : ∂X̃ × [0, ǫ)x → ∂X × [0, ǫ)x.

Then M̃ = ∂X̃ × [0, ǫ)x is a non-compact manifold with boundary, the boundary

∂M̃ = ∂X̃ ×{0} being also possibly non-compact. The boundary is equipped with
a fibration structure

(3.6) Φ : ∂M̃ = ∂X̃ → Y.

Although ∂M̃ and M̃ are possibly non-compact, we can proceed as in [27] to define

the corresponding Φ-double space. One first blows up the corner of M̃ × M̃ to
obtain the b-double space

(3.7) M̃2
b = [M̃ × M̃ ; ∂M̃ × ∂M̃ ]

with blow-down map βb : M̃2
b → M̃2. If x and x′ are the boundary defining

functions for the left and right factors in M̃ ×M̃ , then this blow-up amounts to the
introduction of polar coordinates

(3.8) r =
√
x2 + (x′)2, ω =

x

r
, ω′ =

x′

r
,

where r is the boundary defining function of the ‘new’ hypersurface

(3.9) B = β−1
b (∂M̃ × ∂M̃) ⊂ M̃2

b ,
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while ω and ω′ are boundary defining functions of the ‘old’ hypersurfaces. Notice
that the ‘new’ hypersurface

(3.10) B = SN+(∂M̃ × ∂M̃)

is by definition a quarter circle bundle over ∂M̃ × ∂M̃ , therefore giving the natural
decomposition

(3.11) B = ∂M̃ × ∂M̃ × [−1, 1]s, s = ω − ω′.

From this decomposition, we can define the lift of the fibre diagonal

(3.12) DΦ = {(h, h′) ∈ ∂M̃ × ∂M̃ | Φ(h) = Φ(h′)}

to the hypersurface B by

(3.13) D̃Φ = {(h, h′, 0) ∈ ∂M̃ × ∂M̃ × [−1, 1]s | Φ(h) = Φ(h′)}.

The Φ-double space of M̃ can then be defined by

(3.14) M̃2
Φ = [M̃2

b ; D̃Φ] = [M̃2; ∂M̃ × ∂M̃ ; D̃Φ]

with blow-down map βΦ−b : M̃2
Φ → M̃2

b and total blow-down map βΦ = βb ◦ βΦ−b.
Let

(3.15) ffΦ = β−1
Φ−b(D̃Φ)

be the ‘new’ face created by this blow-up. It is called the front face of M̃2
Φ. Let

also ∆̃Φ = β−1
Φ (∆

M̃
\∆

∂M̃
) be be the lift of the diagonal of M̃2 to the Φ-double

space M̃2
Φ. Fibred cusp operators on M̃ can be defined as distributions on M̃2

Φ

which are conormal to the lifted diagonal ∆Φ and decay rapidly at each boundary
face except maybe at ffΦ. It is worth pointing out that there is a natural underlying
Lie groupoid GΦ given by

(3.16) G
(1)
Φ =

◦
M̃2

Φ ∪
◦
ffΦ ⊂ M̃2

Φ, G
(0)
Φ = ∆̃Φ

∼= M̃,

with domain and range maps defined by d = prR ◦βΦ and r = prL ◦βΦ where

prR : M̃ × M̃ → M̃ and prL : M̃ × M̃ → M̃ are projections on the right and left
factors respectively. The map

(3.17) ι :
◦
M̃ ×

◦
M̃ ∋ (m̃, m̃′) 7→ (m̃′, m̃) ∈

◦
M̃ ×

◦
M̃

interchanging the two factors extends uniquely to a smooth map ι : G
(1)
Φ → G

(1)
Φ

defining the inverse map of GΦ. In the same way, the composition map on the pair

groupoid
◦
M̃ ×

◦
M̃ extends uniquely to give the composition map µ : G

(2)
Φ → G

(1)
Φ

with

(3.18) G
(2)
Φ = {(α, β) ∈ G

(1)
Φ | r(β) = d(α)}.

Notice that the diagonal action of Γ on M̃ × M̃ naturally extends to an action

on the Φ-double space M̃2
Φ. Let R : Γ → Diff(M̃2

Φ) denote this action. Consider
the density bundle ΦΩ′

R = β∗
Φ
ΦΩR where ΦΩR = pr∗R

ΦΩ is the pull-back from

the projection on the right factor of the Φ-density bundle ΦΩ → M̃ , which is the

density bundle associated to the Φ-tangent bundle ΦTM̃ . The Γ-action on M̃
naturally induces a Γ-action on the Φ-density bundle ΦΩ making it a Γ-equivariant

vector bundle over M̃ . Since the map prR ◦βΦ is equivariant with respect to the
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Γ-actions on M̃2
Φ and M̃ , we see that the Γ-action on ΦΩ lifts to a Γ-action giving

ΦΩ′
R the structure of a Γ-equivariant vector bundle over M̃2

Φ. The action of Γ on

M̃2
Φ restricts to give an action of Γ on GΦ compatible with the groupoid structure,

that is to say, Γ acts smoothly on G
(0)
Φ , G

(1)
Φ and G

(2)
Φ in such a way that the structure

maps (d, r, ι, µ) are equivariant with respect to these actions. We can therefore get
a new groupoid GΦ,Γ by taking the quotient,

(3.19) G
(1)
Φ,Γ = G

(1)
Φ /Γ, G

(0)
Φ,Γ = G

(0)
Φ /Γ ∼=M.

Definition 3.6. The space ΨmΦ,Γ(M̃) of Γ-invariant fibred cusp pseudodifferential

operators of order m on M̃ is defined to be the space of conormal distributions

K ∈ Im(M̃2
Φ,∆Φ;

ΦΩ′
R) such that

(i) K ≡ 0 at ∂M̃2
Φ\ffΦ, that is, K vanishes to infinite order at all hypersurfaces

of ∂M2
Φ except possibly at the front face ffΦ;

(ii) K is Γ-invariant with respect to the diagonal action of Γ on M̃2
Φ,

R(γ)∗K = K ∀ γ ∈ Γ;

(iii) By (ii) K descends to define a distribution on the quotient M̃2
Φ/Γ and we

require that as an element of C−∞(M̃2
Φ/Γ;

ΦΩ′
R/Γ), it has compact support.

The space ΨmΦ,Γ−ph(M̃) of polyhomogeneous (or classical) pseudodifferential F-

operators of order m is defined similarly, but using the space Imph(M̃
2
Φ,∆Φ,

ΦΩ′
R)

of polyhomogeneous conormal distributions of order m.

Because of condition (iii) in Definition 3.6, we see that Proposition 3 in [27]

(which says that Φ-operators map C∞(X) to C∞(X) and Ċ∞(X) to Ċ∞(X)) still

holds, so that an operator P ∈ ΨmΦ,Γ(M̃) naturally gives continuous linear maps

(3.20) P : C∞(M̃) → C∞(M̃), P : Ċ∞(M̃) → Ċ∞(M̃).

Condition (ii) of Definition 3.6 can be reformulated as saying that the action of P

on C∞(M̃) is Γ-equivariant,

(3.21) R(γ)∗ ◦ P ◦R(γ−1)∗ = P ∀ γ ∈ Γ.

This Γ-equivariance allows us to define an action of P on the smooth functions

defined on the quotient M = M̃/Γ = ∂X × [0, ǫ)x. Indeed, given f ∈ C∞(M),

let f̃ = q∗c f be its pull-back to M̃ . Clearly, a function on M̃ can be written as a

pull-back of a function on M if and only if it is Γ-invariant. Thus, f̃ is Γ-invariant
and by the Γ-invariance of P , we have

(3.22) R(γ)∗(P f̃) = P (R(γ)∗f̃) = P f̃, ∀ γ ∈ Γ.

This means there exists a unique function g ∈ C∞(M) such that P f̃ = q∗cg. We
define the action of P on f by Pf = g. Thus, Pf ∈ C∞(M) is the unique function
such that P (q∗cf) = q∗cPf . This defines continuous linear maps

(3.23) Rqc(P ) : C
∞(M) → C∞(M), Rqc(P ) : Ċ

∞(M) → Ċ∞(M).

In fact, because of condition (iii) in Definition 3.6, we get more precisely maps of
the form

(3.24) Rqc(P ) : C
∞(M) → C∞

c (M), Rqc(P ) : Ċ
∞(M) → Ċ∞

c (M).
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Definition 3.7. We define the space ΨmF (M) of foliated cusp pseudodifferential

operators of order m (or F-operators) on M to be the image of ΨmΦ,Γ(M̃) under the

representation Rqc : ΨmΦ,Γ(M̃) → End(C∞(M)). The space ΨmF−ph(M) of polyho-
mogeneous F-operators of order m is defined similarly.

Given P ∈ ΨmF (M), we can make P act on smooth functions on X using the
collar neighborhood c :M →֒ X ,

(3.25) c∗ ◦ P ◦ c∗ : C∞(X) → C∞(X), c∗ ◦ P ◦ c∗ : Ċ∞(X) → Ċ∞(X),

where c∗ : C∞(X) → C∞(M) is the pull-back while c∗ : C∞
c (M) → C∞(X) is the

pushforward. This defines a map

(3.26) πc : Ψ
m
F (M) → End(C∞(X)).

OnX , we can also consider the algebra of pseudodifferential operators with Schwartz
kernels vanishing with all their derivatives on ∂X2

b ,

(3.27) Ψ̇m(X) = {K ∈ Im(X2
b ,∆b; ΩR) | K ≡ 0 on ∂X2

b },

where ∆b is the lift of the diagonal from X ×X to X2
b .

Definition 3.8. The space of foliated cusp pseudodifferential operators (or
F-pseudodifferential operators) of order m on X is

ΨmF (X) = πc(Ψ
m
F (M)) + Ψ̇m(X).

The space of polyhomogeneous foliated cusp pseudodifferential operators of or-
der m, ΨmF−ph(X), is defined similarly. More generally, if E and F are complex

vector bundles on X, we can define the corresponding spaces ΨmF (X ;E,F ) and
ΨmF−ph(X ;E,F ) of F-operators mapping sections of E to sections of F .

Remark 3.9. Because of condition (i) in Definition 3.6, notice that

P ∈ ΨmF (X ;E,F ) =⇒ xℓ ◦ P ◦ x−ℓ ∈ ΨmF (X ;E,F )

since conjugation by xℓ corresponds to multiplication of the Schwartz kernel of P
by the function ( xx′ )

ℓ.

The underlying Lie groupoid GF associated to F -operators is obtained by gluing

the Lie groupoid GΦ,Γ of (3.19) with the pair groupoid
◦
X ×

◦
X using the quotient

map with respect to the action of Γ on the left factor

(3.28) qL : (
◦
M̃ ×

◦
M̃)/Γ →

◦
M ×

◦
M

[(m̃, m̃)] 7→ ([m̃], [m̃′])

where the brackets denote equivalence classes modulo the action of the group Γ.
Thus, GF is given by

(3.29) G
(1)
F = G

(1)
Φ,Γ ∪qL (

◦
X ×

◦
X), G

(0)
F = X.

One peculiar feature of this groupoid is that G
(1)
F is not Hausdorff.

To show that F -operators compose nicely, we need some preparation.
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Definition 3.10. Let Γ be a discrete group acting smoothly on a manifold W̃ in

such a way that the quotient W = W̃/Γ is a compact manifold. A partition of

unity relative to Γ is then a smooth function ϕ ∈ C∞
c (W̃ ) such that

∑

γ∈Γ

γ∗ϕ ≡ 1.

Since ϕ has compact support, notice that for all w ∈ W the sum
∑

γ∈Γ γ
∗ϕ(w) is

finite.

As explained in p.53 of [5], a partition of unity relative to Γ is easily constructed.

Indeed, let Ui be a finite open covering of W such that W̃ → W has a smooth
section si over Ui. Let φi be a partition of unity on W with supp(φi) ⊂ Ui. Using

the section si, we can lift the function φi to a function φ̃i ∈ C∞
c (W̃ ) such that

supp(φ̃i) ⊂ si(Ui) and s∗i φ̃i = φi. Then the function ϕ =
∑

i φ̃i is a partition of
unity relative to Γ.

Notice that a partition of unity relative to Γ on ∂M̃ can be used to give an

alternative description of the action of a Γ-invariant operator P ∈ ΨmΦ,Γ(M̃) on

C∞(M). Indeed, if ∂ϕ ∈ C∞(∂M̃) is such a partition of unity and ϕ ∈ C∞(M̃) is

its pull-back to M̃ , then P ∈ ΨmΦ,Γ(M̃) acts on f ∈ C∞(M̃) by

Pf = (qc)∗P (ϕq
∗
cf)

where for g ∈ C∞
c (M̃), (qc)∗g(m) =

∑
γ∈Γ g(m̃ · γ) with m̃ ∈ M̃ chosen such that

qc(m̃) = m.
On M we can consider the analog of (3.27), namely

(3.30) Ψ̇m(M) = {K ∈ Im(M2
b ,∆b; ΩR) | K ≡ 0 on ∂M2

b , supp(K) ⊂⊂M2
b }.

Similarly, we can define Ψ̇mF (M) to be the space of operators Q ∈ ΨmF (M) that can

be represented by Schwartz kernels on M̃2
Φ vanishing with all their derivatives on

∂M̃2
Φ.

Lemma 3.11. We have the identification Ψ̇m(M ;E,F ) = Ψ̇mF (M ;E,F ).

Proof. Without loss of generality, we can assume E = F = C. Since the inclusion
Ψ̇mF (M) ⊂ Ψ̇m(M) is obvious, what is left to show is that Ψ̇m(M) ⊂ Ψ̇mF (M). Let

Q ∈ Ψ̇m(M) be given. To establish that Q ∈ Ψ̇mF (M), we need to show that its

Schwartz kernel can be lifted to a Γ-invariant distribution in Im(M̃2
Φ,∆Φ,

ΦΩ′
R).

Let Ui be a finite open covering of ∂M such that ∂M̃ → ∂M has a smooth
section ∂si over Ui. Let Vi = Ui × [0, ǫ)x be the corresponding open covering of M

with sections si of M̃ →M over Vi. Decompose the operator Q in such a way that

(3.31) Q = Q1 +Q2, Q1 ∈ Ψ̇m(M), Q2 ∈ Ψ̇−∞(M),

with Q1 having its Schwartz kernel KQ1 supported near the diagonal:

(3.32) suppKQ1 ⊂⊂
⋃

i

Vi × Vi.

Let φi be a smooth partition of unity of
⋃
i Vi × Vi with suppφi ⊂ Vi × Vi so that

(3.33) KQ1 =
∑

i

φiKQ1 .
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Using the section si × si : Vi × Vi → M̃ × M̃ , we can lift φiKQ1 to a compactly

supported Schwartz kernel Ki in M̃ × M̃ and define a corresponding Γ-invariant
Schwartz kernel

KΓ
i =

∑

γ∈Γ

(γ × γ)∗Ki

under the diagonal action. Summing over i, we get a Schwartz kernel

KQ̃1
=

∑

i

KΓ
i

defining a Γ-invariant operator Q̃1 ∈ Ψ̇mΓ (M̃) = Ψ̇mΦ,Γ(M̃). By construction, Q̃1 is
such that

Q̃1q
∗
cf = q∗c (Q1f), ∀ f ∈ C∞(M).

This means Q1 ∈ Ψ̇mF (M).

To find a lift for the operator Q2 ∈ Ψ̇−∞(M), notice that there is a sequence of
two quotient maps

(3.34) M̃ × M̃
qD

// M̃ × M̃/Γ
qL

// M ×M

where qD is the quotient map with respect to the diagonal action of Γ on M̃ × M̃
and qL is the quotient map with respect to the action of Γ on the left factor. If

ϕ ∈ C∞(M̃ × M̃/Γ) is a choice of partition of unity relative to Γ for the quotient

map qL, then ϕq
∗
LKQ2 is a lift of KQ2 to M̃×M̃/Γ. Since ϕq∗LKQ2 vanishes with all

its derivatives at the boundary of M̃ × M̃/Γ, this can be further lifted to a smooth

Schwartz kernel on M̃2
Φ/Γ vanishing with all its derivatives at the boundary. This

shows that Q2 ∈ Ψ̇−∞
F (M). �

Theorem 3.12 (composition). The space of foliated cusp pseudodifferential oper-
ators is closed under composition by action on C∞(X),

ΨmF (X ;F,G) ◦Ψm
′

F (X ;E,F ) ⊂ Ψm+m′

F (X ;E,G).

A similar result holds for polyhomogeneous foliated cusp pseudodifferential opera-
tors.

Proof. Without loss of generality, we can assume E = F = G = C. Clearly,
Ψ̇m(X) ◦ Ψ̇m

′

(X) ⊂ Ψ̇m+m′

(X). Because of (iii) in Definition 3.6, the composition
result of [27] applies and we get

(3.35) ΨmF (M) ◦Ψm
′

F (M) ⊂ Ψm+m′

F (M)

since the Γ-invariance (condition (ii)) is easily seen to be preserved under compo-
sition.

To complete the proof, we need to show that given P ∈ πc(Ψ
m
F (M)) and Q ∈

Ψ̇m
′

(X), we have that

(3.36) PQ ∈ Ψm+m′

F (X), QP ∈ Ψm+m′

F (X).

First, let us decompose Q as a sum of two operators,

(3.37) Q = Q1 +Q2, Q1 ∈ Ψ̇m
′

(X), Q2 ∈ Ψ̇−∞(X),
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with Q1 having its Schwartz kernel supported near the diagonal in X × X . By
looking at the mapping properties, one concludes immediately that

(3.38) PQ2, Q2P ∈ Ψ̇−∞(X) ⊂ Ψm+m′

F (X).

Choosing our decomposition (3.37) so that Q1 has its Schwartz kernel supported
sufficiently close to the diagonal, we can further decompose Q1 into a sum of two
operators

(3.39) Q1 = Q′
1 +Q′′

1 , Q′
1 ∈ Ψ̇m

′

(M), Q′′
1 ∈ Ψ̇m

′

(X)

in such a way that KQ′′
1
is compactly supported in X \ ∂X×X \ ∂X and such that

(3.40) PQ′′
1 = Q′′

1P = 0.

By Lemma 3.11, we know that Q′
1 ∈ Ψ̇m

′

F (M), so by (3.35), we have that

(3.41) PQ′
1 ∈ Ψm+m′

F (X), Q′
1P ∈ Ψm+m′

F (X),

which completes the proof.
�

Let νF be the density associated to a choice of F -metric. If E and F are smooth
complex vector bundles over X equipped with Hermitian metrics hE and hF re-
spectively, then we can define the formal adjoint P ∗ : Ċ∞(X ;F ) → C−∞(X ;E) of
an F -operator P ∈ ΨmF (X ;E,F ) by

(3.42) 〈P ∗f, e〉L2 = 〈f, Pe〉L2 , e ∈ Ċ∞(X ;E), f ∈ Ċ∞(X ;F ),

where the L2-inner products are defined using the density νF and the Hermitian
metrics hE and hF :

(3.43)

〈e1, e2〉L2 =

∫

X

hE(e1, e2)νF , e1, e2 ∈ Ċ∞(X ;E),

〈f1, f2〉L2 =

∫

X

hF (f1, f2)νF , f1, f2 ∈ Ċ∞(X ;F ).

In a similar way, taking νΦ = q∗c (νF |M ) as a choice of Γ-invariant Φ-density on

M̃ and taking hẼ = q∗c (hE |M ), hF̃ = q∗c (hF |M ) to be our choices of Γ-invariant

Hermitian metrics for the Γ-equivariant vector bundles Ẽ = q∗c (E|M ) and F̃ =
q∗c (F |M ), we can define the formal adjoint Q∗ of a Γ-invariant Φ-operator Q ∈

ΨmΦ,Γ(M̃ ; Ẽ, F̃ ) by

(3.44) 〈Q∗f̃ , ẽ〉L2 = 〈f̃ , Qẽ〉L2 , ẽ ∈ Ċ∞
c (M̃ ; Ẽ), f̃ ∈ Ċ∞

c (M̃ ; F̃ ).

Here, Ċ∞
c (M̃ ; Ẽ) denotes the space of compactly supported smooth sections of Ẽ

vanishing to all order at ∂M̃ . By looking at the definition of Q in terms of its
Schwartz kernel and using the fact νΦ, hẼ , hF̃ are Γ-invariant, we see that Q∗ ∈

ΨmΦ,Γ(M̃ ; F̃ , Ẽ).

Proposition 3.13. The formal adjoint of an F-operator P ∈ ΨmF (X ;E,F ) (defined
as in (3.42) with respect to a choice of F-density νF and Hermitian metrics on E
and F ) is an element of ΨmF (X ;F,E). In fact, if

P = πc ◦Rqc(P1) + P2
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with P1 ∈ ΨmΦ,Γ(M̃ ; Ẽ, F̃ ) and P2 = Ψ̇m(X ;E,F ), then

P ∗ = πc ◦Rqc(P
∗
1 ) + P ∗

2

where P ∗
1 ∈ ΨmΦ,Γ(M̃ ; F̃ , Ẽ) is defined as in (3.44) and P ∗

2 ∈ Ψ̇m(X ;F,E).

Proof. Clearly, the formal adjoint P ∗
2 of an operator P2 ∈ Ψ̇m(X ;E,F ) is an ele-

ment of Ψ̇m(X ;F,E). Thus, to prove the proposition, we may assume that P is of
the form

P = πc ◦Rqc(P1)

with P1 ∈ ΨmΦ,Γ(M̃ ; Ẽ, F̃ ). This means we can think of P as an element of

ΨmF (M ;E,F ). If ∂ϕ ∈ C∞
c (∂M̃) is a choice of partition of unity relative to Γ and

ϕ ∈ C∞(M̃) is its pull-back to M̃ , then the L2-inner products of (3.43) restricted
to M can be rewritten as follows:

(3.45)

〈e1, e2〉L2 =

∫

M̃

hẼ(q
∗
ce1, q

∗
ce2)ϕνΦ, e1, e2 ∈ Ċ∞(M ;E),

〈f1, f2〉L2 =

∫

M̃

hF̃ (q
∗
c f1, q

∗
c f2)ϕνΦ, f1, f2 ∈ Ċ∞(M ;F ).

Since P1 is Γ-invariant and ϕ is a partition of unity relative to Γ, we have for

e ∈ Ċ∞(M ;E), f ∈ Ċ∞(M ;F ) with ẽ = q∗ce and f̃ = q∗cf ,

(3.46)

〈f, Pe〉L2 =

∫

M̃

hF̃ (f̃ , P1ẽ)ϕνΦ =

∫

M̃

hF̃ (f̃ , ϕP1ẽ)νΦ

=
∑

γ∈Γ

∫

M̃

hF̃ (f̃ , ϕP1(γ
∗ϕ)ẽ)νΦ =

∑

γ∈Γ

∫

M̃

hF̃ (f̃ , (γ
∗ϕ)P1ϕẽ)νΦ

=

∫

M̃

hF̃ (f̃ , P1ϕẽ)νΦ =

∫

M̃

hF̃ (P
∗
1 f̃ , ϕẽ)νΦ

= 〈Rqc (P
∗
1 )f, e〉L2 ,

that is, P ∗ = πc ◦Rqc(P
∗
1 ).

�

4. Symbol maps

Recall from [27] that the diagonal ∆̃Φ ⊂ M̃2
Φ is naturally diffeomorphic to M̃

with conormal bundle naturally diffeomorphic to ΦT ∗M̃ . Since the action of Γ on

M is smooth and induces corresponding actions on ΦTM̃ and ΦT ∗M̃ with canonical

identifications ΦTM̃/Γ = FTM and ΦT ∗M̃/Γ = FT ∗M , we see that the diagonal

∆Φ = ∆̃Φ/Γ ⊂ M̃2
Φ/Γ is naturally diffeomorphic to M with conormal bundle nat-

urally diffeomorphic to FT ∗M . This means we can proceed as in [27] to define a
principal symbol map

(4.1) σm : ΨmF (X) → S[m](FT ∗X)

where S[m](FT ∗X) = Sm(FT ∗X)/Sm−1(FT ∗X) and Sm(FT ∗X) is the usual space
of smooth functions f ∈ C∞(FT ∗X) such that in a local trivialization FT ∗X

∣∣
U
∼=

U × Rnξ with local coordinates u on U , we have

sup
u,ξ

|Dα
uD

β
ξ f |

(1 + |ξ|2)
m−|β|

2

<∞ ∀α, β ∈ N
n
0 .
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For polyhomogeneous pseudodifferential operators, the principal symbol becomes a
homogeneous function so that we have the symbol map

(4.2) σm : ΨmF−ph(X) → C∞(S(FT ∗X),Λm),

where Λ is the dual of the tautological real line bundle of S(FT ∗X), the sphere
bundle of FT ∗X .

As usual, we can also make our pseudodifferential operators act from smooth
sections of a (complex) vector bundle E to smooth sections of another vector bundle
F and define the corresponding principal symbol. This gives a short exact sequence
(4.3)

0 // Ψm−1
F (X ;E,F ) // ΨmF (X ;E,F )

σm
// S[m](FT ∗X ;φ∗ hom(E,F )) // 0

where φ : FT ∗X → X is the bundle projection.
As for fibred cusp operators, there is also a ‘new’ symbol coming from the bound-

ary. To describe it, we will first study the corresponding symbol for the space

ΨmΦ,Γ(M̃). In this case, the normal operator of an operator P ∈ ΨmΦ,Γ(M̃ ;E,F )

is defined to be the restriction of its Schwartz kernel KP ∈ Im(M̃2
Φ, ∆̃Φ;

ΦΩ′
R ⊗

Hom(E,F )) to the front face ffΦ,

(4.4) NΦ(P ) = KP |ffΦ
.

Remark 4.1. Since the function x
x′ pulls back to a function equal to 1 on ffΦ, we

see that

NΦ(x
ℓ ◦ P ◦ x−ℓ) = NΦ(P ) ∀ℓ ∈ R.

As described in [27], this can be interpreted as the Schwartz kernel of a ΦN∂M̃ -

suspended operator, where ΦN∂M̃ → ∂M̃ is the kernel bundle of the natural map
(cf. (1.3))

ρ : ΦTM̃
∣∣∣
∂M̃

→ TM̃
∣∣∣
∂M̃

.

To see this, recall that the bundle ΦN∂M̃ can naturally be seen as the pull-back
of a bundle on Y that we will conveniently denote NY → Y . Indeed, we have a
natural decomposition

ΦN∂M̃ = T (∂M̃)/T (∂M̃/Y )× R,

and from the short exact sequence

0 // T (∂M̃/Y ) // T (∂M̃)
Φ∗

// Φ∗TY // 0 ,

we have a canonical identification Φ∗TY = T (∂M̃)/T (∂M̃/Y ). Thus, ΦN∂M̃ ∼=
Φ∗NY with NY = TY × R. There is a corresponding fibration structure

(4.5) Z̃ ΦN∂M̃

Φ∗

��

NY.
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The interior of the front face ffΦ is naturally identified with ΦN∗∂M̃ ×Φ∗
ΦN∗∂M̃ .

Under this identification, KP |ffΦ
can be seen as the Schwartz kernel of a ΦN∂M̃ -

suspended operator via the action

(4.6) NΦ(P )f = (pr1)∗(π
∗(KP |ffΦ

) · pr∗2 f), f ∈ C∞
c (ΦN∂M̃ ;E)

where pri :
ΦN∂M̃ ×Y

ΦN∂M̃ → ΦN∂M̃ is the projection on the ith factor and

(4.7) π : ΦN∂M̃ ×Y
ΦN∂M̃ → ΦN∂M̃ ×Φ∗

ΦN∂M̃

is the projection which to (z, z′, ν, ν′) ∈ ∂M̃ ×Y ∂M̃ ×Y NY ×Y NY ∼= ΦN∂M̃ ×Y
ΦN∂M̃ associates (z, z′, ν − ν′) ∈ ∂M̃ ×Y ∂M̃ ×Y NY ∼= ΦN∂M̃ ×Φ∗

ΦN∂M̃ .
The normal operator NΦ(P ) is therefore a family of pseudodifferential operators

parametrized by the base Y of the fibration

(4.8) Ny∂M̃ ΦN∂M̃

��

Y.

Furthermore, for a given y ∈ Y , the corresponding operator NΦ(P )(y) is translation

invariant with respect to the NyY -action given by the decomposition ΦNy∂M̃ =

Z̃y × NyY where Z̃y = Φ−1(y). The Schwartz kernel KNΦ(P )(y) is a conormal

distribution in Im(Z̃y × Z̃y × NyY ; ∆Z̃y
× {0}; Hom(E,F ) ⊗ ΩR(Z̃y) ⊗ Ω(NyY ))

acting on f by

(4.9) NΦ(P )(y)f(z, ν) =

∫

Z̃y×NyY
KNΦ(P )(y)(z, z

′, ν − ν′)f(z′, ν′),

where the integration is performed in the variables z′ and ν′, the density factor
being included in the Schwartz kernel. Given η ∈ N∗

yY , we can therefore consider
the Fourier transform in NyY ,

(4.10) KN̂Φ(P )(y)(z, z
′, η) =

∫

NyY

e−iη(ν)KNΦ(P )(z, z
′, ν),

which is the Schwartz kernel of a family of operators N̂Φ(P )(y) parametrized by

the base of the fibration ΦN∗
y ∂M̃ → N∗

yY . Doing this for each y ∈ Y , we get a

family of operators N̂Φ(P ) associated to the fibration

(4.11) Z̃ ΦN∗∂M̃

��

N∗Y ∼= T ∗Y × R.

The family N̂Φ(P ) is the Fourier transform of the normal operator NΦ(P ). For

Q1 ∈ Ψmsus−Φ(∂M̃ ;E,F ) and Q2 ∈ Ψm
′

sus−Φ(∂M̃ ;F,G), it is such that

(4.12) Q̂2 ◦Q1 = Q̂2 ◦ Q̂1.

The normal operator NΦ(P ) and its Fourier transform N̂Φ(P ) contain the same
information.

Since Γ acts smoothly on M̃ and Y , there are induced actions of Γ on NY

and ΦN∂M̃ . These actions are compatible in the sense that the projection Φ∗ :
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ΦN∂M̃ → NY is equivariant with respect to these actions. Let ψ : Γ → Diff(ΦN∂M̃)

denote the action on ΦN∂M̃ and let ψ̂ : Γ → Diff(ΦN∗∂M̃) denote the correspond-

ing dual action on the vector bundle ΦN∗∂M̃ → ∂M̃ . Clearly, the quotient of
ΦN∂M̃ by this action is FN∂X , while the quotient of ΦN∗∂M̃ by the dual action
is FN∗∂X .

Proposition 4.2. For P ∈ ΨmΦ,Γ(M̃ ;E,F ), the normal operator NΦ(P ) and its

Fourier transform N̂Φ(P ) are Γ-invariant with respect to the action of Γ on ΦN∂M̃

and ΦN∗∂M̃ ,

ψ(γ) ◦NΦ(P ) ◦ ψ(γ
−1) = NΦ(P ), ψ̂(γ) ◦ N̂Φ(P ) ◦ ψ̂(γ

−1) = N̂Φ(P ) ∀ γ ∈ Γ.

Proof. By condition (ii) in Definition 3.6, we know that the Schwartz kernel of P is

Γ-invariant with respect to the action of Γ on M̃2
Φ. In particular, since this action

preserves the front face ffΦ, we see that NΦ(P ) = KP |ffΦ
is also Γ-invariant with

respect to the action of Γ on ffΦ. Under the identification

(4.13) ffΦ \∂ ffΦ = ΦN∂M̃ ×Φ∗

ΦN∂M̃,

this action corresponds the action ψ ×Φ∗ ψ. Thus, NΦ(P ) is Γ-invariant. Taking
the Fourier transform in the fibres of NY → Y then gives the the corresponding

result for N̂Φ(P ). �

Because of the Γ-invariance of N̂Φ(P ), we can make it act on the space of

Schwartz functions on FN∗∂X . Indeed, let qψ̂ : ΦN∗∂M̃ → FN∗∂X denote the

quotient map. Given f ∈ S(FN∗∂X), we can consider the Γ-invariant function

q∗
ψ̂
f on ΦN∗∂M̃ . Since N̂Φ(P ) is Γ-invariant, N̂Φ(P )(q

∗
ψ̂
f) is also Γ-invariant and

we can find a unique function g ∈ C∞(FN∗∂X) such that N̂Φ(P )(q
∗
ψ̂
f) = q∗

ψ̂
g. We

define the action of N̂Φ(P ) on f to be this function g. Similarly, using the quotient

map qψ : ΦN∂M̃ → FN∂X , we can make NΦ(P ) act on S(FN∂X).

Definition 4.3. The map

rψ : NΦ(Ψ
∞
Φ,Γ(M̃ ;E,F )) → Hom(S(FN∂X ;E),S(FN∂X ;F ))

is defined by requiring that

q∗ψ(rψ(NΦ(P ))f) = NΦ(P )q
∗
ψf ∀ P ∈ Ψ∞

Φ,Γ(M̃ ;E,F ), ∀ f ∈ S(FN∂X ;E).

Similarly, the map rψ̂ : N̂Φ(Ψ
∞
Φ,Γ(M̃ ;E,F )) → Hom(S(FN∗∂X ;E),S(FN∗∂X ;F ))

is defined by requiring that

q∗
ψ̂
(rψ̂(N̂Φ(P ))f) = N̂Φ(P )q

∗
ψ̂
f ∀ P ∈ Ψ∞

Φ,Γ(M̃ ;E,F ), ∀ f ∈ S(FN∗∂X ;E).

If we choose a metric for the vector bundle FN∂X → ∂X , for instance the one
induced by a choice of F -metric, then we have in particular a fibrewise volume
density on FN∂X . This can be used to define a fibrewise Fourier transform:

(4.14) FG : S(FN∂X ;G) → S(FN∗∂X ;G)
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for G a complex vector bundle over ∂X . This fibrewise Fourier transform relates
rψ and rψ̂ in the expected way:

(4.15) rψ̂(N̂Φ(P )) = FF ◦ (rψ(NΦ(P ))) ◦ F
−1
E , P ∈ ΨmΦ,Γ(M̃ ;E,F ).

Lemma 4.4. The maps rψ and rψ̂ are injective. In particular, when E = F , this

means they induce faithful representations.

Proof. Without loss of generality, we can assume E = F = C. Given P ∈ ΨmΦ,Γ(M̃)

such that N̂Φ(P ) 6= 0, we need to show that rψ̂(N̂Φ(P )) 6= 0 and rψ(NΦ(P )) 6= 0.

By relation (4.15), it suffices to show that rψ̂(N̂Φ(P )) 6= 0. Since N̂Φ(P ) 6= 0, there

exists f̃ ∈ C∞
c (ΦN∗∂M̃) such that N̂Φ(P )f̃ 6= 0.

Since ∂X is compact, we can find a finite covering {Ui}i∈I of ∂X with I a finite
set, such that for each i, there is a diffeomorphism

(4.16) φi : Ui → Bi × Fi

in such a way that the leaves of φi(F|Ui) are precisely the fibres of the projection

prL : Bi×Fi → Bi on the left factor, where Bi ⊂ Rn−1−ℓ and Fi ⊂ Rℓ are open sets.

Taking the Ui smaller if needed, we can also assume that the cover q : ∂M̃ → ∂X

admits a section si over Ui inducing a diffeomorphism si : Ui → Ũi ⊂ ∂M̃ . Then

{Ũi · γ}i∈I,γ∈Γ is a covering of ∂M̃ . Let {χi,γ} be a partition of unity subordinate
to this covering. Clearly, we can find i ∈ I and γ ∈ Γ such that

N̂Φ(P )π
∗χi,γ f̃ 6= 0,

where π : ΦN∗∂M̃ → ∂M̃ is the bundle projection. Thus, replacing f̃ with π∗χi,γ f̃

if needed, we can assume f̃ is supported in π∗(Ũi · γ). In fact, without loss of

generality, we can assume γ = 1 so that f̃ is supported in π∗Ũi. Let p̃ ∈ ΦN∗∂M̃
be a point such that N̂Φ(P )(f̃)(p̃) 6= 0. By Remark 3.1, we can choose the point p̃

in such a way that its image y0 ∈ Y under the projection ΦN∂M̃ → Y is a point
where the action of Γ is free.

Let p be the image of p̃ under the quotient map qψ̂ : ΦN∗∂M̃ → FN∗∂X . Let

also f ∈ C∞
c (π∗Ui) be the pushforward of f̃ under the natural identification π∗Ũi ∼=

π∗Ui given by the quotient map qψ̂, where π also denotes the bundle projection of
FN∗∂X . Finally, let νi : π

∗Ui → Bi be the fibration induced by the sequence of
maps

π∗Ui // Ui ∼= Fi ×Bi
prR

// Bi.

Even if N̂Φ(P )(f̃ )(p̃) 6= 0, it is still possible that rψ̂(N̂Φ(P ))(f)(p) = 0. This

is because the value of rψ̂(N̂Φ(P ))(f) at p is determined by the restriction of f at

the fibres of the fibration νi : π
∗Ui → Bi corresponding to the image of the leaf

passing by p of the foliation π−1F on FN∗∂X with leaves given by the inverse
images of the leaves of F under the projection π : FN∗∂X → ∂X . Still, by the
compactness assumption in (iii) of Definition 3.6, we know at least that the value

of rψ̂(N̂Φ(P ))(f) at p is determined by the restriction of f at only finitely many

of these fibres, say ν−1
i (b1), . . . , ν

−1
i (bk). Moreover, if ν̃i : π

∗Ũi → Bi denotes the

corresponding fibration on π∗Ũi, where we regards Bi as an open subset of Y , then

we also know that N̂Φ(P )(f̃ )(p̃) only depends on the restriction of f̃ to the fibre
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ν̃−1
i (y0). Without loss of generality, we can assume that ν̃−1

i (y0) is mapped to

ν−1
i (b1) under the quotient map. Now, using a suitable cut-off function, we can

make f̃ supported arbitrarily close to the fibre ν̃−1
i (y0) in such a way that we still

have N̂Φ(P )(f̃ )(p̃) 6= 0. On the other hand, if the support of f̃ is chosen sufficiently
close to ν̃−1

i (y0), then the function f will restrict to zero on ν−1
i (b2), . . . , ν

−1
i (bk),

which will insures that

(4.17) rψ̂(N̂Φ(P ))(f)(p) = N̂Φ(P )(f̃)(p̃) 6= 0.

In particular, this shows rψ̂(N̂Φ(P )) 6= 0. �

The function f in (4.17) can also be used to show the following.

Lemma 4.5. Given P ∈ ΨmΦ,Γ(M̃ ;E,F ), then

Rqc(P ) = 0 =⇒ N̂Φ(P ) = 0.

Proof. Without loss of generality, we can assume E = F = C. Suppose that

N̂Φ(P ) 6= 0. We need to show that Rqc(P ) 6= 0. To do this, start with the
function f of (4.17) constructed in the proof of Lemma 4.4 above. Recall that this
function is supported in π∗Ui where π : FN∗∂X → ∂X is the bundle projection
and Ui ⊂ ∂X is a small open set as in (4.16), that is, F|Ui has its leaves given by

the fibre of a trivial fibration. Moreover, the cover q : ∂M̃ → ∂X admits a section

si over Ui inducing a diffeomorphism si : Ui → Ũi ⊂ ∂M̃ . If f̃ ∈ C∞
c (π∗Ũi) is the

pull-back of f to π∗Ũi, then the way we constructed f insures that there exists

p̃ ∈ ΦN∗∂M̃ with image p ∈ FN∗∂X such that (4.17) holds. In particular, if we set
(y0, η0, τ0) = Φ∗(p̃) ∈ N∗Y ∼= T ∗Y × R, then above the point (y0, η0, τ0), we have

(4.18) (N̂Φ(P )(f̃ ))(y0, η0, τ0) 6= 0 in C∞(Z̃y0).

Recall also that the point p̃ was chosen in such a way that the action Γ on Y is
free at y0. Choose coordinates y on Bi so that y0 = 0 corresponds to the origin.
Let ρ ∈ C∞

c (Ny0Y ) be a function supported in a small neighborhood of the origin
with Fourier transform ρ̂ ∈ S(N∗

y0Y ) such that ρ̂(η0, τ0) 6= 0. Let z be coordinates

on Fi. On Ũi × (0, ǫ), we can then use the coordinates

(4.19) u =
1

x
, v =

y

x
, z = z.

In these coordinates, consider the function

h̃ = ρ(v, u−
2

ǫ
)

(
f̃
∣∣∣
ΦN∗Ũi

(y0, z, η0, τ0)

)
.

This function is well-defined with h̃ ∈ C∞
c (Ũi × (0, ǫ)x) (that is, u > 1

ǫ on the

support of h̃) provided ρ is chosen to have a sufficiently small support.
Let χ be the pull-back to Ui× [0, ǫ)x of a cut-off function on Ui such that q∗cχ ≡ 1

on the support of h̃ and consider the operator Pχ = P ◦ q∗cχ obtained by first
multiplying with q∗cχ and then acting with P . It is Γ-equivariant as well since

q∗cχ is a Γ-invariant function. Since q∗cχ ≡ 1 on the support of h̃, we have that
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P h̃ = Pχh̃. In the coordinates (4.19), this can be written in terms of the Schwartz
kernel of Pχ (cf. formula (3.10) in [27]),

(4.20) (Pχh̃)(u, v, z) =

∫
KPχ(u, v, S, Y, z, z

′)h̃(u − S, v − Y, z, z′)dSdY dz′,

where S = u−u′, Y = v−v′ and z represents a point on the fibre Z̃ not necessarily in

Ũi. On the other hand, we can make the restriction of the normal operator NΦ(Pχ)

(not its Fourier transform) at y0 act on h̃ via the inclusion Ũi × (0, ǫ)x ⊂ NY × Fi
given by the coordinates (4.19),

(4.21) NΦ(Pχ)|y0 h̃ =

∫
KNΦ(Pχ)(y0, S, Y, z, z

′)h̃(u − S, v − Y, z′)dSdY dz′.

By our choice of h̃, notice that this is not zero. Let p̃ = (u0, v0, z0) ∈ M̃ be a point

such that NΦ(P )|y0 h̃(p̃) 6= 0. For k ∈ N, consider the new function

(4.22) h̃k(u, v, z) = h̃(u − k, v, z).

By translation invariance, we will also have that NΦ(Pχ)|y0 h̃k(p̃k) 6= 0 with p̃k =

(u0 + k, v0, z0). Since the support of h̃k can be made arbitrarily close to the fibre

above y0 in the boundary of Ũi × [0, ǫ)x by taking k large enough, we see that

(4.23) lim
k→∞

(Pχh̃k(p̃k)− NΦ(Pχ)|y0 h̃k(p̃k)) = 0.

In particular, taking k large enough, we have that Pχh̃k(p̃k) 6= 0. If hk denotes
the corresponding function in Ui× [0, ǫ)x ⊂M under the quotient map, then, since
the action of Γ is free at y0 ∈ Y and using the compactness property in (iii) of
Definition 3.6, we have that

(4.24) lim
k→∞

(
Rqc(Pχ)hk(pk)− Pχh̃k(p̃k)

)
= 0

where pk = qc(p̃k). In particular, for k large enough, we have that Rqc(P )hk =
Rqc(Pχ)hk 6= 0, which shows that Rqc(P ) 6= 0.

�

With this lemma, we can now define the normal operator of a foliated cusp
pseudodifferential operator.

Definition 4.6. Given P ∈ ΨmF (X ;E,F ) of the form P = πc(PM ) + PX with

PM ∈ ΨmΦ,Γ(M̃ ;E,F ) and PX ∈ Ψ̇m(X ;E,F ), we define its normal operator by

NF(P ) = rψ(NΦ(PM )) ∈ Ψmsus−F(∂X ;E,F ),

with Fourier transform N̂F (P ) = rψ̂(N̂Φ(PM )), where Ψmsus−F(∂X ;E,F ) is the

image under the representation rψ of Γ-invariant operators in Ψmsus−Φ(∂M̃ ;E,F ).
By the previous lemma, this does not depend on the choice of PM and PX .

As for fibred cusp operators, the normal operator induces a short exact sequence
(4.25)

0 // xΨmF (X ;E,F ) // ΨmF (X ;E,F ) // Ψmsus−F(∂X ;E,F ) // 0.
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This can be seen directly from Lemma 4.5 and the corresponding short exact se-

quence for M̃ ,
(4.26)

0 // xΨmΦ (M̃ ;E,F ) // ΨmΦ (M̃ ;E,F ) // Ψmsus−Φ(∂M̃ ;E,F ) // 0.

5. F-Sobolev spaces and a compactness criterion

Let L2
F(X) be the L2-space corresponding to a choice of F -metric gF . If E and

F are smooth complex vector bundles with a choice of hermitian metrics hE and
hF , then there are corresponding L2-spaces of sections L2

F(X ;E) and L2
F(X ;F ) for

these vector bundles.
One can also define F -Sobolev spaces. Let U1, . . . ,Uk be a finite open covering

of ∂X such that F|Ui is induced by a trivial fibration

Φi : Ui → Bi

with fibres and base diffeomorphic to open balls in the Euclidean space. We also

assume the Ui are chosen so that for each i there is a section ∂si of ∂M̃ → ∂M over
Ui inducing a diffeomorphism onto its image Ũi = ∂si(Ui). Set Vi = Ui × [0, ǫ)x ⊂
M ⊂ X . On each Vi, the metric gΦi = gF |Vi is a fibred cusp metric. Using the

definition of [27], there is a corresponding fibred cusp Sobolev space Hm
Φi
(Vi;E) of

order m ∈ R. Choose an open set V0 ⊂ X \ ∂X so that V0 together with V1, . . . , Vk
is a finite covering of X . Let ϕi ∈ C∞

c (Ci) be a partition of unity subordinate to
this finite covering. On C∞

c (X ;E), we can consider the norm

(5.1) ‖u‖2HmF = ‖ϕ0u‖
2
HmgF

(V0;E) +
k∑

i=1

‖ϕiu‖
2
HmΦi

(Vi;E).

Definition 5.1. We define Hm
F (X ;E) to be the closure of C∞

c (X ;E) with respect
to the norm (5.1). We refer to the discussion after Proposition 5.2 to see this
definition does not depend on the choice of covering and partition of unity.

We can also consider the corresponding weighed version. There is a continuous
inclusion

(5.2) xℓHm
F (X ;E) ⊂ xℓ

′

Hm′

F (X ;E)

if and only if ℓ ≥ ℓ′ and m ≥ m′. The inclusion is compact if and only if ℓ > ℓ′ and
m > m′.

Proposition 5.2. An F-operator P ∈ ΨmF (X ;E,F ) induces a continuous linear
map

P : xℓHm+k
F (X ;E) → xℓHk

F (X ;F )

for all real numbers ℓ and k.

Proof. By definition, an operator P ∈ ΨmF (X ;E,F ) is of the form

(5.3) P = πc(P1) + P2, P1 ∈ ΨmF (M ;E,F ), P2 ∈ Ψ̇m(X ;E,F ).

Using a partition of unity and the boundedness result of [27], it is easy to see that
the operator P2 induces a bounded linear map

P2 : xℓHm+k
F (X ;E) → xℓHk

F(X ;F ).
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For πc(P1), let P̃1 ∈ ΨmΦ,Γ(M̃ ;E,F ) be a corresponding Γ-invariant operator such

that P1 = Rqc(P̃1).

Let ϕ ∈ C∞(M̃) be a partition of unity relative to Γ on M̃ obtained from the

pull-back of a corresponding partition of unity ∂ϕ ∈ C∞
c (∂M̃) relative to Γ on ∂M̃ .

We see from condition (iii) of Definition 3.6 and the Sobolev-boundedness result

of [27] that P̃1 ◦ ϕ induces a bounded linear map

P̃1 ◦ ϕ : xℓHm+k
Φ (M̃ ;E) → xℓHk

Φ(M̃ ;F ).

Since for f ∈ Ċ∞(X), we have

πc(P1)f = c∗P1c
∗f, P1c

∗f = (qc)∗P̃1(ϕq
∗
c c

∗f),

we see that this implies πc(P1) induces a bounded linear map

πc(P1) = xℓHm+k
F (X ;E) → xℓHk

F (X ;F ).

�

To see that the definition of Hm(X ;E) does not depend of the choice of covering
and partition of unity, we provide an alternative description. For m > 0, let

Am
2
∈ Ψ

m
2

F (X ;E) be an elliptic F -operator and consider the operator

(5.4) Dm = A∗
m
2
Am

2
+ 1.

In particular, it induces a continuous linear map Dm : Hm+k
F (X ;E) → Hk(X ;E).

Since it is elliptic, by a standard construction, there exists B−m ∈ Ψ−m
F (X ;E) such

that

(5.5) B−mDm − IdE = R ∈ Ψ−∞
F (X ;E).

In particular, if u ∈ Hq(X ;E) is such that Dmu = 0, we see from (5.5) that u = Ru,
so that

u ∈
⋂

j

Hj
F (X ;E).

In that case,

Dmu = 0 =⇒ ‖Am
2
u‖2L2

F
+ ‖u‖2L2

F
= 0 =⇒ u ≡ 0.

Since Dm is formally self-adjoint, this means it induces a bijective continuous
linear map

Dm : Hm
F (X ;E) → L2

F(X ;E).

In particular, instead of (5.1), we can use the equivalent norm u 7→ ‖Dmu‖L2
F
for

m > 0 to define Hm
F (X ;E). If we think of H−m

F (X ;E) as the dual of Hm
F (X ;F )

seen as a subspace of C−∞(X ;E), then D∗
m induces a bijective continuous linear

map

D∗
m : L2

F(X ;E) → H−m
F (X ;E).

Thus, in this case, we can use the equivalent norm u 7→ ‖(D∗
m)

−1u‖L2
F
onH−m

F (X ;E).

Theorem 5.3 (Compactness criterion). For δ > 0, an operator P ∈ Ψm−δ
F (X ;E,F )

is compact from xℓHm+k
F (X ;E) to xℓHk

F (X ;F ) if and only if NF(P ) = 0. In par-
ticular, a polyhomogeneous operator P ∈ ΨmF (X ;E,F ) is compact as a map from

xℓHm+k
F (X ;E) to xℓHk

F (X ;F ) if and only if it is in xΨm−1
F (X ;E,F ).
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Proof. By considering the operator P̃ = xℓPx−ℓ and using the fact NF(P̃ ) =

NF(P ) (see Remark 4.1), we can reduce to the case where P ∈ Ψm−δ
F (X ;E,F ) is

seen as a bounded linear operator

(5.6) Hm+k
F (X ;E) → Hk

F(X ;F ).

Since any operator Q ∈ Ψ̇m−δ(X ;E,F ) induces a compact operator

Q : Hm+k
F (X ;E) → Hk

F (X ;F ),

we see by the density of Ψ̇m−δ(X ;E,F ) in xΨm−δ
F (X ;E,F ) (using the topology

of ΨmF (X ;E,F )) that any operator in xΨm−δ
F (X ;E,F ) is compact as a continuous

linear map from Hm+k
F (X ;E) to Hk

F (X ;F ) . This shows that P ∈ Ψm−δ
F (X ;E,F )

is compact in that sense whenever NF(P ) = 0.

Conversely, if P ∈ Ψm−δ
F (X ;E,F ) is such that NF(P ) 6= 0, we need to show

that P is not compact as a map from Hm+k
F (X ;E) to Hk

F (X ;F ). Without loss of
generality, we can assume that E = F = C are trivial line bundles so that P ∈
Ψm−δ

F (X). Since any operator in Ψ̇m−δ(X) is compact as a map from Hm+k
F (X)

to Hk
F (X), we can also assume P is of the form πc ◦Rqc(P ) with P ∈ Ψm−δ

Φ,Γ (M̃).

Since we assumeNF (P ) 6= 0, we can apply the construction in the proof Lemma 4.5.
Thus consider the sequence of functions hk given by (4.24). If we define the L2-norm
of L2

F(M) using an F -metric which is of the form

gF = du2 + dv2 + gFi

in Ui× (0, ǫ)x, then clearly each element of the sequence hk has the same L2-norm.
Similarly, using the Fourier transform in the u and v variables, we can choose the
various F -Sobolev norms so that they are translation invariant in the variables u
and v. With this choice, each element of the sequence hk has the same Hm+k

F -
norm, which we can assume is equal to 1 by rescaling. Thus, since NΦ(Pχ)y0
is translation invariant in the u and v variables, each element of the sequence

{NΦ(Pχ)h̃k}k∈N have the same non-zero Hk
Φ-norm, where h̃k is the lift of hk to

Ũi × [0, ǫ)x. Moreover, the support of NΦ(Pχ)h̃k goes to infinity as k → ∞, so

{NΦ(Pχ)h̃k}k∈N has no converging subsequence. From (4.23), (4.24) and the fact
Phk = Pχhk, we conclude that {Phk}k∈N also has no convergent subsequences.
This means P cannot be compact.

�

6. Sobolev spaces for F-suspended operators

Let V be a finite dimensional real vector space and W a compact manifold. For
E,F complex vector bundles over W , we can consider the space

(6.1) Ψmsus(V )(W ;E,F ) ⊂ Ψm(W × V ;E,F )

of V -suspended operators of order m on W , see [29] and [27] for a definition. Let
〈·, ·〉V be a choice of inner product on V and gV be the corresponding Euclidean
metric on V seen as a manifold. If r ∈ C∞(V ) is the distance function from the
origin, then as described in [30], the function ρ = 1√

r2+1
∈ C∞(V ) can be seen

as a boundary defining function for the radial compactification V of V . Thus V
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is a manifold with boundary diffeomorphic to the closed unit ball and such that
V = V \∂V . If gW is a choice of Riemannian metric onW , then the product metric

(6.2) gψ = gV ⊕ gW

is a fibred cusp metric on V ×W ⊂ V ×W with fibration on the boundary ∂(V ×
W ) = ∂V ×W given by the projection on the left factor

(6.3) W ∂V ×W

ψ

��

∂V

From this point of view, the inclusion (6.1) can be refined to an inclusion

(6.4) Ψmsus(V )(W ;E,F ) ⊂ Ψmψ (V ×W ;E,F ).

In other words, V -suspended operators on W can be seen as a particular type of
fibred cusp pseudodifferential operators on V × W . In this particular case, the
bundle ψN∂(V ×W ) is canonically trivial with its fibres canonically identified with
V . Under this identification, we have

(6.5) Ψmsus−ψ(∂(V ×W );E,F ) = C∞(∂V ; Ψmsus(V )(W ;E,F ))

and the normal operator N(P ) of a V -suspended operator P seen as a ψ-operator
is just the constant family given by

(6.6) N(P )q = P, ∀ q ∈ ∂V .

This suggests the following definition.

Definition 6.1. The V -suspended Sobolev space of order m on W is

Hm
sus(V )(W ;E) = Hm

ψ (V ×W ;E)

where Hm
ψ (V × W ;E) is the ψ-Sobolev space of order m associated to the fibred

cusp metric gψ = gV ⊕ gW .

Proposition 6.2. A V -suspended operator P ∈ Ψmsus(V )(W ;E,F ) defines a con-

tinuous linear map

P : Hm+k
sus(V )(W ;E) → Hk

sus(V )(W ;F )

for all k ∈ R. This map is Fredholm if and only if P is invertible.

Proof. Since Ψmsus(V )(W ;E,F ) ⊂ Ψmψ (V × W ;E,F ), this mapping property fol-

lows from the corresponding one for fibred cusp operators. Moreover, since P is
translation invariant in the V direction, the only way it can be Fredholm is if it is
invertible. Alternatively, this can be shown using (6.6) and the Fredholm criterion
of Mazzeo and Melrose [27] for fibred cusp operators. �

If instead we have a family of V -suspended operators parametrized by a smooth
compact manifold B, then the natural Sobolev space one should consider for such
a family P ∈ C∞(B; Ψmsus(V )(W ;E,F )) is given by taking the closure of S(B× V ×

W ;E) = Ċ∞(B × V ×W ;E) using the norm

‖u‖ = sup
b∈B

‖ub‖Hm
sus(V )

(W ;E), ub = u|{b}×V×W .
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Since the normal operator of a fibred cusp operator is a family of suspended oper-
ators, we can apply the construction above to this case. More precisely, suppose
now W is a manifold with boundary with ρ ∈ C∞(W ) a choice of boundary defin-
ing function and with a fibration on the boundary ψ : ∂W → B. In this case, an
operator P ∈ Ψmsus−ψ(∂W ;E,F ) is a family of operators on ψN∂W parametrized
by B. For each b ∈ B, we have a corresponding operator

Pb ∈ Ψmsus(NbB)(ψ
−1(b);E,F )

where NB → B is the bundle leading to the canonical identification ψN∂W =
ψ∗NB.

Definition 6.3. On the space of Schwartz sections S(ψN∂W ;E), consider the
norm

‖u‖Hmsus−ψ(∂W ;E) = sup
b∈B

‖ub‖Hm
sus(NbB)

(ψ−1(b);E)

where ub = u|NbB×ψ−1(b) and we use the identification NbB×ψ−1(b) = ψN∂W
∣∣
ψ−1(b)

.

We define Hm
sus−ψ(∂W ;E) to be the closure of S(ψN∂W ;E) with respect to this

norm.

The spaceHm
sus−ψ(∂W ;E) is a Banach space. It is also naturally a C0(B)-Hilbert

module. Proposition 6.2 has the following immediate generalization.

Proposition 6.4. An operator P ∈ Ψmsus−ψ(∂W ;E,F ) induces a continuous linear
map

P : Hm+k
sus−ψ(∂W ;E) → Hk

sus−ψ(∂W ;F )

of C0(B)-Hilbert modules for all k ∈ R.

To define the Sobolev spaces associated more generally to F -suspended opera-

tors, we can proceed as follows. Let ϕ ∈ C∞
c (∂M̃) be a partition of unity relative

to Γ for the cover ∂M̃ → M . If π : ΦN∂M̃ → ∂M̃ is the vector bundle projection,

the function π∗ϕ ∈ C∞(ΦN∂M̃) is a partition of unity relative to Γ for the quotient
map

qψ : ΦN∂M̃ → FN∂M.

Definition 6.5. On the space of smooth sections S(FN∂X ;E), consider the norm

‖u‖Hmsus−F (∂X;E) = ‖(π∗ϕ)q∗ψu‖Hmsus−Φ(∂M̃ ;E).

The space Hm
sus−F(∂X ;E) is the closure of S(FN∂X ;E) with respect to this norm.

Proposition 6.4 generalizes immediately to the following.

Proposition 6.6. An F-suspended operator P ∈ Ψmsus−F(∂X ;E,F ) induces a con-
tinuous linear map

P : Hm+k
sus−F(∂X ;E) → Hk

sus−F(∂X ;F )

for all k ∈ R.
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7. Fredholm Criterion

If the normal operator NF (P ) of a fully elliptic F -operator P ∈ ΨmF (X ;E,F ) is
invertible, it is not always the case that N(P )−1 is in Ψ−m

sus−F (∂X ;F,E), but when
it is, a parametrix can be constructed using the usual method.

Theorem 7.1 (Parametrix construction). If P ∈ ΨmF (X ;E,F ) is elliptic with
an invertible normal operator such that NF(P )−1 ∈ Ψ−m

sus−F(∂X ;F,E), then there

exists Q ∈ Ψ−m
F (X ;F,E) such that

PQ− IdF ∈ Ψ̇−∞
F (X ;F ), QP − IdE ∈ Ψ̇−∞

F (X ;E).

In particular, for all k, ℓ ∈ R, the operator P is Fredholm as a map

P : xℓHm+k
F (X ;E) → xℓHk

F (X ;F ).

Proof. Since P is elliptic and NF(P )−1 ∈ Ψ−m
sus−F(∂X ;F,E), we can find Q1 ∈

Ψ−m
F (X ;F,E) such that NF (Q) = NF(P )−1 and σ−m(Q) = σm(P )−1. Thus,

Q1P − IdE = R1 ∈ xΨ−1
F (X ;E,F ).

Suppose we can also find Qj ∈ xj−1Ψ−m−j+1
F (X ;F,E) for j ≤ k such that

(7.1) (Q1 + · · ·+Qk)P − IdE = Rk ∈ xkΨ−k
F (X ;E).

This can be improved at the next level provided we can findQk+1 ∈ xkΨ−m−k
F (X ;F,E)

such that
Qk+1P ≡ Rk mod xk+1Ψ−k−1

F (X ;E).

For this, it suffices to take Qk+1 such that

NF(x
−kQk+1) = NF(x

−kRk)NF(P )
−1, σ−m−k(x

−kQk) = σ−k(x
−kRk)σm(P )−1.

Proceeding recursively, we can therefore find Qj ∈ xj−1Ψ−m−j+1
F (X ;F,E) such

that (7.1) holds for all k ∈ N. Thus, taking Q ∈ Ψ−m
F (X ;F,E) to be some asymp-

totic sum of the Qj, we get a left parametrix

QP − IdE ∈ x∞Ψ−∞
F (X ;E).

We can proceed in a similar way to construct a right parametrix Q′. Clearly we
will have that Q−Q′ ∈ x∞Ψ−∞

F (X ;F,E) so that Q is also a right parametrix. �

Corollary 7.2. If P ∈ ΨmF (X ;E,F ) is elliptic with an invertible normal op-
erator such that NF(P )−1 ∈ Ψ−m

sus−F(∂X ;F,E) and P is invertible as a map

P : C∞(X ;E) → C∞(X ;F ), then its inverse is an element of Ψ−m
F (X ;F,E).

Proof. Let Q ∈ Ψ−m(X ;F,E) be a parametrix for P as in Theorem 7.1 so that

QP − IdE = R ∈ Ψ̇−∞
F (X ;E).

Composing on the right with P−1 we get

(7.2) P−1 = Q −RP−1.

Since Ψ̇−∞
F (X) is an ideal, RP−1 is in Ψ̇−∞

F (X ;F,E) and the result follows from
(7.2). �

A particular case where Theorem 7.1 can be applied systematically is when the
foliation F can be resolved by a fibration having compact fibres.
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Corollary 7.3. If the foliation F on ∂X satisfies Assumption 1 with ∂M̃ a compact
manifold, then for any fully elliptic operator P ∈ ΨmF (X ;E,F ), there exists an
operator Q ∈ ΨmF (X ;E,F ) such that

PQ− IdF ∈ Ψ̇−∞
F (X ;F ), QP − IdE ∈ Ψ̇−∞

F (X ;E).

Proof. Since ∂M̃ is compact and Γ acts freely and properly discontinuously on ∂M̃ ,
notice that Γ has to be a finite group. According to Theorem 7.1, it suffices to show
that NF (P ) has an inverse in Ψ−m

sus−F (∂X ;E,F ). Replacing P by
(
P 0
0 P ∗

)

if needed, we can assume that E = F .

To show that NF (P )−1 ∈ Ψ−m
sus−F (∂X ;E), it is enough to prove that NΦ(P̃ ) is

invertible, where P̃ ∈ ΨmΦ,Γ(M̃ ;E) is such that rψ(NΦ(P̃ )) = NF (P ), since then

NΦ(P̃ )
−1 ∈ Ψ−m

sus−Φ;Γ(∂M̃ ;E) automatically. To do this, we can reduce to the

case m = 0 by replacing NΦ(P̃ ) with Q̃NΦ(P̃ ), where Q̃ ∈ Ψ−m
sus−Φ,Γ(∂M̃ ;E) is

elliptic and invertible with Ψ−m
sus−Φ,Γ(∂M̃ ;E) denoting the subspace of Γ-invariant

Φ-suspended operators in Ψ−m
sus−Φ(∂M̃ ;E). Since Γ is finite, such an operator Q̃ is

easy to construct by averaging over Γ.

Thus, we can assume NΦ(P̃ ) ∈ Ψ0
sus−Φ,Γ(∂M̃ ;E). By Proposition 6.6, we have

injective maps

(7.3)
ιF : Ψ0

sus−F(∂X ;E) → L(H0
sus−F (∂X ;E)),

ιΦ : Ψ0
sus−Φ,Γ(∂M̃ ;E) → L(H0

sus−Φ(∂M̃ ;E)).

These maps are in fact continuous as it can be easily shown. Indeed, for any
u ∈ S(FN∂X ;E), the map

Ψ0
sus−F (∂X ;E) ∋ A 7→ ‖Au‖H0

F−sus(∂X;E)

is continuous. Since the strong operator topology is weaker than the norm topol-
ogy, this means the graph of ιF is also closed when we use the norm topology
on L(H0

sus−F(∂X ;E)). By the closed graph theorem, this means the map ιF is
continuous. The proof that ιΦ is continuous is similar.

Let P0
sus−F(∂X ;E) and P0

sus−Φ,Γ(∂M̃ ;E) denote the images of these maps and

let P
0

sus−F(∂X ;E) and P
0

sus−Φ,Γ(∂M̃ ;E) be their closure with respect to the norm

topology. The map rψ : Ψ0
sus−Φ,Γ(∂M̃ ;E) → Ψ0

sus−F(∂X,E) naturally extends to
give a map of C∗-algebras

rψ : P
0

sus−Φ,Γ(∂M̃ ;E) → P
0

sus−F (∂X ;E).

By Lemma 4.17, the map rψ is injective. In fact, the proof of this lemma gener-
alizes directly to show that rψ is an injective map of C∗-algebras. By a standard
result (see for instance proposition 1.3.10 in [14]), we know then that an element in

P
0

sus−Φ,Γ(∂M̃ ;E) is invertible if and only if it is invertible in P
0

sus−F (∂X ;E). In

particular, if NF(P ) is invertible, then so is NΦ(P̃ ), which completes the proof. �
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It is still possible to get a precise Fredholm criterion when Theorem 7.1 does not
apply. The proof of the following proposition is inspired by the approach of Lauter,
Monthubert and Nistor (Theorem 4 in [19]) to get Fredholm criteria for algebras of
pseudodifferential operators defined on groupoids.

Proposition 7.4. A classical (or polyhomogeneous) F-operator P ∈ ΨmF−ph(X ;E,F )
induces a Fredholm operator

P : Hm+k
F (X ;E) → Hk

F (X ;F )

if and only if P is elliptic and NF(P ) is invertible as a map

NF (P ) : H
m+k
sus−F(∂X ;E) → Hk

sus−F(∂X ;F ).

Proof. Considering instead the operator
(

0 P ∗

P 0

)
: Hm+k

F (X ;E ⊕ F ) → Hk
F(X ;E ⊕ F ),

we can reduce to the case where E = F and P is formally self-adjoint. By Propo-
sition 5.2, there is an injective map

(7.4) ιm,k : ΨmF−ph(X ;E) →֒ L(Hm+k
F (X ;E), Hk

F(X ;E)).

It is in fact continuous with respect to the norm topology. Indeed, for any u ∈
Ċ∞(X ;E), v ∈ Ċ∞(X ;E), the map

ΨmF−ph(X ;E) ∋ A 7→ 〈Au, v〉L2

is continuous. Since the topology induced by the semi-norms A 7→ |〈Au, v〉L2 | is
weaker than the norm topology, this implies the graph of (7.4) is closed for the
product topology (using the norm topology for the space of bounded operators).
Thus, by the closed graph theorem, the map (7.4) is continuous.

Let Pmk (X ;E) be the image of this map and P
m

k (X ;E) its closure in the space

L(Hm+k
F (X ;E), Hk

F(X ;E)). Notice the principal symbol defines a continuous map

(7.5) σm : Ψ0
F−ph(X ;E) → C∞(FS∗X ; Λm ⊗ hom(E))

where FS∗X is the cosphere bundle of FTX . If we use the C0-norm on C∞(FS∗X ; Λm⊗
hom(E)), this extends to a continuous map

(7.6) σm : P
m

k (X ;E) → C0(FS∗X ; Λm ⊗ hom(E))

Similarly, the normal operator induces a continuous linear map

(7.7) NF : P
m

k (X ;E) → L(Hm+k
sus−F(∂X ;E), Hk

sus−F (∂X ;E)).

By the compactness criterion of Theorem 5.3, these maps induce a continuous
injective map

(7.8) P
m

k (X ;E)/Kmk →

C0(FS∗X ; Λm ⊗ hom(E))⊕ L(Hm+k
sus−F(∂X ;E), Hk

sus−F (∂X ;E))

where Kmk ⊂ P
m

k (X ;E) is the subspace of compact operators. When m = 0, this
is an injective map of C∗-algebras mapping the identity to the identity. For such a
map, it is a standard fact (see for instance Proposition 1.3.10 in [14]) that an element
of the initial C∗-algebra is invertible if and only if its image is invertible in the other
C∗-algebra. In particular, for m = 0, an operator P ∈ ΨmF−ph(X ;E) ⊂ P

m

k (X ;E)



32 FRÉDÉRIC ROCHON

has an inverse Q in the space L(Hk
F (X ;E), Hm+k

F (X ;E)) modulo compact opera-

tors if and only if (σm ⊕NF )(P ) has an inverse in

C0(FS∗X ; Λ−m ⊗ hom(E))⊕ L(Hk
sus−F (∂X ;E), Hm+k

sus−F(∂X ;E)).

As Lemma 7.5 below shows, this is still true when m 6= 0. Since P induces a
Fredholm operator

P : Hm+k
F (X ;E) → Hk

F(X ;E)

if and only if it has an inverse Q ∈ L(Hk
F (X ;E), Hm+k

F (X ;E)) modulo compact
operators, the result follows. �

Lemma 7.5. For m ∈ R, an operator P ∈ ΨmF−ph(X ;E) ⊂ P
m

k (X ;E) has an

inverse Q in the space L(Hk
F (X ;E), Hm+k

F (X ;E)) modulo compact operator if and

only if (σm ⊕NF)(P ) has an inverse in

C0(FS∗X ; Λ−m ⊗ hom(E))⊕ L(Hk
sus−F (∂X ;E), Hm+k

sus−F(∂X ;E)).

Proof. As shown above, the result is true when m = 0, since (7.8) is then an
injective map of C∗-algebras. When m 6= 0, we can still use (7.8) to define an
injective map between C∗-algebras

σ ⊕NF : A →֒ B

where an element of A is a matrix

(
a b
c d

)
with entries such that

a ∈ P
0

m+k(X ;E), b ∈ P
−m
m+k(X ;E), c ∈ P

m

k (X ;E), d ∈ P
0

k(X ;E).

while an element of B is a matrix

(
a b
c d

)
with entries such that

a ∈ C0(FS∗X ; Λ0 ⊗ hom(E))⊕ L(Hm+k
sus−F(∂X ;E)),

b ∈ C0(FS∗X ; Λ−m ⊗ hom(E))⊕ L(Hk
sus−F (∂X ;E), Hm+k

sus−F(∂X ;E))

c ∈ C0(FS∗X ; Λm ⊗ hom(E))⊕ L(Hm+k
sus−F (∂X ;E), Hk

sus−F(∂X ;E)),

d ∈ C0(FS∗X ; Λ0 ⊗ hom(E))⊕ L(Hk
sus−F(∂X ;E)).

Suppose first that m < 0. Let D−m be the invertible operator of (5.4). Then

clearly

(
0 D−m
P 0

)
is invertible modulo compact operators if and only if P is.

Similarly, (σ⊕NF )

(
0 D−m
P 0

)
is invertible if and only if (σ⊕NF )(P ) is. Since

an element of A is invertible if and only if its image in B is invertible, the lemma
follows in this case. When m > 0, we can proceed similarly if we enlarge the
C∗-algebras A and B to include the elements

(
0 D

−1

m

0 0

)
,

(
0 (σ ⊕NF )(Dm)−1

0 0

)

respectively.
�

As the next result shows, this criterion can be formulated independently of k ∈ R.
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Corollary 7.6. If P ∈ ΨmF−ph(X ;E,F ) is elliptic and NF(P ) induces an invertible
continuous linear map

NF (P ) : H
m+k
sus−F(∂X ;E) → Hk

sus−F(∂X ;F ),

for some k ∈ R, then it induces an invertible map for all k ∈ R. Moreover, P then
induces a Fredholm operator

P : Hm+k
F (X ;E) → Hk

F (X ;F )

for all k ∈ R with nullspace in H∞
F (X ;E) and index independent of k.

Proof. By Proposition 7.4, we know that P is Fredholm as a map

(7.9) P : Hm+k
F (X ;E) → Hk

F(X ;F ).

Since P is elliptic, there exists Q ∈ Ψ−m
F (X ;F , E) such that

QP − IdE = R ∈ Ψ−∞
F (X ;E).

In particular, this means that for u ∈ Hp
F(E) for some p ∈ R,

Pu ∈ H l
F (X ;F ) =⇒ u+Ru ∈ Hm+l

F (X ;E) =⇒ u ∈ Hm+l
F (X ;E);

(7.10)

Pu = 0 =⇒ u ∈ H∞
F (X ;E).(7.11)

Similarly, we have

u ∈ Hp
F (X ;F ), P ∗u ∈ H l

F(X ;E), =⇒ u ∈ Hm+l
F (X ;F );(7.12)

u ∈ Hp
F (X ;F ), P ∗u = 0, =⇒ u ∈ H∞

F (X ;F ).(7.13)

The map (7.9) being Fredholm, it has in particular a closed range. From (7.10), it
follows that for k′ ≥ k, the induced map

(7.14) P : Hm+k′

F (X ;E) → Hk′

F (X ;F )

has closed range. By (7.11) and (7.13), we also see that it is in fact Fredholm with
the same nullspace and index as the map (7.9).

On the other hand, by duality, we see that the induced map

P ∗ : H−k
F (X ;F ) → H−k−m

F (X ;E)

is also Fredholm. By the same argument, we can conclude that for k′ ≤ k, the map

P ∗ : H−k′
F (X ;F ) → H−k′−m

F (X ;E)

is Fredholm. By duality, this means the map

P : Hm+k′

F (X ;E) → Hk′

F (X ;F )

is also Fredholm for k′ ≤ k. Again, by (7.11) and (7.13), its nullspace and index
are the same as those of (7.9). Using Proposition 7.4, we can therefore conclude
that the induced map

NF (P ) : H
m+k′

sus−F(∂X ;E) → Hk′

sus−F(∂X ;F ),

is bijective for all k′ ∈ R. �

This suggests the following definition.
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Definition 7.7. A F-operator P ∈ ΨmF (E;F ) is said to be fully elliptic if it
is elliptic and its normal operator NF(P ) ∈ Ψmsus−F (∂X ;E,F ) is invertible as an
operator

NF(P ) : H
m+k
sus−F (∂X) → Hk

sus−F (X ;F )

for all k ∈ R.

As in [27] we can more generally let a F -operator acts on weighted Sobolev
spaces.

Theorem 7.8 (Fredholm criterion). A classical F-operator P ∈ ΨmF−ph(X ;E,F )
induces a Fredholm operator

P : xℓHm+k
F (X ;E) → xℓHk

F (X ;F )

if and only if P is fully elliptic. In this case, the index is independent of k and ℓ.
Furthermore, kerP ⊂ xℓH∞

F (X ;E) and its range is complementary to a subspace
of xℓH∞

F (X ;F ).

Proof. When ℓ = 0, this follows from Corollary 7.6. If ℓ 6= 0, we have a commutative
diagram

(7.15) Hm+k
F (X ;E)

Pℓ
//

xℓ

��

Hk
F(X ;F )

xℓ

��

xℓHm+k
F (X ;E)

P
// xℓHk

F (X ;F )

where Pℓ = x−ℓ ◦ P ◦ xℓ. Since Pℓ ∈ ΨmF (X ;E,F ) is elliptic and is such that
NF(Pℓ) = NF(P ) by Remark 4.1, we see that the top horizontal map is Fredholm
by Corollary 7.6. Since the vertical maps are isometries of Hilbert spaces, we
conclude that the bottom horizontal map is Fredholm with the same index. To see
that the index does not depend on ℓ, it suffices to notice ℓ 7→ Pℓ is a continuous
family of Fredholm operators, which means the index cannot jump. �

Remark 7.9. When a fully elliptic operator P admits a parametrix as in Theo-
rem 7.1, its nullspace is automatically a finite dimensional subspace of Ċ∞(X ;E),
in particular, it does not depend on the choice of ℓ in the theorem above. The author
does not know if this holds more generally.

8. An index theorem for some Dirac-type operators

In this section, we will suppose that X is even dimensional and oriented. To get
an index formula for Dirac-type operators, we will make another assumption on the
foliation F .

Assumption 2. The foliation F on ∂X has compact leaves and can be described

as in Assumption 1 with Γ a finite group. Furthermore, the fibration Φ : ∂M̃ → Y

has oriented fibres and base and the group Γ acts on ∂M̃ and Y by orientation
preserving diffeomorphisms.

On X , we will consider F -metrics whose restriction to M ⊂ X can be lifted to
a Γ-invariant product-type Φ-metric of the form

(8.1) gΦ =
dx2

x4
+

Φ∗h

x2
+ κ,
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where h is a Γ-invariant metric on Y and κ is a Γ-invariant family of metrics in
the fibres of the fibration Φ that is lifted to a symmetric 2-tensor in the ambient
space via a choice of Γ-invariant connection for the fibration Φ. Both h and κ
are allowed to depend smoothly on x. Since Γ is finite, such metrics are easy
to construct: we can insure h and κ are Γ-invariant by averaging over Γ, while
a Γ-invariant connection is obtained by taking the orthogonal complement of the

vertical tangent bundle T (∂M̃/Y ) with respect to a choice of Γ-invariant metric on

∂M̃ .
Let also E be a Clifford module for the bundle of Clifford algebras defined by

(FTX, gF). We assume E is equipped with a Clifford connection and that in M =
∂M × [0, ǫ)x ⊂ X , this Clifford module is naturally identified with π∗

∂(E|∂M ) where
π∂ : ∂M × [0, ǫ)x → ∂M is the projection on the left factor. Let ðX ∈ Ψ1

F(X ; E)
be the corresponding Dirac-type operator. Let ðM be its restriction to M and

ð̃ ∈ Ψ1
Φ,Γ(M̃ ; Ẽ) the differential operator which is the Γ-invariant lift to M̃ where

Ẽ is the lift of E|M to M̃ .
Since X is even dimensional, E comes with a natural Z2-grading which induces

a decomposition E = E+ ⊕ E−. The Dirac operator ðX is odd with respect to this
grading, so decomposes in two parts,

(8.2) ðX =

(
0 ð

−
X

ð
+
X 0

)
, ð

±
X : C∞(X ; E±) → C∞(X ; E∓).

There is a corresponding decomposition for ð̃. In local coordinates near the bound-

ary, the operator ð̃+ takes the form

(8.3) ð̃
+ = γ

(
x2

∂

∂x
+ ð̃0

)
+ cl

(
ek

x

)
∇xek +R

where γ is Clifford multiplication by dx
x2 , the e1, . . . , ep, p = n − ℓ − 1 are local

orthonormal sections of (TY, h) and ð̃0 ∈ Ψ1(∂M̃/Y ; Ẽ0) is a family of Dirac oper-

ators associated to the Clifford module Ẽ0 = Ẽ+
∣∣∣
∂M̃

and the family of metrics κ.

Here, the Clifford multiplication on E0 is given by

(8.4) T ∗(∂M̃/Y ) ∋ ξ 7→ −γ · ξ ∈ CℓgΦ(M̃).

Finally, R ∈ xΨ1
Φ(M̃ ; Ẽ) is a term that will not contribute to the normal operator.

Via the identification

(8.5) Ẽ−
∣∣∣
∂M̃

−γ
−→ Ẽ0

given by Clifford multiplication by −γ, the (Fourier transform of the) normal op-

erator of ð̃+ can be seen as an element of Ψ1
Φ−sus(∂M̃ ; Ẽ0) taking the form

(8.6) N̂Φ(ð̃
+) = ð̃0 + iτ + iγY .

That is, it is a family of operators on T ∗Y × R where at (y, δ, τ) ∈ T ∗Y × Rτ , γY
denotes Clifford multiplication by −γ · δx .

Our choice of connection for the fibration Φ gives us a decomposition of

(8.7) ΦT∂M̃ := {v ∈ ΦTM̃
∣∣∣
∂M̃

| gΦ(v, x
2 ∂

∂x
) = 0}
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as ΦT∂M̃ = Φ∗TY ⊕ T (∂M̃/Y ). This gives a corresponding decomposition of the
Clifford algebra,

(8.8) Cℓ(ΦT∂M̃) = Φ∗
Cℓh(Y )⊗̂Cℓκ(T (∂M̃/Y ))

where ⊗̂ is the graded tensor product.
As in [1], we need to make an assumption in order to get a Fredholm operator.

Assumption 3. There exists a Γ-invariant family of self-adjoint operators A ∈

Ψ−∞(∂M̃/Y ; Ẽ0) anti-commuting with Clifford multiplication by odd sections of

Φ∗Cℓh(Y ) and such that ð̃0 + A is an invertible family. A particularly natural

example is when A = 0 and the family ð̃0 is itself invertible, see Example 8.8 below.

Remark 8.1. Depending on whether the fibres of the fibration Φ are even or

odd dimensional, the Clifford module Ẽ0 may or may not have a Z2-grading as

a Cℓκ(TM̃/Y ) Clifford module. When it does, asking the perturbation A to anti-
commute with Clifford multiplication by odd sections of Φ∗Cℓh(Y ) forces A to be

odd with respect to the Z2-grading of Ẽ0 (as a Cℓκ(TM̃/Y ) Clifford module).

Let ρ ∈ S(T ∗Y ×R) be a real-valued Γ-invariant Schwartz function on T ∗Y ×R ∼=

N∗Y equal to 1 on the zero section. Then there exists Q̃ ∈ Ψ−∞
Φ,Γ (M̃, Ẽ) such that

(8.9) N̂Φ(Q̃) = ρA.

Let us denote by Q the corresponding operator in

Ψ−∞
F (M ; E+, E−) ⊂ Ψ−∞

F (X ; E+, E−).

Proposition 8.2. The normal operator of ð
+
X + Q has an inverse in the space

Ψ−1
F−sus(∂M̃ ; E−, E+). Consequently, by Theorem 7.1, the operator ð+ +Q is Fred-

holm and there exists P ∈ Ψ−1
F (X ; E−, E+) such that

P (ð+X +Q)− IdE+ = R+ ∈ x∞Ψ−∞(X ; E+),

(ð+X +Q)P − IdE− = R− ∈ x∞Ψ−∞(X ; E−).

For this reason, we regard ð
+
X +Q as a Fredholm perturbation of ð+X .

Proof. We have

N̂Φ(ð̃
+ + Q̃) = ð̃0 + ρA+ iτ + iγY .

Using the anti-commuting relations of the Clifford multiplication, we get

N̂Φ(ð̃
+ + Q̃)∗N̂Φ(ð̃

+ + Q̃) = (ð̃0 + ρA)2 + τ2 + ‖δ‖2h

at (y, δ, τ) ∈ T ∗Y ×R. Since ð̃0+A is an invertible self-adjoint family by assumption,

this clearly implies N̂Φ(ð̃
++Q̃) is invertible with inverse in Ψ−1

sus−Φ,Γ(∂M̃, Ẽ0), from
which the result follows. �

In appendix C of [31], a certain adiabatic calculus was introduced to relate fully
elliptic Φ-operators with fully elliptic cusp operator, which are fibred cusp operators
for which the fibration on the boundary is given by mapping the entire boundary
onto a point. More precisely, in section 8 of [31], a natural construction associates

to a fully elliptic operator P ∈ ΨmΦ (M̃, E, F ) an element Pad ∈ ΨmΦ−ad,cu(M̃ ;E,F )
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of the corresponding adiabatic calculus which is fully elliptic. Essentially, Pad

corresponds to a one parameter family

(8.10) (0,+∞) ∋ δ 7→ Pδ ∈ Ψmcu(M̃ ;E,F )

of cusp operators which are fully elliptic for δ small enough. For such a small
δ, the index of Pδ is the same as the one of P . The family Pδ is not uniquely
defined, but its homotopy class among fully elliptic operators is. This is because
Pad makes precise the sense in which Pδ → P as δ → 0+. Besides the usual symbol
and normal operator, the operator Pad has a third ‘symbol’, the adiabatic normal
operator, whose rôle is to relate the normal operator of P with the normal operator
of the family Pδ.

Strictly speaking, the discussion in [31] is for compact manifolds with boundary.
What is important however is the behavior near the boundary. In that sense, it

extends immediately to operators P in ΨmΦ (M̃ ;E,F ) with ‘fully elliptic’ meaning in

that context that P is elliptic near the boundary ∂M̃ and has an invertible normal
operator.

We can apply this adiabatic construction to ð̃+ + Q̃. First to ð̃+ by considering
the family of Γ-invariant metrics for x < ǫ

2

(8.11) g̃cu(δ) =
dx2

x4
+

Φ∗h

(x+ δ)2
+ κ

with the (adiabatic) limit δ → 0+ giving back the metric gΦ. This gives a corre-
sponding family gcu(δ) of cusp metrics onM × (0, ǫ2 ) which can be extended to give
a family of cusp metrics gcu(δ) on X .

On X × [0, ν)δ, there is a natural vector bundle adTX such that adTX
∣∣
X×{0} =

FTX and adTX
∣∣
X×{δ} = cuTX for δ > 0. If X has a spin structure and SF is

the corresponding spinor bundle associated to the metric gF , then E = SF ⊗E for
some smooth complex vector bundle E → X . If Sad is the spinor bundle associated
to adTX → X × [0, ν)δ with respect to the family of metrics (8.11), then we can
define a Clifford module on X× [0, ν)δ with respect to the Clifford bundle of adTX
by Ead = Sad ⊗ π∗E, where π : X × [0, ν)δ → X is the natural projection. The
Clifford connection of E corresponds to a choice of connection ∇E for the bundle
E. Taking the pull-back connection on π∗E, we get in this way a natural choice
of Clifford connection on Ead. When X is not spin, we can define Ead and its
Clifford connection locally on U × [0, ν)δ by choosing a spin structure on U ⊂ X ,
where U is an open set over which FTX

∣∣
U admits a spin structure. These local

definitions fit together to give a global Clifford module Ead with Clifford connection
on X × [0, ν)δ. This gives a family ðX(δ) of Dirac-type operators which together

with ðX fit to give, when restricted to M and lifted to M̃ , a Γ-invariant element

ðad ∈ Ψ1
Φ−ad,cu(M̃ ; Ẽad), where Ẽad is the lift of Ead to M̃ × [0, ν)δ. Our choices of

Clifford module and Clifford connection insure that the adiabatic normal operator
is the same as the one constructed in section 8 of [31] (cf. [23]).

Proceeding as in section 8 of [31], the perturbation Q̃ ∈ Ψ−∞
Φ,Γ (M̃ ; Ẽ+, Ẽ−) can

be extended to give an element Q̃ad ∈ Ψ−∞
Φ−ad,cu(M̃ ; Ẽ+

ad, Ẽ
−
ad) which we can assume

is Γ-invariant by averaging over Γ. In particular, we get in this way a family

Q̃(δ) ∈ Ψ−∞
cu,Γ(M̃, Ẽ+

δ , Ẽ
−
δ ) of Γ-invariant cusp operators that descends to M and

extends to X to a family Q(δ) ∈ Ψ−∞
cu (X ; E+

δ , E
−
δ ) of cusp operators. Here, Eδ and
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Ẽδ are the restriction of Ead and Ẽad to M × {δ} and M̃ × {δ} respectively. Notice
that, under the identification

Ẽ−
δ

∣∣∣
∂M̃

−γ
−→ Ẽδ,0 := Ẽ+

δ

∣∣∣
∂M̃

,

we can insure N̂cu(Q̃(δ)) is self-adjoint as an element of Ψ−∞
sus (∂M̃ ; Eδ,0) by replacing

N̂cu(Q̃(δ)) by N̂cu(Q̃(δ))+N̂cu(Q̃(δ))∗

2 and making the corresponding changes for Q̃ad.
From the results of section 8 of [31], for δ > 0 sufficiently small, the family

(ð+X +Q)(δ) ∈ Ψ1
cu(X ; E(δ)) is fully elliptic (so Fredholm) with the same index as

ð
+
X +Q. Let

N̂cu((ð̃
+ + Q̃)(δ))(τ) = ð̃0(δ) + N̂(Q̃)(τ) + iτ, δ > 0, τ ∈ R,

be the corresponding Fourier transform of the normal operator for this family. Thus,

it is a family of Γ-invariant suspended operators on ∂M̃ . Evaluating at τ = 0, we get

a family of self-adjoint invertible operators ð̃0(δ)+N̂cu(Q̃(δ))(0) with a well-defined
eta invariant

(8.12) η̃(δ) = η(ð̃0(δ) + N̂cu(Q̃(δ))(0))

If we look at the corresponding family of operators ð0(δ) + N̂cu(Q(δ))(0) on ∂M ,
we also get an eta invariant

(8.13) η(δ) = η(ð0(δ) + N̂cu(Q(δ))(0))

Definition 8.3. The rho invariant of the invertible perturbation ð̃0 + A of the

family ð̃0 in Assumption 3 is

ρA =
η̃(δ)

|Γ|
− η(δ)

where δ > 0 is taken small enough so that η̃(δ) and η(δ) are well-defined.

By looking at the local variation of η̃(δ) and η(δ), one can check that ρA does
not depend on the choice of δ. Moreover, ρA does not depend on the choices

involved in the construction of ð̃0(δ) + N̂cu(Q̃(δ))(0) since different choices would
lead to operators that could be connected by a smooth path of invertible elliptic
self-adjoint operators of the same form. Thus, ρA only depends on the choice of
perturbation A in Assumption 3.

This rho invariant is the new ingredient needed to get an index formula for the
Fredholm operator of Proposition 8.2.

Theorem 8.4. The index of the Fredholm operator ð
+
X + Q ∈ Ψ1

F(X ; E+, E−) in
Proposition 8.2 is given by

Ind(ð+X +Q) =

∫

X

Â(X ; gF)Ch
′
gF (E)−

1

|Γ|

∫

Y

Â(Y, h)η̂(ð̃0 +A) +
ρA
2

where Ch′gF (E) denotes the Chern character form associated to the twisting curva-

ture of E (see [9]) and η̂(ð̃0+A) is the eta form of the family of invertible self-adjoint

operators (ð̃0 +A) as described in [1], but using the convention of [2] to avoid 2πi
factors in the formula.
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Proof. Our approach is inspired from [23] and consists in taking the adiabatic limit
of the index formula for ð+X(δ) +Q(δ). On the one hand, we know by construction
that

Ind(ð+X +Q) = Ind(ð+X(δ) +Q(δ))

for δ > 0 sufficiently small. On the other hand, according to [1], we have the
following formula for the index of ð+X(δ) +Q(δ),

Ind(ð+X(δ) +Q(δ)) =

∫

X

Â(X, gcu(δ))Ch
′
gcu(δ)(Eδ)−

η(δ)

2
.

This can be rewritten as

(8.14) Ind(ð+X(δ) +Q(δ)) =

∫

X

Â(X, gcu(δ))Ch
′
gcu(δ)(Eδ)−

η̃(δ)

2|Γ|
+
ρA
2
.

The results then follows by taking the limit as δ → 0+ and using the following two
adiabatic limits,

lim
δ→0+

∫

X

Â(X, gcu(δ))Ch
′
gcu(δ)(Eδ) =

∫

X

Â(X, gF)Ch
′
gF (E),

lim
δ→0+

η̃(δ)

2
=

∫

Y

Â(Y, h)η̂(ð0 + A),

which are established in the next lemma and theorem. �

Lemma 8.5. We have the following adiabatic limit:

lim
δ→0+

∫

X

Â(X, gcu(δ))Ch
′
gcu(δ)(Eδ) =

∫

X

Â(X, gF)Ch
′
gF (E).

Proof. Clearly, the result will follow if for each p in ∂M̃ , we can find an open

neighborhood U of p in M̃ such that

lim
δ→0+

∫

U
Â(M̃, g̃cu(δ))Ch

′
g̃cu(δ)(Eδ) =

∫

U
Â(M̃, gΦ)Ch

′
gΦ(E).

If we take U sufficiently small, we can assume ΦTM̃ is trivial over U , so that in
particular, over U , it admits a spin structure. Let SU be the corresponding spinor
bundle. There is a complex vector bundle E over U inducing a decomposition
E = SU ⊗ E such that the Clifford connection of E is of the form

(8.15) ∇E = ∇SU ⊗ 1 + 1⊗∇E

where ∇SU is the Clifford connection of SU and ∇E is some connection on E. The
twisting curvature appearing in Ch′gcu(δ)(E) is then precisely the curvature of ∇E

so that

Ch′gcu(δ)(E) = Ch(∇E) = e
i

2π (∇E)2 on U .

Thus, on U , we have

(8.16) Â(X, ĝcu(δ))Ch
′
gcu(δ)(E) = Â(X, ĝcu(δ))Ch(∇

E).

Since Ch(∇E) is uniformly bounded and in fact has been chosen to be independent

of δ, the lemma will follow if we can show that Â(X, gcu(δ)) is uniformly bounded
as a section of Λ∗(T ∗U) as x and δ approach zero.
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To do this, we can follow the approach of [23]. Since the adiabatic limit we are
taking is only slightly different than the one of [23], the argument will be the same
modulo minor changes. We will include it for the sake of completeness.

Recall that if ω0, . . . , ωn−1 is any orthonormal set of one-forms, then the con-
nection one-forms are given by the unique solution to

(8.17) dωi = ωj ∧ ωij , ωij = −ωji ,

where summation on repeated indices is intended. The curvature two-forms are
then given by

(8.18) Ωji = dωji − ωki ∧ ω
j
k.

We will choose our coframe as follows. We first pick ω0 = dx
x2 . For 1 ≤ α ≤ k,

where k = dimY , we choose an orthonormal coframe ω̂α in a neighborhood of Φ(p)
in (Y, h). For k + 1 ≤ µ ≤ n− 1, we also pick a local vertical orthonormal coframe
ωµ for the metric κ near the point p. It is vertical in the sense that it is orthogonal
to horizontal forms with respect to the metric gcu(δ). As in [23], we will use the
convention that Roman indices i, j, . . . vary between 0 and n, while Greek indices
α, β, . . . vary between 1 and k and Greek indices µ, ν, . . . vary between k + 1 and
n− 1. If we set

(8.19) ωα =
Φ∗ω̂α

x+ δ
,

then ω0, . . . , ωn−1 is an orthonormal coframe in some small neighborhood U of p
with respect to the metric gcu(δ). We first compute that

(8.20)

dω0 = 0

≡ ωα ∧ ω0
α + ωµ ∧ ω0

µ

dωα = −
dx

(x+ δ)2
∧ Φ∗ω̂α +

dx

x+ δ
∧Φ∗(ω̂α)′ + ωβ ∧Φ∗ω̂αβ

≡ ω0 ∧ ωα0 + ωβ ∧ ωαβ + ωµ ∧ ωαµ

dωµ = dx ∧ (ωµ)′ + (x+ δ)ωα ∧Eµα + ων ∧ Eµν

≡ ω0 ∧ ωµ0 + ωα ∧ ωµα + ων ∧ ωµν

where ′ denotes differentiation with respect to x and Eji , here and below, denotes
forms which are uniformly bounded in x and δ. To study the asymptotic behavior of

the unique solution to (8.20), consider first in each slice ∂M̃×{x} the corresponding
equation

(8.21) dui = uj ∧ uij , uij = −uji ,

for the orthonormal coframe u1, . . . , un−1 of the metric Φ∗h(x) + κ(x) defined by
uα = Φ∗ω̂α and uµ = ωµ. Clearly, the connection one-forms uij given by the unique
solution of (8.21) are uniformly bounded in x and independent of δ. If now we

consider instead the metric Φ∗h(x)
(x+δ)2 + κ(x) on the slice ∂M̃ ×{x}, then v1, . . . , vn−1

with vα = Φ∗ωα

x+δ , vµ = ωµ is an associated orthonormal coframe. The connection

one-forms vij obtained by solving the equation

(8.22) dvα = vβ ∧ vαβ + vµ ∧ vαµ , dvµ = vα ∧ vµα + vν ∧ vµν , vij = −vji ,
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are then seen to satisfy

(8.23) vµα = (x+ δ)uµα, vµν = uµν , vαβ = Φ∗ω̂αβ + (x + δ)2Eαβ .

From there, one can check that the connection one-forms solving (8.20) take the
form

(8.24)

ωµ0 = x2Eµ0 , ωµν = vµν + eµνdx, ωµα = vµα + (x+ δ)eµαdx,

ωα0 =
−x2

(x + δ)2
Φ∗ω̂α +

x2Eα0
x+ δ

+ x2(x+ δ)Eα0 , ωαβ = vαβ + eαβdx,

where eij denotes functions uniformly bounded in x and δ. Thus, we have obtained

(8.25)
ωα0 = −

x2

(x + δ)2
Φ∗ω̂α +

x2Eα0
x+ δ

, ωµ0 = x2Eµ0 ,

ωβα = Φ∗ω̂βα + (x+ δ)2Eβα + eβαdx, ωνµ = Eνµ, ωµα = (x+ δ)Eµα.

Using (8.18), one can then compute the curvature forms to get

(8.26)

Ωα0 = dx ∧

(
−

2xδ

(x+ δ)3
Φ∗ω̂α + Fα0

)
+ xFα0 ,

Ωµ0 = (x+ δ)Fµ0 ,

Ωβα = F βα ,

Ωµν = Fµν ,

Ωµα = dx ∧ Fµα + (x+ δ)Fµα ,

where again the notation F ji denotes terms uniformly bounded in x and δ, but not
necessarily smooth at x = δ = 0. As in [23], only the computation of the first term
is more delicate,
(8.27)

Ωα0 = dωα0 − ωβ0 ∧ ωαβ − ωµ0 ∧ ωαµ

= −d

(
x2

(x + δ)2

)
Φ∗ω̂α + dx ∧ Fα0 −

x2

(x+ δ)2
Φ∗(dω̂α − ω̂β ∧ ω̂αβ ) + xFα0 ,

but since dω̂α− ω̂β ∧ ω̂αβ by the structure equation for the connection one-forms on

(Y, h), the third term vanishes so that Ωα0 is of the claimed form.

Now, the form Â(X, gcu(δ)) is locally a combination of terms of the form

(8.28)
∑

Ωi2i1Ω
i3
i2
· · ·Ωi1im .

According to (8.26), the only way we could get an unbounded term is if Ωα0 appears,
in fact only the first term − 2xδ

(x+δ)3 dx∧ω̂
α would potentially create a problem. Since

it involves a dx factor, it can appears at most once in each terms involved in (8.28)
and we can assume it appears as the first curvature term there. In that case,
the last term would be Ω0

β or Ω0
µ. If it is Ω0

β , only xF
0
β will contribute since the

singular term of Ωα0 already contains a dx factor. For Ω0
µ, we already computed

that Ω0
µ = (x+δ)Fµ0 . Thus, in both cases, we have a vanishing factor compensating

for the singular term of Ω0
α, so that Â(X, gcu(δ)) is uniformly bounded in x and δ.

This is easily seen to imply the result.
�
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Theorem 8.6 (Adiabatic limit). For the family ð̃0(δ) + Q̃(δ) described above,

lim
δ→0+

η̃(δ)

2
=

∫

Y

Â(Y, h)η̂(ð̃0 +A).

Proof. Because of Lemma 8.5, or rather, its analog on M̃ , such a formula for the
adiabatic limit of the eta invariant is basically equivalent to the index formula of
[1]. Indeed, changing the metrics g̃cu(δ) near x = ǫ

2 to be of product-type, we can
then attach an infinite cylindrical end at x = ǫ

2 . One way to achieve this is to
extend the metric g̃cu(δ) in the region where ǫ

2 < x < ǫ by the metric

(8.29)
dρ2

ρ4
+ g̃ ǫ

2

where g̃ ǫ
2
, which is independent of δ, is the restriction of g̃cu(δ) to the hypersurface

x = ǫ
2 and ρ ∈ C∞(∂M̃ × [0, ǫ]) is a boundary defining function equal to x when

x < 3ǫ
4 and ǫ− x when x > 7ǫ

8 .

With respect to this metric on ∂M̃ × (0, ǫ), the operator ð̃(δ) can be extended

to a cusp Dirac-type operator D̃(δ) on ∂M̃ × [0, ǫ]. Since the normal operator at

x = 0 of D̃+(δ) admits an invertible perturbation N̂cu(D̃
+(δ) + Q̃(δ)), so does

the normal operator at x = ǫ. Thus, extending the perturbation Q̃(δ) adequately
in the cylindrical end that was added in such a way that the normal operator of

D̃+(δ)+ Q̃(δ) is invertible and independent of δ, we get in this way a family of fully

elliptic cusp operators (D̃+(δ) + Q̃(δ)) ∈ Ψ1
cu(∂M̃ × [0, ǫ]; E+, E−). In particular,

this is a Fredholm operator and we have

(8.30) Ind(D̃+(δ) + Q̃(δ)) =

∫

∂M̃×[0,ǫ]

Â(g̃cu(δ))Ch
′
g̃cu(δ)(Eδ)−

η̃(δ)

2
−
η̃ǫ
2

by the index formula of [1], where η̃ǫ is the eta invariant coming from the normal

operator of ð̃+(δ) + Q̃(δ) at x = ǫ. On the other hand, we have also
(8.31)

Ind(D̃+(δ) + Q̃(δ)) = Ind(D̃+ + Q̃)

=

∫

∂M̃×[0,ǫ]

Â(gΦ)Ch
′
gΦ(E)−

∫

Y

Â(Y, h)η̂(ð̃0 +A)−
η̃ǫ
2
,

using the index formula of [1].
Thus, since we assume that the metrics gcu(δ) stay fixed in the region where

x ≥ ǫ
2 and that the normal operator D̃+ + Q̃ at x = ǫ and its eta invariant η̃ǫ

are independent of δ, taking the limit δ → 0+ in (8.30) and using Lemma 8.5 and
equation (8.31), the result follows.

�

Remark 8.7. The case Γ = {0} and A = 0 with ð0 an invertible family of Dirac-
type operators gives back the formula of Bismut and Cheeger [10] for the adiabatic
limit of the eta invariant. Moreover, as it is clear from the proof of the theorem,
the total space of the fibration does not have to be the total boundary of a compact
manifold with boundary.
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Let us now give a more specific example of a Dirac operator satisfying Assump-
tion 3.

Example 8.8. Assume that the F-tangent bundle FTX is spin as well as FN∂X
and TF . Fix an orientation and a spin structure on FTX and FN∂X. A choice of
F-metric whose restriction to M lift to a Γ-invariant Φ-metric as in (8.1) induces
a decomposition

FTX
∣∣
∂X

∼= FN∂X ⊕ TF ,

which automatically induces a spin structure on TF . Let SX , SN and STF de-
note the corresponding spinor bundles. As a Clifford module, we can take E = SX
equipped with its canonical Clifford connection and get in this way the Dirac op-
erator ðX ∈ Ψ1

F(X ;SX). In this case, the decomposition (8.8) also induces a
decomposition of spinor bundles

(8.32) S̃0 = Ẽ0 = Φ∗SY ⊗̂S∂M̃/Y
.

Under this decomposition, the family of operators ð̃0 on ∂M̃ takes the form

(8.33) ð̃0 = IdΦ∗SY ⊗̂ðκ

where ðκ ∈ Ψ1(∂M̃/Y ;S∂M̃/Y ) is the family of Dirac operator associated to the

spinor bundle S
∂M̃/Y

and the family of metrics κ. By Lichnerowicz formula [24], if

we assume the family of metrics κ has positive scalar curvature, then the families

ðκ and ð̃0 will be invertible, so that Assumption 3 is automatically satisfied with
A = 0.

Thus, when the family of metrics κ has positive scalar curvature, the Dirac
operator of Example 8.8 is Fredholm and Theorem 8.4 can be applied, giving the
following formula.

Corollary 8.9. Let ðX be the Dirac operator of Example 8.8 and suppose the family
of metrics κ in (8.1) has positive scalar curvature. Then the Dirac operator ðX is
Fredholm and its index is given by

Ind(ð+X) =

∫

X

Â(X, gΦ)−
1

|Γ|

∫

Y

Â(Y, h)η̂(ð̃0) +
ρ

2

where η̂(ð̃0) is the Bismut-Cheeger eta form of the family ð̃0 (with the convention
of [2]) and where ρ is the rho invariant of Definition 8.3 with A = 0.

The rho invariant in the index formula of Corollary 8.9 has a geometric inter-
pretation.

Lemma 8.10. If κ is a family of metrics with positive scalar curvature, then for δ
sufficiently small, the metric

g∂(δ) =
Φ∗h

(δ)2
+ κ

defined on ∂M̃ has positive scalar curvature.

Proof. On proceed as in Lemma 7.3 of [22] and use O’Neill formulas [35] to get the
result. �
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Now the rho invariant appearing in the formula of Corollary 8.9 is given by

(8.34) ρ =
η(ð̃0(δ))

|Γ|
− η(ð0(δ))

for δ > 0 sufficiently small. This corresponds to the rho invariant associated to the

finite Γ-cover ∂M̃ → ∂M of odd dimensional spin manifolds equipped with met-
rics of positive scalar curvature, which only depends on the connected component
of g∂(δ) in the space of metrics with positive scalar curvature. This sort of rho
invariant can also be defined in situations where the group Γ is not finite. It is
particularly useful to study the topology of the space of metrics of positive scalar
curvature, see for instance [36] and the references therein.
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(1976), 43–72.
[6] M.F. Atiyah, V.K. Patodi, and I. M. Singer, Spectral asymmetry and Riemann geometry, I,

Math. Proc. Cambridge Philos. Soc 77 (1975), 43–69.
[7] M.F. Atiyah and I.M. Singer, The index of elliptic operators on compact manifolds, Bull.

Amer. Soc. 69 (1963), 422–433.
[8] M.-T. Benameur and P. Piazza, Index, eta and rho-invariants on foliated bundles,

arXiv:0809.2268v1.
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