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DEPENDENCE OF BETTI NUMBERS ON CHARACTERISTIC

KIA DALILI AND MANOJ KUMMINI

Abstract. We study the dependence of graded Betti numbers of monomial ideals on the characteristic of the
base field. The examples we describe include bipartite ideals, Stanley–Reisner ideals of vertex-decomposable
complexes and ideals with componentwise linear resolutions. We give a description of bipartite graphs and,
using discrete Morse theory, provide a way of looking at the homology of arbitrary simplicial complexes
through bipartite ideals. We also prove that the Betti table of a monomial ideal over the field of rational
numbers can be obtained from the Betti table over any field by a sequence of consecutive cancellations.

1. Introduction

Let R = k[V ] be a polynomial ring with a finite set V of indeterminates over a field k. We consider R to
be standard graded, i.e., deg x = 1 for all x ∈ V . Write m for the unique homogeneous maximal ideal (V )R.
Let M be a finitely generated graded R-module. A minimal graded free resolution of M is a complex

(1) F• : 0 // Fp
φn

// · · ·
φ2

// F1
φ1

// F0
// 0

of finitely generated graded free R-modules and homomorphisms such that (a) for all i ≥ 1, φi is of degree
0, (b) for all i ≥ 1, φi(Fi) ⊆ mFi−1, and (c) H0(F•) ≃ M and Hi(F•) = 0 for all i ≥ 1. The numerical
information of a free resolution, i.e., the degrees of minimal generators of the Fi is captured in the list
of Betti numbers of M ; the (i, j)th graded Betti number of M , denoted βi,j(M), is the number of minimal
homogeneous generators of Fi of degree j. The ith total Betti number of M is βi(M) =

∑
j βi,j(M). We have

βi,j(M) = dimk

[
TorR

i (k, M)
]

j
, so it is an invariant of M , independent of the choice of the free resolution

F•. The set of graded Betti numbers is represented in terms of a Betti table β(M), in which the entry at
column i and row j is βi,i+j(M). Similarly, if G• is a complex of finitely generated graded free R-modules
and homomorphisms, we write β(G•) for the Betti table of G•, in which the entry at column i and row j is
dimk [Gi ⊗R k]i+j . Here we wish to understand the following question:

Question 1.1. Suppose that I is a monomial R-ideal. Under what conditions is β(I) independent of the
characteristic of k?

We will see below (Proposition 2.1) that we can immediately reduce to the case that I is generated by
squarefree monomials. Then using Stanley–Reisner theory (specifically, Hochster’s formula relating Betti
numbers to simplicial homology — see (2) below) we can translate the problem to one of determining
whether certain simplicial complexes have torsion-free homology. Therefore, in principle, Question 1.1 has a
straightforward answer; the purpose of this note is to describe some sufficient conditions that would guarantee
the independence of β(I) from chark. We will also give some examples of ideals with strong combinatorial
properties, which, nonetheless, have Betti tables that depend on chark.

This work is motivated in part by questions raised by J. Herzog and by the paper of M. Katzman [Kat06].
Various authors have studied the dependence of Betti tables on the characteristic. In [TH96], N. Terai and
T. Hibi showed that if I is generated by quadratic square-free monomials, then β2(I) and β3(I) do not
depend on chark. It follows from a result of B. Xu [Xu01, Lemma 26] that if I is generated by quadratic
square-free monomials and the 1-skeleton of the Stanley–Reisner complex of I is a planar graph, then all the
Betti numbers of I are independent of the characteristic.

We begin with describing polarization and quoting some relevant results in combinatorial commutative
algebra. In Section 3, we will give a construction of vertex-decomposable (Definition 3.3) simplicial complexes
whose Stanley–Reisner ideals have Betti tables that depend on chark. Section 4 describes bipartite ideals.
Given a simplicial complex, we construct a bipartite ideal whose Betti numbers give the homology of the
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simplicial complex, using which we exhibit an example of a bipartite ideal I such that β(I) depends on chark.
In Section 5, we look at consecutive cancellations in Betti tables (Definition 5.2) and show that ideals with
componentwise linear resolution have Betti tables independent of the characteristic. We will use [Eis95] as
a general reference in commutative algebra, and [BH93] and [MS05] for its relation to combinatorics.

2. Preliminaries

We will use V to denote an arbitrary set of vertices, as well as the variables in the polynomial ring
R = k[V ]. Write V = {x1, . . . , xn}. For a monomial R-ideal I, a polarization of I in a larger polynomial ring
R′ is the squarefree monomial ideal I ′ generated by monomials

∏n
i=1

∏ai

j=1 xi,j for every minimal monomial

generator xa1
1 · · · xan

n of I. For example, a polarization of (x2
1, x1x2, x3

2) is (x1,1x1,2, x1,1x2,1, x2,1x2,2x2,3).
See [MS05, Section 3.2 and Exercise 3.15] for details. We can get a minimal free resolution of R/I from a
minimal free resolution of R′/I ′. Thus:

Proposition 2.1. Suppose that I is a monomial R-ideal. Let I ′ be a polarization of I in a larger polynomial
ring R′. Then, β(I) depends on chark if and only if β(I ′) depends on chark. �

Hochster’s Formula. (See [MS05, Corollary 5.12 and Corollary 1.40].) For σ ⊆ V , we denote by ∆|σ the
simplicial complex obtained by taking all the faces of ∆ whose vertices belong to σ. Note that ∆|σ is the
Stanley-Reisner complex of the ideal I ∩ k[σ]. First, the multidegrees σ with βi,σ(R/I) 6= 0 are squarefree.
Secondly, for all squarefree multidegrees σ,

(2) βi,σ(R/I) = dimk H̃|σ|−i−1(∆|σ; k)

Let I ⊆ R = k[V ] be a squarefree monomial ideal. Let W ⊆ V and J = (I ∩ k[W ])R. Then,

(3) βi,σ(R/J) =

{
0, σ * W,

βi,σ(R/I), σ ⊆ W.

Remark 2.2. Let ∆ be a simplicial complex with Stanley–Reisner ideal I. Then, by (2) and the universal
coefficient theorem for homology [Hat02, Theorem 3A.3], we see that β(I) depends on chark if and only if
the groups H∗(∆;Z) have torsion. �

Example 2.3 (G. Reisner [BH93, Section 5.3]). Let ∆ be the minimal triangulation of RP2 on the vertex set
V = {x1, . . . , x6} with facets x4x5x6, x3x5x6, x2x4x6, x1x3x6, x1x2x6, x1x4x5, x2x3x5, x1x2x5, x2x3x4 and
x1x3x4. Then I = (x1x2x3, x1x2x4, x1x3x5, x2x4x5, x3x4x5, x2x3x6, x1x4x6, x3x4x6, x1x5x6, x2x5x6). The

Betti table of I depends on chark, owing to the fact that H̃1(RP2;Z) ≃ Z/2. When chark = 2 and when
chark 6= 2, β(I) is, respectively:

0 1 2 3 4
total 1 10 15 7 1

0 1 . . . .
1 . . . . .
2 . 10 15 6 1
3 . . . 1 .

or

0 1 2 3
total 1 10 15 6

0 1 . . .
1 . . . .
2 . 10 15 6

�

Remark 2.4. Let ∆ be any simplicial complex on V and x ∈ V . Then there exists a decomposition ∆ =
star∆(x) ∪ del∆(x), where star∆(x) = {F ∈ ∆ : F ∪ {x} ∈ ∆} and del∆(x) = ∆|Vr{x}. Note that star∆(x) ∩
del∆(x) = lk∆(x), called the link of x in ∆. Its Stanley-Reisner ideal in k[V r{x}] is (I : x) ∩ k[V r{x}]. �

Discussion 2.5. Let ∆ be any simplicial complex on V and x ∈ V . Since star∆(x) is a cone over x, we
obtain, from the Mayer–Vietoris sequence on homology [Hat02, Section 2.2], the following exact sequence:

(4) · · · // H̃i(lk∆(x);Z) // H̃i(del∆(x);Z) // H̃i(∆;Z) // · · · // H̃0(∆;Z) // 0.

In particular, if H̃∗(del∆(x);Z) = 0, then H̃i+1(∆;Z) ≃ H̃i(lk∆(x);Z), for all i ≥ 0. �
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3. Ideals containing powers

Let I be a monomial R-ideal containing xi
1 for some i ≥ 1. In Theorem 3.1 we describe when β(I) would

be independent of the characteristic, from which we derive a result of M. Katzman and construct examples
of vertex-decomposable simplicial complexes whose free resolution depends on the characteristic.

Theorem 3.1. Let I be a monomial R-ideal containing xi
1 for some i ≥ 1. Write I = (J, xt

1) minimally,
i.e., t is the least integer such that xt

1 ∈ I and J is generated by the elements of I not divisible by xt
1. Then

the following are equivalent:

(a) β(I) is independent of chark.
(b) Both β(J) and β((I :R x1)) are independent of chark.

Proof. If t = 1, then I = (J, x1) and J is an ideal extended from k[x2, . . . , xn]. Since x1 is a nonzerodivisor
on R/J , we see that β(I) depends on the characteristic if and only if β(J) depends on the characteristic.
Therefore we may assume that t ≥ 2.

We will use polarization (by Proposition 2.1) to reduce to the case of squarefree monomial ideals. Let I ′

be a polarization of I in a polynomial ring R′; we will denote the variables that correspond to x1 by y1, . . . , yt

and those that correspond to x2, . . . , xn by z1, . . . , zm. Write I ′ minimally as (J ′, y1 · · · yt). Note that J ′

and (I ′ :R′ y1) are, respectively, the polarization of J and (I :R x1) in R′. By Proposition 2.1, it suffices to
show that β(I ′) is independent of chark if and only if both β(J ′) and β((I ′ :R′ y1)) are independent of chark.
Since J ′ = (I ′ ∩k[y1, . . . , yt−1, z1, . . . , zm])R′, we see, by (3), that if β(I ′) is independent of chark then β(J ′)
is independent of chark. Therefore, we will assume that β(J ′) is independent of chark and show that β(I ′)
is independent of chark if and only if β((I ′ :R′ y1)) is independent of chark.

Suppose that βi,τ (I ′) depends on chark, for some τ ⊆ {y1, . . . , yt, z1, . . . , zm} and i. Then {y1, . . . , yt} ⊆ τ ,
for, otherwise, βi,τ (I ′) = βi,τ (J ′). Let ∆ be the Stanley–Reisner complex of I ′ ∩ k[τ ] on the vertex set τ .
Since every generator of I ′ that is divisible by y2 is also divisible by y1, we see that del∆(y1) is a cone over y2;
in fact, it is a cone over the simplex on y2, . . . , yt. On the other hand, lk∆(y1) is the Stanley–Reisner complex
(on τ r{y1}) of (I ′ :R′ y1) ∩ k[τ r{y1}]. By Discussion 2.5, Remark 2.2 and (3), we see that β((I ′ :R y1))
depends on chark.

Conversely, assume that βi,σ((I ′ :R y1)) depends on chark for some σ ⊆ {y1, . . . , yt, z1, . . . , zm} and i.
Then y1 6∈ σ. Write τ = σ ∪ {y1}. Now, reversing the above argument, we see that β(I ′) depends on
chark. �

Corollary 3.2 (Katzman [Kat06, Corollary 1.6]). Let I be quadratic squarefree monomial R-ideal, and let
y be algebraically independent over R. Then β((IR[y], x1y)) is independent of chark if and only if β(I) is
independent of chark.

Proof. It suffices to show that if β(I) is independent of chark, then β((I :R x1)) is independent of chark.
Let σ = {xi : x1xi 6∈ I}. Then (I :R x1) = (I ∩ k[σ])R + (σ)R. If β(I) is independent of chark, then
β((I ∩ k[σ])R), and, hence, β((I :R x1)) are independent of chark. �

Definition 3.3 ([PB80, Definition 2.1]). Let ∆ be a d-dimensional simplicial complex on a vertex set V .
We say that ∆ is vertex-decomposable if it is pure-dimensional and either ∆ is the d-simplex, or there exists
x ∈ V such that (a) lk∆(x) is (d−1)-dimensional and vertex-decomposable, and (b) del∆(x) is d-dimensional
and vertex-decomposable.

Note that lk∆(x) is (d − 1)-dimensional and vertex-decomposable if and only if star∆(x) is d-dimensional
and vertex-decomposable. If ∆ is vertex-decomposable, then it is shellable and, hence, Cohen-Macaulay in
all characteristics.

We say that a R-ideal I is primary if R/I has a unique associated prime. A monomial R-ideal I is primary
(with associated prime ideal p) if and only if p is the radical of I and no minimal monomial generator of I
is divisible by a variable not in p. (Note that p is generated by a subset of the variables.)

Proposition 3.4. Stanley–Reisner complexes of the polarization of primary monomial ideals are vertex-
decomposable.

Proof. Let S be the set of simplicial complexes on a vertex set V . This is a poset, under inclusion: ∆′ ⊆ ∆ if
F ∈ ∆ for every F ∈ ∆′. By induction on S, it suffices to show that if ∆ is the Stanley–Reisner complex of
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the polarization of a primary ideal, then there exists x ∈ V such that the Stanley–Reisner ideals of star∆(x)
and del∆(x) are also obtained through polarization.

Let 1 ≤ c ≤ |V |, and I a squarefree monomial ideal with ht I = c. Then I is the polarization of a primary
monomial ideal if and only if there exists a partition V =

⊔c
i=1{xi,1, . . . , xi,ni

} of the vertex set such that
for every 1 ≤ i ≤ c and for every generator f of I, if xi,j | f for some 1 ≤ j ≤ ni, then xi,k | f for every
1 ≤ k ≤ j. Moreover, if this holds, we may assume that I is the polarization of an monomial ideal primary
to (x1,1, . . . , xc,1)R.

Let a be an (x1,1, . . . , xc,1)-primary monomial ideal and I its polarization. Let ∆ be the Stanley–Reisner
complex of I. The Stanley–Reisner ideal of star∆(x1,1) is (I :x1,1), which is a polarization of (a :x1,1). The
Stanley–Reisner ideal of del∆(x1,1) is (I, x1,1), which is a polarization of (a, x1,1). Both (a :x1,1) and (a, x1,1)
are primary. �

Remark 3.5. We now see that vertex-decomposability does not ensure that Betti tables are independent of
chark. For, let I be as in Example 2.3. Let S = R[y1, . . . , yn]. Let J = IS + (x1y1, . . . , xnyn); it is the
polarization of I + (x2

1, . . . , x2
n) which is (x1, . . . , xn)-primary. Therefore ∆J is vertex-decomposable, while

β(J) depends on chark, by Theorem 3.1 and Proposition 2.1. This behaviour is already known for shellable
complexes [TH96, Examples 3.3, 3.4]. �

4. Bipartite Ideals

We say that a quadratic monomial ideal I is bipartite if there exists a partition V = V1 ⊔ V2 such that
every minimal generator of I is of the form xy for some x ∈ V1 and y ∈ V2. Construction 4.4 describes
all bipartite ideals. In Theorem 4.7, we give a method to calculate the homology of arbitrary simplicial
complexes, similar to the method of nerve complexes.

Construction 4.1. Let Γ be a simplicial complex on V1 := {x1, . . . , xn}. Let Γj , 1 ≤ j ≤ m be a collection
of simplicial subcomplexes of Γ such that Γ = ∪m

j=1Γj . Let V2 = {y1, . . . , ym} be a set of m new vertices.
Define

(5) Γ̃ = {σ ∪ τ : σ ∈ Γ, τ ⊆ {yj : σ ∈ Γj}} .

Lemma 4.2. With notation as above, Γ̃ is contractible.

Proof. We prove this using discrete Morse theory developed by R. Forman [For98]. Refer to the exposition in
[For02] for unexplained terminology. Specifically, we will exhibit a complete acyclic matching on the Hasse

diagram of Γ̃; see [Cha00, Section 3] and [For02, Section 6] for the interpretation of acyclic matchings of the
Hasse diagram in terms of discrete Morse theory.

Let σ ∈ Γ. Let Yσ = {yj : σ ∈ Γj} and Fσ = {σ ∪ τ : τ ⊆ Yσ}. Then Γ̃ =
⊔

σ∈Γ Fσ is a partition. Let
j be the smallest integer such that yj ∈ Yσ. We define a complete matching on Fσ by connecting σ ∪ τ
with σ ∪ τ ∪ {yj} for all τ ⊆ Yσ with yj 6∈ τ . Repeating this for all σ ∈ Γ, we obtain a complete matching

of the Hasse diagram of Γ̃. We now claim that this is an acyclic matching. Assume the claim; then Γ̃ is
contractible, by [For02, Theorem 6.4].

To prove the claim, we let, for a face F of Γ̃,

jF =

{
min{j : yj ∈ F}, if there exists j such that yj ∈ F

∞, otherwise.

Let F → F ′ → F ′′ be edges in the Hasse diagram (modified, as in [For02, Section 6], to include the
matchings), such that one of them is an up arrow and the other is a down arrow. Then jF > jF ′′ . Since
every edge in the Hasse diagram connects two faces whose sizes differ exactly by one, we see that every cycle
has an even number of edges. Since no two up arrows share a vertex (the up arrows form the matching), the
up and the down arrows alternate in every directed cycle. Hence the Hasse diagram does not have directed
cycles. �

Remark 4.3. Note that there may exists j such that Γj = {∅}. �
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Construction 4.4. Let Γ be a simplicial complex on V1 := {x1, . . . , xn}. Denote the number of facets of Γ
by m. Let Gj , 1 ≤ j ≤ m be such that for all 1 ≤ j ≤ m, V1rGj is a face of Γ and such that every facet
of Γ is of the form V1rGj for some j. Let y1, . . . , ym be new vertices. Let ∆V1 be the (n − 1)-simplex on
x1, . . . , xn. Define

(6) ∆′ = {σ ∪ τ : σ ∈ Γ, τ ⊆ {yj : σ ⊆ (V1rGj)}} and ∆ = ∆′
⋃

∆V1 .

Let I be the Stanley–Reisner ideal of ∆, in the ring R = k[x1, . . . , xn, y1, . . . , ym]. Let IΓ denote the extension
of the Stanley–Reisner ideal of Γ from the ring k[x1, . . . , xn] to R.

Proposition 4.5. With notation as above, I = (xiyj : 1 ≤ j ≤ m, xi ∈ Gj). Moreover, I = (I + IΓ) ∩
(y1, . . . , ym). Hence the Stanley–Reisner ideal of ∆′ is (I + IΓ).

Proof. We will first show that the minimal nonfaces of ∆ are precisely {xi, yj}, 1 ≤ j ≤ m, xi ∈ Gj . It
follows from the definition of ∆ that for every 1 ≤ j ≤ m and xi ∈ Gj , {xi, yj} is a nonface. Observe
that {x1, . . . , xn} and {y1, . . . , ym} are faces of ∆. Let σ ∪ τ with σ ⊆ {x1, . . . , xn} and τ ⊆ {y1, . . . , ym}
be a minimal nonface of ∆. Hence σ 6= ∅ 6= τ . Therefore there exists yj ∈ τ such that σ 6∈ V1rGj . Let
xi ∈ σ ∩ Gj . Now, {xi, yj} ⊆ σ ∪ τ ; by minimality of σ ∪ τ we conclude that σ ∪ τ = {xi, yj}.

In order to prove that I = (I + IΓ) ∩ (y1, . . . , ym), it suffices to show that f ∈ I for all monomials
f ∈ IΓ ∩ (y1, . . . , ym). Since the generators of IΓ are monomials in V1, write f = f ′yj for some f ′ ∈ IΓ. Let
f ′ correspond to a nonface σ of Γ. Therefore σ ∪ {yj} is a nonface of ∆, so f ∈ I.

Note that (I + IΓ) * (y1, . . . , ym). Hence the intersection (I + IΓ) ∩ (y1, . . . , ym) corresponds to the union
∆′ ∪ ∆V1 ; see [MS05, Theorem 1.7]. Therefore the Stanley–Reisner ideal of ∆′ is (I + IΓ). �

Remark 4.6. Every bipartite R-ideal I, with the partition {x1, . . . , xn} ⊔ {y1, . . . ym}, arises through Con-
struction 4.4. Write I = (xiyj : 1 ≤ j ≤ m, xi ∈ Gj), where the Gj are subsets of V1. Let

J =

(
∏

xi∈F

xi : F ∩ Gj 6= ∅ for all j

)
=

(
∏

xi∈F

xi : F ∩ Gj 6= ∅ for all minimal Gj

)
.

Then I = (I + J) ∩ (y1, . . . ym). Let Γ be the Stanley–Reisner complex of J on the vertex set V1. The facets
of Γ are V1rGj for Gj minimal. To see this, it suffices to show that

Ass(R/J) = {(Gj)R : Gj minimal}

or, equivalently, that

J =




∏

x∈Gj

Gj minimal

x




∨

(here (−)∨ denotes taking the Alexander dual)

which follows from the definition of J and [Far02, Proposition 1]. Now apply Construction 4.4 with the Gj

as above. �

Theorem 4.7. Let Γ and ∆ be as in Construction 4.4. Then for all i ≥ 0, H̃i+1(∆;Z) ≃ H̃i(Γ;Z).

Proof. Notice that ∆′ ∩ ∆V1 = Γ, or, equivalently, that (I + IΓ) + (y1, . . . , ym) = IΓ + (y1, . . . , ym). From

the Mayer–Vietoris sequence on homology [Hat02, Section 2.2], it suffices to prove that H̃i(∆
′;Z) = 0 for all

i ≥ 0. This follows from Lemma 4.2. �

J. Herzog raised the question whether the Betti tables of bipartite ideals are independent of the charac-
teristic.

Example 4.8. Let R = Z[x1, . . . , x6, y1, . . . , y10]. Let Γ be the minimal triangulation of RP2 on the vertices

x1, . . . , x6, given in Example 2.3 (and called ∆ there). By Theorem 4.7, H̃∗(∆;Z) is not torsion-free so, β(I)
depends on chark. �
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5. Componentwise linear resolutions

We look at consecutive cancellation in Betti tables, and use it to show that the Betti tables of ideals with
componentwise linear resolution are independent of the characteristic. For t ∈ N, we write (It)R for the ideal
generated by the vector space It of polynomials of degree t in I. We say that the resolution of I is t-linear
if I = (It)R and βi,j(I) = 0 for all j 6= i + t and for all i. We say that an R-ideal I has a componentwise
linear resolution (see [HH99]) if, for all t ∈ N, the resolution of (It)R is t-linear.

Theorem 5.1. Suppose that I is a monomial R-ideal that has a componentwise linear resolution, in all
characteristics. Then β(I) does not depend on chark.

Definition 5.2 ([Pee04]). Let β and β′ be Betti tables. We say that β′ is obtained from β by a consecutive
cancellation if there exists i, j such that β′

i,j = βi,j − 1, β′
i+1,j = βi+1,j − 1 and β′

k,l = βk,l if (k, l) 6= (i, j)

and (k, l) 6= (i + 1, j).

For instance, in Example 2.3, the Betti table of R/I in characteristic 0 is obtained from its Betti table in
characteristic 2 by a consecutive cancellation; we have i = 3 and j = 6.

Proposition 5.3. Let A = Z[x1, . . . , xn]. Let a be a homogeneous A-ideal such that every integer is a nonze-
rodivisor on A/a. Then, for all primes p, βA⊗ZQ ((A/a) ⊗Z Q) can be obtained from βA/pA ((A/a) ⊗Z (Z/pZ))
by a sequence of consecutive cancellations.

Proof. Note that A/a is a flat Z-algebra. Let F• be a minimal graded free A⊗ZZ(p)-resolution of (A/a)⊗ZZ(p).

Then βA/pA ((A/a) ⊗Z (Z/pZ)) = β(F•). Now, F• ⊗Z(p)
Q is a graded free (A⊗ZQ)-resolution of (A/a)⊗ZQ.

Therefore we can write F• ⊗Z(p)
Q = G• ⊕ G′

• where G• is a minimal graded free (A ⊗Z Q)-resolution of

(A/a)⊗ZQ and G′
• is graded trivial complex of free (A⊗ZQ)-modules [Eis95, Theorem 20.2]. Therefore β(G•)

can be obtained from β(F•) by a sequence of consecutive cancellations; now, note that βA⊗ZQ ((A/a) ⊗Z Q) =
β(G•). �

The following is an elaboration of the ‘truncation principle’ of D. Eisenbud, C. Huneke and B. Ul-
rich [EHU06, Proposition 1.6].

Lemma 5.4. Let t ∈ N. Then for all i ≥ 0 and for all j > i + t, βi,j(I ∩ mt) = βi,j(I)

Proof. The lemma follows by repeatedly applying (finitely many times) the following. Claim: Suppose that
I is minimally generated by f1, . . . , fr. Write Ĩ = (f2, . . . , fr) + f1m. Then βi,j(Ĩ) = βi,j(I) for all i ≥ 0 and
for all j > i + deg f1 + 1. To prove the claim, consider the exact sequence

0 //

R
(Ĩ:Rf1)

(− deg f1) // R/Ĩ // R/I // 0,

and the associated exact sequence of Tor,

// Tori(k, k(− deg f1))j
// Tori(k, R/Ĩ)j

// Tori(k, R/I)j
// Tori−1(k, k(− deg f1))j

// .

(Here, we use the fact that (Ĩ :R f1) = m.) Now, βi,j(k(− deg f1)) = 0 = βi,j(k(− deg f1)) for all i ≥ 0 and
for all j > i + deg f1, which proves the claim. �

For a homogeneous R-ideal I, set d(I) to be the least degree of a minimal generator of I, i.e., d(I) =
min{j : β0,j(I) 6= 0}.

Proposition 5.5. Let C be a class of monomial R-ideals such that for all I ∈ C, (a) βi,i+d(I)(I) is indepen-

dent of chark, and (b) I ∩ md(I)+1 ∈ C. Then for all I ∈ C, β(I) is independent of chark.

Proof. Let I ∈ C. We prove the theorem by induction on reg I − d(I). If reg I = d(I), then the resolution of
I is d(I)-linear. The only non-zero entries in β(I) are βi,i+d(I)(I), i ≥ 0. Hence, by hypothesis (a), β(I) is
independent of chark.

If reg I > d(I), then, by (b) and the induction hypothesis, β((I ∩ md(I)+1) is independent of chark. By
Lemma 5.4, βi,j(I) is independent of chark for all i ≥ 0 and for all j ≥ i + d(I) + 2. Proposition 5.3, along
with (a), now finishes the proof. �

Lemma 5.6. For all i ≥ 0, βi,i+d(I)((Id(I))R) = βi,i+d(I)(I).
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Proof. Let J ⊆ I be the subideal generated by the minimal generators of I of degree d(I) + 1 or greater.
Then I = Id(I) + J . Consider the exact sequence

0 → R/(Id(I) ∩ J) → R/Id(I) ⊕ R/J → R/I → 0

and the associated exact sequence of Tor,

// Tori(k, R
Id(I)∩J )j //

Tori(k, R/Id(I))j

⊕
Tori(k, R/J)j

// Tori(k, R/I)j
// Tori−1(k, R

Id(I)∩J )j // .

Now, for all i ≥ 1, βi,i+d(I)(
R

Id(I)∩J ) = βi−1,i+d(I)(
R

Id(I)∩J ) = βi,i+d(I)(R/J) = βi−1,i+d(I)(R/J) = 0. This

proves the lemma. �

Proof of Theorem 5.1. We will verify that ideals with componentwise linear resolution satisfy the hypotheses
of Proposition 5.5. By definition, (Id(I))R has a d(I)-linear resolution in all characteristics. By Proposi-
tion 5.3, β((Id(I))R) does not depend on chark, so, by Lemma 5.6, we see that hypothesis (a) is satisfied.

Hypothesis (b) is obtained from noting that for all t ≥ d(I) + 1, It = (I ∩ md(I)+1)t. �

Remark 5.7. We note that the proofs of Proposition 5.5 and Theorem 5.1 will hold, mutatis mutandis, if we
replace the phrase “I is a monomial R-ideal” with the phrase “I is the image in R of a Z[x1, . . . xn]-ideal a
such that Z[x1, . . . xn]/a is a flat Z-algebra”. �

Examples. Theorem 5.1 shows that we cannot detect dependence on the characteristic using Alexander
duality. For, let I be an ideal (such as the one in Remark 3.5) such that R/I is Cohen–Macaulay in
all characteristics, but β(I) depends on the characteristic. By a result of J. Eagon and V. Reiner [MS05,
Theorem 5.56], its Alexander dual I∨ has a linear resolution in all characteristics. Hence β(I∨) is independent
of chark.

On the other hand, stable ideals have componentwise linear resolutions, given by S. Eliahou and M. Ker-
vaire; see [MS05, Section 2.3] and [HH99, Example 1.1]. Therefore for any stable ideal I, β(I) is independent
of chark.

Now, as an application of Proposition 5.3, we obtain that if I is the edge ideal of a chordal graph G, then
β(I) does not depend on characteristic. T. Hibi, K. Kimura and S. Murai [HKM10, Theorem 2.1] show that
the sequence (βi(R/I)) of total Betti numbers depend only on I. By Proposition 5.3, β(I) is independent of
chark. As another corollary, we see that if R/I has a pure resolution in all characteristics, then β(I) does
not depend on the characteristic.
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